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Abstract—The ever-growing choice in diverse services is mak-
ing service orchestration variabilityan essential aspect of a
composite web service. Influence of this variation on the Quality
of Service (QoS) of a composite service is critical and the focus
of our work. In this paper, we present a methodology to first
model orchestration variability using a feature diagram (FD).
The FD specifies a product line of orchestrations represented as
configurations of invoked/rejected atomic services. Second, due
to the potentially large set of configurations we employ combina-
torial testing techniques to automatically generate configurations
covering all valid pairwise interactionsbetween services. Third, we
analyze QoS variation for each configuration using probabilistic
models of QoS. Using acrisis management systemcase study
we experimentally show that pairwise generation covers allQoS
outliers and eliminates analysis of> 75% of all possible configu-
rations. The QoS analysis of the pairwise configurations reveals
unsafe/ineffective configurations, helps determine realistic Service
Level Agreements (SLAs), and provides valuable feedback tohelp
remodel an orchestration.

I. I NTRODUCTION

Inherent choice in an ever-growing world of services is
makingorchestration variabilitya significant aspect of a com-
posite web service. The different ways of orchestrating atomic
services can be seen as either multiple variants of a composite
service created offline or an online composite service that
reconfigures dynamically. In either case, we expect to observe
variation in Quality of Service (QoS) across different orches-
trations. This variation in QoS must not only take into account
service variability but also the uncertainty/probabilistic nature
of QoS itself.

It is important to consider orchestration variability and its
implications on composite service behavior. For instance,not
considering variability leads to misrepresentation of contrac-
tual agreements on QoS [1]. Contractual agreements such as
service level agreements (SLAs) [2] is the industry standard
to ensure QoS compliance between service providers and
customers. Usual deviations from SLAs are a result of non-
incorporation of QoS variability and in particular QoS outliers
in its specification. Therefore, we need systematic analysis of
variability in order to improve robustness of contractual SLAs.

Modeling variability in web service orchestrations and ana-
lyzing the consequent variation in QoS is the principal subject
of this paper. We present a methodology to model orchestration
variability usingfeature diagrams(FDs). Feature diagrams [3]
provide a graphical constraints-based framework to specify
a product-line of orchestrations. Each orchestration in the
product-line is represented as an authorized configuration
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of invoked/rejected atomic services. In most cases the FD
specifies a very large set of configurations making exhaustive
sampling infeasible. Instead, we sample the set of all possi-
ble configurations by systematically analyzing configurations
covering all valid pairwise service interactions [4]. Finally,
we use probabilistic models of QoS [5] to analyze variants of
orchestrations derived from all valid configurations.

We use our methodology to investigate merits of system-
atically sampling the set of all configurations of web service
orchestrations. Random sampling of configurations, generally
employed, is both ineffective and expensive because it cannot
be systematic and requires computing QoS values for a large
number of configurations. Moreover, random sampling is not
easy when FD constraints like mutual exclusion/requirement
need to be satisfied. This work focuses on the adaptation
of combinatorial interaction testing (CIT) [6] to select a
sample of configurations that covers all pairwise interactions
of services while satisfying all FD constraints. We use the
recently proposed scalable approach in [7] for generating these
configurations. CIT is based on the observation that most
of the faults are triggered by interactions between a small
number of variables [8]. For example, consider the output
quality of printing web pages depending on a hypothetical
combination of parameters represented in Table I. An exhaus-

Parameters Options
Operating System Windows, Linux, Macintosh

Browser IE, Firefox, Chrome, Opera
Printer Model HP, Canon, Xerox, Epson
Printer Type Ink-Jet, Laser
Orientation Portrait, Landscape

Size A3, A4, A5, A6
Color B/W, Multicolor

TABLE I
EXAMPLES OF PRINTING PARAMETERS REQUIRING COMPARISON.

tive generation of combinations of these parameter options
would entail 1536 cases with many redundancies. Pairwise
coverage of optional combinations would require just17 tests,
resulting in a reduction of close to99%. The number of
exhaustive tests will increase exponentially with addition of
more parameters/options requiring an employment of efficient
sampling strategies.

Pairwise coverage test generation has been used to detect
faults in software systems in prior work [4], [6]. However,
the application of these coverage-based techniques to sample
configurations in service orchestrations is yet to be examined.
This work performs such an examination through a series
of experiments that aim at investigating several facets of the
question: is pairwise service interaction sampling of orches-
tration configurations effective for overall QoS analysis and
the consequent definition of a global SLA?

