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Towards Domain-speci ¢ Model Editors with
Automatic Model Completion
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Abstract

Integrated development environments suclEelipse allow users to write programs quickly by presenting a seesbmmen-
dations for code completion. Similarly, word processinglsosuch asMicrosoft Word present corrections for grammatical errors
in sentences. Both of these existing structure editors s af constraints expressed in the form of a natural larggagmmar
to restrict/correct the usesyntax-directed editifgor formal grammarlénguage-directed editingto aid document completion.
Taking this idea further, in this paper we present an integraoftware system capable of generating recommenddtiomsodel
completion of partial models built in editors falomain-speci ¢ modelling language$Ve present a methodology to synthesize
model editors equipped with automatic completion from a efioty language's declarative speci cation consistingameta-
model with a visual syntax. Thisneta-model directedcompletion feature is powered by a rst-order relationagito engine
implemented in ALOY. We incorporate automatic completion in the generativé AJoM3. We use theFinite State Machines
modelling language as a concise running example. Our apprieverages aorrect by constructiorphilosophy that renders
subsequent simulation of models considerably less enarep

Index Terms

Meta-model directed editing, Domain-speci ¢ modellingndpage, Structure editor, Partial model, Model completATrmM3,
Alloy

I. INTRODUCTION

Documents in the form of computer programs, diagrams, ctenformulas, and markup text can currently be edited
in document editors calledtructure editors These structure editors are cognizant of the documenttenying structure
such as the grammatical syntax or a formal grammar of theukagg Functionally, these structure editors are syntax or
language-directed to aid the user by presenting recomntienddor completion of code, text, or a diagram based onexbrr
possibilities prescribed by the underlying structure.sTénables faster document development with fewer errorszeier,
structure editors are separately constructed for each idespaci ¢ language and are built mainly for grammar-bassdual
languages. We are interested in the subject of extendingtate editors from high-level models built using the pijihes of
Model Driven EngineerindMDE) [13] where domain-speci ¢ model editors are autoroally synthesized for a variety of
modelling languages.

In MDE, given a meta-model speci cation of a domain-speanodelling language, software tools can automatically cpee
domain-speci ¢ model editors=or example, generative modelling tools suchA@sM? (A Tool for Multi-formalism Meta-
modelling) [11] [17]GME (Generic Modelling Environment) [3|JGMF (Eclipse Graphical Modelling Framework) [21] can
synthesize a domain-speci ¢ visual model editor from a deative speci cation of a domain-speci ¢ modelling langea A
declarative speci cation consists of a meta-model and aalitextual syntax that describes how language elemehjsdis and
relationships) manifest in the model editor. The desigriexr model uses this model editor to construct a model on a digawi
canvas. This is analogous to using an integrated developemmironment (IDE) to enter a program or a word processor to
enter sentences. However, IDEs suchea$ipse present recommendations for completing a program statewieen possible
based on its grammar and existing libraries [5]. Similakygcrosoft Word presents grammatical correction recommendations
if a sentence does not conform to a natural language granitharefore, we ask: Can we extrapolate similar technology or
develop new technology for partial models constructed incaleh editor for a domain-speci ¢ modelling languageSML)?

Extrapolating code completion techniques for model cotigrieis not feasible in the general case. The rst reason és th
difference between the underlying structure of code andetsodCode completion techniques use the Backus-Naur Form
(BNF) grammar of a programming language while models areigukby a meta-model and constraints on it. Second, model
completion must consider completing the entire model assttaimts can span entire models unlike code completion hwhic
presents solutions at a program statement level. Thirderimg of reduction in effort model completion must help reduc
the effort of a modeller by automatically satisfying all@ehnt language constraints since in general they may bedob h
for a modeller to resolve manually. The output of model catiph must be one or many valid models that conform to
their language. This notion of reduction in effort is diéet from that in code completion. Code completion presemdall
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suggestions to complete navigational expressions or gbm@ames but it does not perform constraint satisfactionutput a
valid program. In the general case, model completion mag takre time than code or sentence completion which are almost
instantaneous. Therefore, there is a need to develop néwnitpes for model completion with different goals such daxiag

the exigence towards time to complete.

The major dif culty for providing completion capabilitiaa model editors is to integrate heterogeneous sourcesmflietige
in the computation of the possible solutions for completibhe completion algorithm must take into account the cotsep
de ned in the meta-model, constraints on the concepts aadd#rtial model built by a domain expert/user. The dif cuisy
that these three sources of knowledge are obviously rel@hey refer to the same concepts) but are expressed in atiffer
languages, sometimes in different les, and in most caseslifigrent people and at different moments in the develogmen
cycle as they are separable concerns.

