Mapping the fMRI pipeline-space towards more robust pipelines

Publié le
Equipe
Date de début de thèse (si connue)
Septembre 2021
Lieu
Rennes
Unité de recherche
IRISA - UMR 6074
Description du sujet de la thèse

Description

In a recent study, a collaboration of 200 researchers demonstrated how the choice of brain imaging pipeline can have a non-negligible impact on the findings of a study (Botvinik-Nezer et al., 2020). In this landmark paper, researchers - divided in 70 teams - used the *same* dataset to answer the *same* predefined research questions with the only varying parameter being the analysis pipeline that was selected by each team based on its expertise. In total, the 70 teams chose 70 different pipelines and in multiple instances, the results obtained across pipelines were contradictory.

The pipeline-space in neuroimaging is especially large. Many steps are needed to prepare and analyze neuroimaging data including: motion correction, registration to a standardized space, spatial smoothing, etc. And for each step, different algorithms are available, implemented in various neuroimaging software (Carp, 2012). While some good practices exist to guide some of those choices, researchers are left with many choices to be made (Bowring et al., 2019). This thesis will focus on providing a better understanding of the relationships that exist between different pipelines. 

Main activities

The goal of this thesis is to build a “map” of the neuroimaging pipeline-space that will be used to investigate one or more of the following challenges: 1) Pipeline debugging; 2) Identify when pipelines suffer from violations of their underlying assumptions; 3) Eliminate unsuitable pipelines given an input dataset.

Debugging. Some pipelines have been shown to be unstable in the presence of small perturbation in the input data, questioning the robustness of their implementation (Kiar et al., 2020). The goal of pipeline debugging is to identify those pipelines that do not behave as expected due to the presence of a bug.

Assumption violation. Each step of an analytic pipeline is the implementation of a method that comes with some assumptions. If those assumptions are not met, this can lead to an incorrect behaviour of the pipeline.

Dataset-specific unsuitability. In other instances, a pipeline will fail for a given dataset due to the particular properties of these data (e.g. specific noise properties, etc.).

In all of the cases above, a systematic investigation of the pipeline space is impractical. In addition, there is usually no ground truth that can be used to benchmark pipelines results in neuroimaging. In this thesis, we propose instead to provide a representation of fMRI statistics in a lower dimensional space and to use this space to estimate how close or distant different pipelines are. Using this map of distances across pipelines in different contexts, we will derive a solution for the problems exposed above.

 

Bibliographie

Bhattarai, B., Sharma, G., & Jurie, F. (2016). CP-mtML: Coupled Projection multi-task Metric Learning for Large Scale Face Retrieval. ArXiv:1604.02975 [Cs]. http://arxiv.org/abs/1604.02975

Botvinik-Nezer, R., Holzmeister, F., Camerer, C. F., Dreber, A., Huber, J., Johannesson, M., Kirchler, M., Iwanir, R., Mumford, J. A., Adcock, R. A., Avesani, P., Baczkowski, B. M., Bajracharya, A., Bakst, L., Ball, S., Barilari, M., Bault, N., Beaton, D., Beitner, J., … Schonberg, T. (2020). Variability in the analysis of a single neuroimaging dataset by many teams. Nature, 582(7810), 84–88. https://doi.org/10.1038/s41586-020-2314-9

Bowring, A., Maumet, C., & Nichols, T. E. (2019). Exploring the impact of analysis software on task fMRI results. Human Brain Mapping, 0(0). https://doi.org/10.1002/hbm.24603

Carp, J. (2012). On the Plurality of (Methodological) Worlds: Estimating the Analytic Flexibility of fMRI Experiments. Frontiers in Neuroscience, 6. https://doi.org/10.3389/fnins.2012.00149

Dafflon, J., Costa, P. F. D., Váša, F., Monti, R. P., Bzdok, D., Hellyer, P. J., Turkheimer, F., Smallwood, J., Jones, E., & Leech, R. (2020). Neuroimaging: Into the Multiverse. BioRxiv, 2020.10.29.359778. https://doi.org/10.1101/2020.10.29.359778

Gorgolewski, K. J., Varoquaux, G., Rivera, G., Schwarz, Y., Ghosh, S. S., Maumet, C., Sochat, V. V., Nichols, T. E., Poldrack, R. A., Poline, J.-B., Yarkoni, T., & Margulies, D. S. (2015). NeuroVault.org: A web-based repository for collecting and sharing unthresholded statistical maps of the human brain. Frontiers in Neuroinformatics, 9. https://doi.org/10.3389/fninf.2015.00008

Kiar, G., Chatelain, Y., Castro, P. de O., Petit, E., Rokem, A., Varoquaux, G., Misic, B., Evans, A. C., & Glatard, T. (2020). Numerical Instabilities in Analytical Pipelines Lead to Large and Meaningful Variability in Brain Networks. BioRxiv, 2020.10.15.341495. https://doi.org/10.1101/2020.10.15.341495

Mohammadi, S. H., & Kain, A. (2017). Siamese Autoencoders for Speech Style Extraction and Switching Applied to Voice Identification and Conversion. Interspeech 2017, 1293–1297. https://doi.org/10.21437/Interspeech.2017-1434

Poldrack, R. A., Baker, C. I., Durnez, J., Gorgolewski, K. J., Matthews, P. M., Munafò, M. R., Nichols, T. E., Poline, J.-B., Vul, E., & Yarkoni, T. (2017). Scanning the horizon: Towards transparent and reproducible neuroimaging research. Nature Reviews Neuroscience, 18(2), 115–126. https://doi.org/10.1038/nrn.2016.167

Schroff, F., Kalenichenko, D., & Philbin, J. (2015). FaceNet: A unified embedding for face recognition and clustering. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 815–823. https://doi.org/10.1109/CVPR.2015.7298682

Liste des encadrants et encadrantes de thèse

Nom, Prénom
Elisa Fromont
Type d'encadrement
Directeur.trice de thèse
Unité de recherche
UMR 6074

Nom, Prénom
Camille Maumet
Type d'encadrement
Co-encadrant.e
Unité de recherche
Inria
Contact·s
Mots-clés
Unsupervised Deep learning, Metric Learning, Brain imaging, Statistics, fMRI, Pipelines