All experiments are based on acrisis management system



(CMS) case study described comprehensively in [9]. This
paper reports on the following questions:

• Is it possible to automatically sample the orchestration
configurations space to select configurations that cover
all pairwise service interactions?

• What global QoS metrics can we infer from a pairwise
sample?

• How stable is the SLA computed from a pairwise sample?
This question is related to the fact that the automatic
generation of pairwise configurations is not deterministic
and thus the global contract might vary depending on the
generatedsample.

• Is pairwise sampling more effective and efficient com-
pared to exhaustive sampling of the configuration space?

From our experimentation, it is shown that analysis of a
family of configurations (and their corresponding QoS values)
can be accurately represented by a small set of configura-
tions satisfying pairwise interactions. Consistency of various
generated pairwise solutions are also demonstrated through
simulations. This comprehensive analysis of variability helps
the orchestrator understand the global QoS extremities of
the composite service before negotiating a SLA agreement.
Deterioration in service quality or non-compliance of SLA
standards during online deployment of the service is thus pre-
vented. Improvements in the orchestration model to eliminate
some deviant configurations (causing excessive deterioration
of end-to-end QoS) or grouping a family of configurations with
similar QoS behavior are other extensions of this technique.

This paper is organized as follows. Section II provide foun-
dations required for our methodology. These include feature
diagrams in II-A, Orc language for orchestration in II-B, pair-
wise configuration generation in II-C and formal description
of QoS metrics in II-D. The methodology followed in this
paper is briefly presented in Section III. In Section IV the
crisis management system (CMS) is described. Comprehensive
analysis of the CMS case study is done in Section V. Emphasis
was placed on the probabilistic distribution simulations in
V-A and efficient pairwise generation of configurations in
V-B. Evaluation of these schemes to generate families of QoS
output was done in V-C. Study of the robustness of pairwise
interactions and its comparison with exhaustive configurations
was also done in V-D. Related work in literature is presented
in Section VI followed by conclusions and perspectives in
Section VII.

II. FOUNDATIONS

A. Modeling Variability in Composite Services

Variability in a composite service derives from choice in
several available online services. Each of these configurations
represents a set of invoked or rejected atomic services. Se-
lection of some services in a configuration may compulsorily
link the selection of other services. Some services are mutually
exclusive and cannot be selected simultaneously. In this paper,
we model the variability in service configurations using a
feature diagram (used interchangeably with feature model)
often used to model Software Product Lines (SPLs).

Feature Diagrams(FD) introduced by Kang et al. [3]
compactly represent all the products of a SPL (referred to as
configurationsin this paper) in terms of features which can be
composed. Feature diagrams have been formalized to perform
SPL analysis [10]. In [10], Schobbens et al. propose a generic

formal definition of FD which subsumes many existing FD
dialects. We define a FD as follows:

• A FD consists ofk featuresf1, f2, ..., fk

• A featurefi may be associated with a software asset such
as an atomic service.

• Features are organized in a parent-child relationship in a
treeT . A feature with no further children is called a leaf.

• A parent-child relationship between featuresfp and fc

are categorized as follows:
– Mandatory - child featurefc is required if fp is

selected.
– Optional - child featurefc may be selected iffp is

selected.
– OR - at least one of the child-featuresfc1,fc2,..,fc3

of fp must be selected.
– Alternative (XOR) - one of the child-features

fc1,fc2,..,fck of fp must be selected.
• Cross tree relationships between two featuresfi and fj

in the treeT are categorized as follows:
– fi requiresfj - The selection offi in a product

implies the selection offj.
– fi excludesfj - fi andfj cannot be part of the same

product and aremutually exclusive.
Using the FD we create and validate configurations (i.e a
selection of features in the FD) of atomic services invoca-
tions/rejections.

B. Service Orchestration using Orc

While the FD describes a set of services invoked/rejected,
it is crucial to formally describe the causal link between the
invoked atomic services using an orchestration. The business
process execution language (BPEL) [11] has been used as
the industry standard for describing orchestrations. However,
the use of this language has certain disadvantages including
inherent complexity of the language and restrictions in combi-
natorial service descriptions [12]. Orc [13] serves as a simple
yet powerful concurrent programming language to describe
web services orchestrations.

The fundamental declaration used in the Orc language is a
site. Sites can be bothexternalor internal. When an external
site is made available to Orc, its type is also made available
to the Orc. The type of asite is itself treated like a service
- it is passed the types of its arguments, and responds with a
return type for those arguments. An Orcexpressionrepresents
an execution and may call external services to publish some
number of values (possibly zero).