In this paper, we propose an automatic transformation freterogenous sources of knowledge to anLdy [10] [20]
constraint model. ALOY is a declarative constraint language basedjoanti ed rst-order logic with support for operators in
relational calculus The generated Loy model is then used to synthesize a set of Boolean CNF fornwitéeh are solved
using an appropriate satis ability (SAT) solver. The sabats are parsed and transformed from low-level logic andrnetd as
high-level models to the model editor as recommendationsdmpleting the partial model. These solutions are showthén
concrete visual syntax of the modelling language. Our faangation from the different sources toLAOY is integrated in the
software toolAToM3. We selectAToM? since its has a light-weight python implementation for dapiototyping and proof of
concept. AlsoAToM? supports an easy to use icon editor @BML generator for rapidly synthesizifmdSML visual modelling
environments from meta-model and visual syntax speciarai A transformation module iAToM® can also also serialize
standard XMI versions of models for use in industry standaods such as Eclipse GMF. The simple and easy to use Python-
API of AToM? allows fast integration of new features and transformationmodelling languages. A similar implementation
in widely used tools such as Eclipse GMF is certainly feasitalit will need more programming effort as it is Java-based
where one needs experience in using the several interdepelibraries available in the Eclipse platform. Neverdss| any
model in theAToM® environment can be used in the Eclipse GMF environment ugiagstandard XMI interchange format.
The meta-model for @SML is built directly in AToM®'s model editor using its class diagram formalism. The caists
on the concepts of this meta-model are de ned using @y facts. Using this information and a description of the ceter
visual syntax (speci ed in an icon editor) for a modellingitpiage AToM® synthesizes a visual model editor for tBSML.

The partial model can be built and edited in the generatedeineditor and the designer can ask for recommendations for
possible automatic completions. The partial model is aatarally transformed to a constraint called anw®Y predicate.
This ALLoY predicate is then augmented to thel®Yy model to give the whole set of constraints. We invoke a sobrer
this this set of constraints to obtain zero/one/more cotapieodel(s).

In Section Il we present related work. An overview of our nogtblogy is presented in Section Ill. One of the key parts
of our methodology is the automatic synthesis of domaircispenodel editors from their speci cation comprising of ¢h
meta-model and visual syntax. This process is describe@dticd 1V. The component that will add model completion ipil
to the synthesized model editor is a transformation fromnttea-model and partial model to arn.’oy model. We present
this transformation in Section V. Once we include this tfarmeation into the synthesis of a domain-speci ¢ model edit
we are able to synthesize domain-speci ¢ model editors wittomatic model completion. We describe the model comgleti
process in Section VI. We present examples of model congplaBcommendations generated for partial models in Section
VII. We conclude in Section VIII.

Il. RELATED WORK

Language-directed editors have been around for since tHg 2880s. Some of the well-cited research on language-
directed editors are Mentor [12], Interlisp [34], Prograryn®esizer [33], Rational [6], PECAN [28], and Gandalf [16]
Most of the existing language-based editors such a&dlipse are based omttribute grammarg15]. These systems have
been widely adopted and integrated in many editors for tasich as syntax highlighting and syntax-directed editinige T
openArchitectureWarg¢l] framework , based on th&core [14] meta-modelling framework, supports automatic secgen
completion already implemented in Eclipse to help make menendations to sentences in textual domain-speci ¢ mougll
languages. These suggestions for sentence completioraaeel lon the textual syntax of the modelling language and do no
consider the complete consistency of the model with resjpettie meta-model and constraints of the language.

In Model Driven EngineeringMDE), models built in domain-speci ¢ model editors pose@anchallenge. The challenge is
to complete a partial model speci ed in the model editor. sTimvolves the editor to use domain-speci ¢ modelling laage
constraints to direct the completion of the partial modeh@y put, this involves constraint solving using knowleddescribed
in the partial model to synthesize a model that conforms &dbmain-speci c modelling language. Constraint solviog f
model synthesis has been well-studied in the literaturé siscmodel design space exploration [31], partial model detiom
using Prolog [29] and constraint logic programming [22][30] we present a model completion system in a domain-speci
editor by combining knowledge from the meta-model and theigdanodel speci ed in the model editor to SWI-Prolog. The
Prolog program is solved using a backtracking based solver tomragesults to the domain-speci ¢ environment which was
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originally synthesized byAToM® using the meta-model. Our methodology is valid for any densgieci ¢ modelling language

in the limits of rst-order Horn clause logic of SWI-Prologdowever, their primary limitation is that the number of atie

in the complete model is equal to the number of objects in tigd model. No new objects are suggested by the model
completion system and the user is limited to specifying diné/correct number of objects in the partial model. This isprily

due to the fact that constraints are speci ed at the objespenty level in SWI-Prolog and not at the meta-level suchmas o
sets of objects.

