Syntactical Models for Historical Music Score Recognition

Publié le ven 18/03/2022 - 18:35
Type de contrat
Fixed-term contract: up to 18 months
Corps / Catégorie
Research Engineer
Equipe de recherche
Contexte
IRISA - Intuidoc

IRISA is a joint research center for Informatics, including Robotics and Image and Signal Processing. 850 people, 40 teams, explore the world of digital sciences to find applications in healthcare, ecology-environment, cyber-security, transportation, multimedia, and industry... INSA Rennes is one of the 8 trustees of IRISA.

The Intuidoc team (https://www.irisa.fr/intuidoc) conducts researches on the topic of document image recognition. Since many years, the team proposes a system, called DMOS-PI method, for document structure analysis of documents. This DMOS-PI method is used for document recognition, or field extraction in archive documents, handwritten contents damaged documents (musical scores, archives, newspapers, letters, electronic schema, …).

Collabscore project

Collabscore is a project founded by ANR (French Research National Agency), led by the CNAM. The goal is to study ancient scores provided by the BNF (Bibliothèque National de France) and Royaumont foundation. Collabscore is a multidisciplinary project. The first task consists in improving OMR (Optical Music Recognition) results using learning techniques. The second action will focus on methods for automatic alignment of the scored score with other multimodal sources. The last one will set up demonstrators based on notated scores at two of the project partners, representative, in various ways, of institutions in charge of musical heritage collections (BnF and Fondation Royaumont). Intuidoc team focuses on the first task of musical score recognition.
Mission

The engineer fellow will work on the conception of an OMR system. Based on previous works of our research team, the goal of this position is to enrich an existing system (DMOS-PI) to get a complete self-adaptative OMR system for historical orchestra scores. The tasks are mainly:

  • define a grammatical description of musical notation, using the existing DMOS-PI method;
  • integrate symbol recognizers developed in another part of the project;
  • integrate anomaly detection into the system.

Logical programming from grammars and languages is expected in this work.

Profil / Compétences
Master degree or PhD in computer science.
Experience in document recognition or statistical analysis is expected but not mandatory.
Skills in grammars and languages and/or logical programming are nice-to-have, as well as knowledge of music notation.
Diplôme requis
Master degree or PhD in computer science.
Lieu de travail
IRISA Rennes
Date prévisionnelle d'embauche
Date limite de candidature
Durée du contrat (en mois)
18
Quotité
100%
Salaire brut mensuel
Up to €36 000 gross annual salary (according to experience), with social security benefits
Candidater
Candidates should contact via email: Bertrand Coüasnon (bertrand.couasnon@irisa.fr), Aurélie Lemaitre (aurelie.lemaitre@irisa.fr) and Yann Soullard (yann.soullard@irisa.fr).