Orc has the following combinators that are used on various
examples as seen in [13]. Theparallel combinatorF |G,
where F and G are Orc expressions, runs by executingF
andG concurrently. WheneverF or G communicates with a
service or publishes a value, the expressionF |G does so as
well. The execution of thesequential combinatorF > x > G
starts by executingF . Sequential operators may also be written
compactly asF ≫ G. Values published by copies ofG are
published by the whole expression, but the values published
by F are not published by the whole expression; they are
consumed by the variable binding inG. If there is no response
from either of the sites, the expression does not terminate.

While the above two composition operators are for creating
threads, Orc uses the following construct to prune operations.
The pruning combinator, writtenF < x < G, allows us



to block a computation waiting for a result, or terminate a
computation. The execution ofF < x < G starts by executing
F and G in parallel. WheneverF publishes a value, that
value is published by the entire execution. WhenG publishes
its first value, that value is bound tox in F , and then the
execution ofG is immediately terminated. Theotherwise
combinator, writtenF ; G has the following execution. First,
F is executed. IfF completes, and has not published any
values, thenG executes. IfF did publish one or more values,
then G is ignored. The publications ofF ; G are those ofF
if F publishes, or those ofG otherwise. In theFork − Join
combinator, two processes are invoked and run concurrently.
The process waits until a response is obtained from both. This
may be represented as(F, G) where the process waits for
responses from both atomic servicesF andG.

C. Configuration Generation from Feature Diagram

Combinatorial interaction testing (CIT) has been proposed
by Cohen et al. [6] to select a subset of all combinations of
variables that define the input domain of a program, while
still guaranteeing a certain level of coverage. This has ledto
the definition of pairwise interaction testing, or 2-wise testing.
This samples the set of all combinations in such a way that
all possible pairs of variable values are included in the set
of test data. Pairwise testing has been generalized tot-wise
testing which samples the input domain to cover allt-wise
combinations.

Definition. 1. Covering Array - A covering array
CA(N ; t, k, v) is aN×k array of data taken from an alphabet
of sizev, with the property that everyN×t sub-array contains
all ordered subsets of sizet from v symbols at least once.

In this definition, N is the number of experiments, the
strengtht of the array is the parameter that allows achieving 2-
wise (pairwise), 3-wise ort-wise combinations. Thek columns
on this array correspond to all the variables in the input
domain. For the generation of services configurations,k is
the number of services, andv is 2 since we have only
boolean variables (services may be present or absent in a
configuration). The problem of generating a minimal covering
array for a set of variables is a complex optimization problem
that has been studied in extensive prior work for example [6].
It is important to notice that there exist very few studies that
have tackled the automatic generation of CIT in the presence
of constraints between variables. In order to include properties
that forbid combinations of values, CIT generation techniques
have to allow the introduction of constraints in the algorithms
that generate covering arrays. We have developed a solution
to generate t-wise configurations that satisfy all constraints
modeled in a feature model [7]. This solution is based on the
Alloy analyzer and SAT solving.

As the CIT removes redundant samples, there are a myriad
of sets of configurations that satisfy all the pairwise con-
straints. So, there are many sets of pairwise configuration
solutions (referred to assamplesfrom now) that exist for a
particular feature diagram. The consistency of these samples of
solutions must be tested to determine the accuracy and stability
in selecting pairwise combinations.

D. QoS Aspects of the Orchestration

The use of hard contracts to regulate QoS parameters
such as response time, availability and so on has been the

norm for most SLAs. However these take into account many
outliers that are the result of some rare deviations in QoS
which generate pessimistic SLAs. Probabilistic analysis of
QoS parameters as shown in [5] [14] provides a more realistic
study of actual web services’ behavior.

The following QoS parameters have been chosen:
1) Latency / Response Time(T ) - Denotes the overall delay

due to the time taken by a web service to respond. It
is a discrete value that may be modeled as a long tailed
distribution incorporating somerare deviations.

2) Availability (α) - The probability that a service is active
and can respond to a service call. For a well managed
service, this value is generally quite high.

3) Cost (χ) - Refers to the monetary cost associated with
each invocation of a particular atomic service.

4) Data Quality (ξ) - A subjective measure of trade off
to high Cost and Response times of web services. It
measures the “Quality” of the output of the web service
and the beneficial aspects of including a new atomic
service into the composite orchestration.

Extending these QoS parameters to an orchestration involves
the use of Orc combinators as described previously. Taking two
sitessi andsj , the QoS parameters may be applied as shown
in Table II depending on the Orc combinators used. The cases
of composing the servicesij using thesequentialand fork-
join combinators have been considered. The latency, cost and
availability metrics for the composite servicesij are derived
as shown in [15] withMax(p, q) representing the maxima
of the valuesp and q. For the sequential case, the latency
and cost of the composite service is a sum of the atomic
services’ parameters while the availability is a product of
such parameters. Similarly, the maxima of the atomic services’
response times contributes to the global response time under
parallel invocation.

Orc Expression sij , si ≫ sj sij , (si, sj)
Latency T (sij) = T (si) + T (sj) T (sij) = Max(T (si), T (sj))

Cost χ(sij) = χ(si) + χ(sj) χ(sij) = χ(si) + χ(sj)
Availability α(sij) = α(si) × α(sj) α(sij) = α(si) × α(sj)

TABLE II
QOS METRICS DISCUSSED IN[15] EXTENDED TO ORC COMBINATORS.

III. M ETHODOLOGY

We present a methodology designed to examine: (a) A
superior technique for sampling the possible configurations
to ensure efficient portrayal of QoS behavior of a composite
service; (b) The need for probabilistic analysis of QoS in
variable service orchestrations. The following steps summarize
our methodology:

1) The inputs are: (a) Variability and constraints of a set
of configurations of services modeled in a FD; (b) A
composite service orchestration in Orc to specify causal-
ity and service interactions. The modeling inputs may be
specified as a 3-tuple (S, FD, O) where:

• S is the set of services that can be used. In a
configuration, subsetsS1, ..., SN of these services are
used.

• FD is the constraints for the services included in a
particular configuration.

• O is the set of orchestrationsO1, ..., OM in a
composite service. These orchestrations invoke the
servicesS1, ..., SN according to the configuration
constraints specified by theFD.



2) The CIT with pairwise constraints satisfied is then used
to sample a set of configurations from the FD. This
represents a subset of configurations that effectively cover
all the exhaustive configurations in the FD.

3) For each of the sampled configurations we analyze the
QoS for orchestrations invoking all atomic services in
the configuration. These include a set of parameters to
analyze tradeoff between atomic services’ inclusion /
deletion between configurations. Probabilistic models of
response time are used to provide an accurate portrayal of
the services’ behavior along with comparison with other
QoS metrics.

4) Comparisons with randomly generated configurations and
consistency over multiple sample sets is included to
experimentally study the robustness of the proposed pair-
wise analysis scheme.

For the rest of the paper, we explain in detail this methodology
applied to the crisis management system case study.

IV. CRISIS MANAGEMENT SYSTEM CASE STUDY

Drawing from the comprehensive documentation in [9], the
chosen composite service models a typical crisis management
system (CMS). The need for such crisis management systems
has grown significantly over time with efficient collabora-
tion of various (distributed) parties responsible for speedy
assistance and recovery. A crisis can range over major catas-
trophes like natural disasters, terrorist attacks, accidents and
technological disruptions. These are examples of emergency
situations that are unpredictable and lead to severe after-
effects unless handled immediately. A CMS facilitates this
process by orchestrating the communication, co-ordination and
deployment between all parties involved in handling the crisis.
A thorough analysis of QoS aspects of a CMS will not only
ensure optimal performance of such mission critical systems,
but also ensure speedy and reliable assistance to the parties in
need of aid.

A. Feature Diagram of CMS

In Figure 1, we present the Crisis Management System
(CMS) FD [9]. The CMS FD contains several features that are
associated with software assets represented by atomic services.
For example, theLocal Operatorfeature is represented by the
GSMLocalOperatorweb service. Constraints such as optional,
requires and mutual exclusion (XOR) are also incorporated.
For example, theLocalOperator and InternationalOperator
features are mutually exclusive while theHospitalAdmitfea-
ture requires theAmbulancefeature.

B. Service Orchestrations in CMS

A host of web services used for the orchestration are
described in detail in Table III.

The FD (Fig. 1) and the orchestration (Fig. 2) cover two
dimensions that are complementary to each other. While the
FD represents the variability in the configurations, the orches-
tration specifies the order in which the services are called.
Making use of the terminology in [10],primitive features are
“features” that are of interest and that will be incorporated in
real-world services. On the contrary,decomposablefeatures
are just intermediate nodes used for decomposition. It is up
to the modeler to determine such classification of features
in the FD. We extend the semantics given in [10] to ensure
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Fig. 1. Feature Diagram / Model of the Crisis Management System with
associated real-world service assets.

Web Service Description
CrisisOrchestration Uses the customer input to orchestrate the CMS system
CrisisManager Selects the emergency services to

include in the orchestration
CommunicationManager Selects the communication services to

include in the orchestration
GPSLocation Sets up the GPS location of the emergency area
GSMLocalOperator Sets up a local GSM communication link for personnel
GSMIntlOperator Sets up an international GSM communication

link for personnel
Ambulance Contacts and waits for a response from

nearby ambulance agencies
Hospital Contacts and waits for a response from nearby hospitals
Police Contacts and waits for a response from

nearby police stations
Surveillance Connects to surveillance tapes from the affected area
Fire Contacts and waits for a response from fire stations

TABLE III
WEB SERVICES IN THECMS ORCHESTRATION.

compatibility of an orchestration with the feature model as
follows:

• The set of available servicesS are theprimitive nodes of
the FDD;

• For each orchestration, the set of corresponding services
invoked (denotedN );

• N ⊆ S in a configuration;
• A model of D is a subset of its (primitive and decom-

posable) nodes;
• There must exist a model ofD ([[D]]) such that[[D]] ∩

S = N (a model of a FD is a subtree that is valid w.r.t.
the operators and the dependence relation).

Drawing from the real-world services and the constraints
shown in Fig. 1, the composite service may be developed by
an orchestrator. Automatic compositions of composite services
from feature model constraints (with additional attributes to
describe orchestration interactions), is out of the scope of this
paper and will be investigated in future work.

The composite service orchestration is represented suc-
cinctly in Fig. 2 and the Orc representation is presented
in Table IV. Calling theCrisisOrchestrationservice invokes
the CommunicationManagerand CrisisManager operations
in sequence. TheCommunicationManagerservice calls the
GPSLocationand either one of theGSMLocalOperatorand
the GSMIntlOperator services that are mutually exclusive
(Mux). The outputs are synchronized and merged (Merge)
before dynamically invoking the optional services through
the CrisisManager. The varying timer values are used to
invoke / discard theFire, Ambulance, Hospital, Police and



Fig. 2. Composite Web Service Orchestration of the CMS.

CrisisOrchestration (call,type), CommunicationManager(call)
≫ CrisisManager(type)
CommunicationManager(call), (l,in) ≫
(LocalOperator(in),IntlOperator(in),GPSLocation())
GPSLocation(), (x,y)
GSMLocalOperator(l), let(query(l) | Timer(l))
GSMIntlOperator(in), let(query(in) | Timer(in))
CrisisManager(type), (f,a,h,p,s)≫
(Fire(f),Ambulance(a),Hospital(h),Police(p),Surveillance(s))
Fire(f) , let(query(f) | Timer(f))
Ambulance(a), let(query(a)| Timer(a))
Hospital(h), let(query(h)| Timer(h))
Police(p), let(query(p)| Timer(p))
Surveillance(s), let(query(s)| Timer(s))

TABLE IV
ORC REPRESENTATION OF THECMS ORCHESTRATION.

Surveillanceservices. The outputs of these services are merged
and synchronized. In the Orc model presented in Table IV,
the generic servicequery() is used to represent the invocation
of a particular web service. The setting of timer values
(Timer()) results in the various associated configurations in the
system and is an example of defining orchestration parameters.
Another level of control is the global timeout value associated
with the composite service. This has to be associated with
the overall SLA of the composite service to provide optimal
durations for response.

V. EXPERIMENTS

We perform experiments using the methodology described
in Section III for the CMS case study. This involved simulating
probabilistic QoS of atomic services, pairwise generationof
configurations and finally, analysis of composite services’
probabilistic QoS behavior for the variable configurations.

A. Simulation of QoS Distributions

The first step is simulating the probabilistic response time
distributions of each atomic web service as done in [5]. For
this, we make use of thet-location distributionfitting feature
in MATLAB as shown in Fig. 3. By varying the degrees
of freedomν and non-centrality parameterδ in the dfittool
of MATLAB, it is possible to generate various heavy tailed
distributions that mimic the response times of web services.
These are used to simulate the response times of actually
invoked atomic services. This t-distribution fitting was used
to generate various distributions of services’ response times
with varying parameters. An example of this for 10,000 runs
is as shown in Fig. 4.
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B. Generating a sample of configurations for CMS

We transform the CMS FD to constraint satisfaction prob-
lem model in the language Alloy as described in [7]. Inter-
feature constraints in the FD are transformed to Alloyfacts.
All pair-wise interactions between features are transformed
to Alloy predicates. The goal of solving the Alloy model is
to find the minimal set of configurations that cover conjunc-
tions of all valid pair-wise predicates. The first step involves
detectionof all valid pairs that conform to the FD. In the
second step, we construct conjunctions of pair-wise predicates
and solve them via incrementally increasing the scope of the
solution size. The result is a minimal set of configurations that
cover conjunctions of all valid pairs.

A set of 15 configurations,C1 to C15, were deemed
sufficient by the pairwise generation methodology to represent
the configuration sample space. These are shown in Table
V with a × representing service invocation. Guidelines for
setting experimental parameters in order to efficiently generate
solutions may be found in [7].

In conjunction to the configurations in Table V examples of
two generated cases are shown in Fig. 5. These configurations
cover tuples specified in nos.C1 and C15. While the basic
configurationC15 has none of the optional services,C1 has
three of the optional services invoked. Such variability in
orchestration can produce radically different QoS values.

Fig. 5. Varying configurations of the atomic services (a) Configuration C1
(b) ConfigurationC15.

While this view makes use of static invocation of an
orchestration (based on the FD configurations), another view
is also possible: dynamic invocation of the configurations in
a FD by a self-reconfiguring composite service. This would
create orchestrations dynamically and link them to a particular



Web Service C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
CrisisOrchestration × × × × × × × × × × × × × × ×
CommunicationManager × × × × × × × × × × × × × × ×
CrisisManager × × × × × × × × × × × × × × ×
GPSLocation × × × × × × × × × × × × × × ×
GSMLocalOperator × × × × × × ×
GSMIntlOperator × × × × × × × ×
Fire × × × × × × ×

Ambulance × × × × × × × × ×
Hospital × × × × × × × × ×
Police × × × × × × × × ×
Surveillance × × × × × ×

TABLE V
WEB SERVICES IN THEORCHESTRATION AND THE VARIABLE CONFIGURATIONS(C1 TO C15) WITH × REPRESENTING A SERVICE INVOCATION.

FD configuration. However, due to the added control of
systematic configuration generation from FDs, we resort to
static invocation of orchestrations.

C. Evaluating QoS of a Composite Service

The efficacy of the QoS analysis procedure was tested
experimentally. The web services of the CMS were assigned
random response times from a range of heterogeneous t-
distributions. The range of parameter values for these distri-
butions in MATLAB included degrees of freedom (ν) varying
from 3 to 6 and non-centrality (δ) varying from 5 to 10
seconds.

For an invoked service, the individual timeout value was set
sufficiently high (95 percentile of the response time distribu-
tion). The global timeout value was also set sufficiently high
(300 seconds) to allow capture of outliers in the distribution.
For each chosen configuration,10,000 Monte-Carlo runs on
the chosen services in the orchestration (representing a partial
order of the composite service) was performed. The response
time of the orchestration was collected during each run to
generate an associated distribution.

As seen in Fig. 6, the pairwise generated configurations
cover a range of response time distributions. The three worst
performing configurations (C4, C8, C12) are compared as an
example. The median and90 percentile changes between these
configurations are shown. This demonstrates the use of a few
configurations to test significant changes in QoS parameters
in a composite service.

In Fig. 6, the three worst performing configurations have
a significant contribution to the percentile deviations of the
response time distribution. This is further seen in thebox-
plot representation in Fig. 7. On each box, thered central
mark is the median, the horizontal edges of the box are the
25th and 75th percentiles, the whiskers extend to the most
extreme data points (not considered outliers) and outliers
plotted individually. The boxplot captures the minima,25,
50, 75 and95 percentile values of a configuration’s response
time distribution. The three worst performing configurations
(C4, C8, C12), in terms of response times’ values, are once
again compared in the box-plot (horizontal dotted lines passing
through the medians).

Additional parameters such as availability of a service, the
cost entailed in calling atomic services and output data quality
is also studied in tandem. Using the combinators described
in Table II, the QoS parameters were analyzed for each
configuration generated by the pairwise interactions. Setting
atomic service availability to0.95 (representing service avail-
ability in 95% of invocations) the composite availability each
configuration is shown in Table VI. The output data qualityξ
is related to the costχ by the constantκ given by ξ = χ/κ
(assuming linear increase in data quality with each atomic
service invocation). For example, setting theχ = 5 units for
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Fig. 6. Response times of the pairwise configurations with emphasis on
comparing the three configurations with highest response times.
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Fig. 7. Box-plot representation of the pairwise configurations with the median
values marked for the extreme cases.

each invoked atomic service, the cost of each configuration
is shown in Table VI. Furthermore, settingκ = 20, the
output data quality of the configurations may also be derived.
A higher availability and data quality with lower costs and
response times are desirable. For example, comparingC3 and
C4, calling additional services entails lower availability and
higher costs to the orchestrator, albeit with additional output
data quality. Though simplistic in outlook (due to subjectivity
of cost and data quality of atomic services), this trade-off
of parameters must be taken into account. These myriad of
QoS parameters accurately quantify run-time behavior of the
composite service.

From these results, the orchestrator can have a global
overview of the performance of the composite service. The
possibilities include:

1) Setting the SLA keeping into account the worst perform-
ing configuration. This will prevent contract deviation
during actual deployment of the service.

2) Setting a family of SLAs for a set of configurations taking



Metric C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
Availability (α) 0.6634 0.6302 0.6983 0.5987 0.7738 0.6983 0.7351 0.6302 0.6983 0.6634 0.6983 0.5987 0.6302 0.6634 0.7738
Cost (χ) 40 45 35 50 25 35 30 45 35 40 35 50 45 40 25
Data Quality (ξ) 2.0000 2.2500 1.7500 2.5000 1.2500 1.7500 1.5000 2.2500 1.7500 2.0000 1.7500 2.5000 2.2500 2.0000 1.2500

TABLE VI
AVAILABILITY , DATA QUALITY AND COST OF THE PAIRWISE CONFIGURATIONS.

into account trade-offs between QoS metrics and the
output quality of configurations. This leads to a product
line of composite services with extensively analyzed
SLAs. For example, the configurationsC2, C8 andC13
with very similar characteristics can be grouped as a
separate line of services.

3) Eliminating certain deviating configurations to improve
the overall performance. This may be done by adding fur-
ther constraints in the orchestration/feature models. For
example, consider the servicesC4 andC12. Eliminating
these configurations (by addition of constraints) reduces
the output data quality by0.25 units as seen Table VI.
However, it improves the 90, 50, 75 and 25 percentiles of
the overall response time distributions by11.53, 10.3,
9.3 and8.87 seconds respectively. These are significant
durations if the orchestrator of a composite service is
vying to compete with other companies offering lower
response time durations for similar quality services.

Using the pairwise analysis scheme, these imperative qualita-
tive results are obtained with quantitative efficiency evenwhen
the number of services are considerably large.

D. Evaluating the Pairwise Sampling Technique

To experimentally test the efficacy of combinatorial testing
the15 pairwise configurations (Table V) were compared with
all the 64 exhaustive independent configurations of the CMS
orchestration. As shown in Fig. 8, the comparison is made
using the25, 50, 75 and 90 percentiles of response time
distributions for 10,000 Monte-Carlo runs in MATLAB. These
families of exhaustive configurations (with few millisecond
redundant deviations) are represented by one pairwise con-
figuration. The pairwise configurations are able to capture
the extreme values representing greater than55 seconds of
quantile deviation. This represents greater than75% decrease
in the number of exhaustive tests, which will increase in an
exponential fashion with introduction of new services. The
accuracy of the pairwise sampling scheme is further demon-
strated in Table VII where themeanandmaximumdeviations
of the pairwise values from the nearest exhaustive values are
provided. These are expressed as a percentage of the mean
inter-family response time difference (8.96 seconds). Thus,
for such orchestrations with numerous configurations, using
pairwise interactions is a sufficient choice in order to examine
the entire sample space. Given one orchestration, there can

Percentile values 25 50 75 90
Mean 1.1326% 1.3471% 1.3438% 1.5471%

Maximum 9.0075% 7.2147% 7.1243% 5.2030%

TABLE VII
DEVIATIONS OF THE PAIRWISE AND EXHAUSTIVE ANALYSIS VALUES.

be many different sets of configurations that cover pairwise
services interactions. Thus, we compute QoS behavior over
different samples of configurations. This aims at evaluating
the stability of pairwise interaction coverage as a sampling
heuristic to estimate the global QoS for an orchestration. A
collection of40 samples that satisfy the pairwise interaction
testing were generated. The statistics of the worst performing
configuration (with highest response time) in each sample was
collected through 10,000 Monte-Carlo runs and is shown in
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Fig. 8. Comparison of pairwise and exhaustive generation ofconfigurations
with 25, 50, 75 and 90 percentile values of response time distributions
analyzed.

Fig. 9. These are consistent overall with the highest variance
of 0.8 seconds seen in the90 percentile value. This may be
attributed to outliers included in the extreme configurations.
Thus, it may be essential to analyze a range of percentiles to
accurately estimate the deviation of particular configurations.
Use of more than one sample should improve robustness of the
offline analysis framework as certain extreme configurations
may not occur always. Use of domain specific information
may also be required to further ensure robustness of samples.

5 10 15 20 25 30 35 40
70

75

80

85

90

95

100

105

Samples

Re
sp

on
se

 T
im

e 
(s

ec
on

ds
)

 

 

25 percentile with variance 0.1135 seconds 
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Fig. 9. Percentile values of most deviant scenarios generated by pairwise
interactions for the CMS orchestration.

VI. RELATED WORK

The combinatorial testing framework described by Cohen
et al. [6] has been applied extensively to efficient testing for
fault detection. In the work of Cohen et al. [17], this technique
is extended to software product lines with highly configurable
systems. Modeling variability in SPLs using feature models
is the work of Jaring and Boschet [16] where they show
that the robustness of a SPL architecture is related to the
type of variability. To ensure that constraints in the FD are
incorporated in the efficient sampling of t-wise tests, the solver
proposed by Perrouin et al. [7] is used. In [18] Larsen et al.
define modal I/O automata, an extension of interface automata
with modality. These allow models of varying configurations
to be developed from a single produce line while disallowing
trivial implementations. Such a notion when extended to a



composite service can provide interesting configurations and
versions of composite products as described in [18].

Pre-deployment testing of SLAs has been studied by Di
Penta et al. [19], where they make use of genetic algorithms
to generate test data causing SLA violations. Analysis of white
and black box approaches are provided in the paper. In [20],
Bruno et al. make use of regression testing to ensure that an
evolving service maintains the functional and QoS assump-
tions. The service consistency verification due to evolution is
done by executing test suites contained in a XML encoded
facet attached to the service.

The use of probabilistic QoS and soft contracts was intro-
duced by Rosario et. al [5] and Bistarelli et al. [21]. Instead of
using fixed hard bound values for parameters such as response
time, the authors proposed a soft contract monitoring approach
to model the QoS measurement. The composite service QoS
was modeled using probabilistic processes by Hwang et al.
[14] where the authors combine orchestration constructs to
derive global probability distributions.

In our paper, we extend these two notions to analyze the
QoS of a composite orchestration under various configurations.
The hard contract notions of end-to-end QoS are replaced
by the probability quantile based approach. This provides
the service provider the technique for estimating composite
service QoS distributions and estimating the global soft con-
tract SLA. Though formal analysis of end-to-end QoS has
been studied in Cardoso et al. [15], there are no practical
testing tools available for the service provider. The pairwise
testing procedure has been shown to outperform other testing
techniques in [6]. We extend this testing tool to develop a
generic testing methodology to query end-to-end QoS of a
web service. The efficacy of this scheme is provided though
experimental verification.

Related empirical studies of optimal QoS compositions
make use of genetic programming in Canfora et al. [22] and
linear programming in Zeng et al. [23]. These are dynamic
techniques to choose the best possible atomic services and
configurations keeping QoS in mind. This differs from our
work as they assume that there are choices in the best possible
atomic web services. The goal in our paper is to analyze the
variable configurations that may result due to invocation or
non-invocation of particular web services.

VII. C ONCLUSION AND PERSPECTIVES

Accurate offline analysis of a composite web service before
its deployment is essential to ensure non-repudiation of a SLA
contract. This is necessary to maintain optimal QoS behavior
of mission-critical services such as crisis management. In
order to do this, the service provider must keep in mind
the probabilistic aspect of QoS parameters and the variable
configurations in a composite service. In this paper, we study
an analysis framework to test the QoS of an orchestration
before deployment. Further, the notion of systematic pairwise
sampling procedure has also been demonstrated, which pro-
vides a more efficient sampling of the configuration space than
exhaustive trails while still maintaining sufficient coverage.
Larger FD and orchestration models can be analyzed using the
divide-and-compose approaches [7] to handle this scalability
issue. This should provide a simple, systematic and stochas-
tically correct methodology for pre-deployment QoS analysis
of a composite service.

While this paper concentrates on a particular composition
of fixed atomic services, a future area of interest would be

optimal compositions. The use of configurations and scenarios
modeled by a FD leads to a family of composite services.
These, in turn, may be used to generate many versions of
the orchestrations. Further implementation of these techniques
to study larger composite orchestrations is useful for both
obtaining realistic QoS bounds and product generation of
families of services.
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