We identify the need to develop a model completion systerhdha automatically suggest complete models especially for
DSML meta-models containing constraints both on sets of obputistheir properties. This typically involves mapping of a
meta-model and constraints bad@8ML speci cation to a mathematical formalism with tool supptbrat solves constraints to
give correct instances of tHeSML. Notably, such instances should contain the network ofabjéoriginal object identities
need not be preserved) speci ed in the partial model andtiaadil objects (if required) with appropriate propertywad such
that the complete model conforms to EESML. We would also like to control the maximum size or scope of ¢chenplete
model for practical time considerations. Transformatibmeta-models expressed in UML/OCL [27] to various formadteyns
is not new [9] [4] [19] [24] [2] [8] [23]. In [9] the authors peent a transformation from UML Class Diagrams to Descriptio
Logics. Their approach is theoretically rigourous wherenavidedge base in description logic on its variants is oleifor
a UML Class diagram and theorem provers suctFAET [18] and RACER [35] are used to obtain instances by inferring
from the knowledge base. They prove that the time for infeeemsing a description logic representation of an UML Class
diagram in EXPTIME-complete. However, their approach doessupport transformation of meta-level constraints sash
those expressed i@bject Constraint Language (OCL) [27] to description logic. An extension of this work for eliting
instances in nite domain is presented in [24]. The transfation of meta-level constraints such@€L along with UML class
diagrams to formal higher-order logic language called édathas been explored in tools such as HOL-OCL [2]. Simjlaxle
have seen the transformation to constraint programminguiage ECLIPSE in [19]. Both, these approaches are used filima
for veri cation of a UML Class Diagram instance against tH®LCD meta-model speci cation. A constraint @CL can be
veri ed against an instance dJMLCD but we need the instance itself. In our pursuit to nd comglaetodels we need to
automatically synthesize instances of a meta-model rdttzar verifying an arbitrary constraint against an exisiimgtance.

In our approach, we transform the specication of a domaiees c modelling language and the partial model to the
common language of rst-order relational logic. The targetnmon language is implemented in.lfoy. Transformation of a
meta-model speci cation from ML to ALLOY has previously been explored in the tadML2Alloy [8] [23] [7]. UML2Alloy
supports transformation from meta-model concepts te@y model concepts such as class to signature, property totaigna
eld, operation to function, enumeration/enumeratioriél to extends signature, and constraints to predicatesud approach
to transforming a meta-model to anLoy model we keep the same transformation format such we tramsétasses to
signatures and properties to class elds.UML2Alloy composition and aggregation are transformed rstXGL constraints
and then to ALov. In our tool we transform composition and aggregation in dasmeodel directly to ALoy facts. Our,
approach to transforming inheritance is the same adMiL2Alloy. Inheritance is transformed to anLRoY signature that
extends an other AL.OY signature. There is no clear speci cationitML2Alloy related articles [8] [23] [7] about transforming
multiplicities to ALLOY. In our case we transform multiplicity constraints talY signature elds in case of occurrence of
0, 0::1, or 0:: muiltiplicities. If the multiplicity is variable such aa::b we synthesize an Aoy fact constraining the size
of a set of relations. The constraints in meta-model is ictstt to a small subset dCL as UML2AIlloy transforms only
this subset ofOCL to ALLOY. However, in our tool we propose the user to directly entet@y predicates and facts in the
ALLoYy model giving the user the exibility of expressing a widemngge of constraints (those that have not been implemented
in UML2AIloy) such constraints with transitive closure which cannot x@ressed directly i©CL. We also present a method
to synthesize ALoy predicates from a partial model. This use of partial knogkedo synthesize complete models greatly
reduces model development time. The tdlIL2Alloy, does not support the use of partial model knowledge to helegate
models.

1. M ETHODOLOGY OVERVIEW
The development and use of a domain-specic model editohwsiitomatic model completion can be divided into the
following phases and sub-phases:
1) Speci cation of a domain-speci ¢ modelling language @4foM?3)
a) Speci cation of a meta-model

i) Speci cation of a class diagramAToM? class diagram in our case)
il) Speci cation of facts on the concepts in the class diagr@LLOY facts in our case)

b) Speci cation of a visual syntax in an icon editor (avalain AToM3) for concepts in the meta-model
2) Transformation of meta-model and visual syntax to a medébr

a) Synthesis of an editor with buttons, menus and icons
b) Synthesis of a drawing canvas with features such as atitotagout
¢) Synthesis of a clickable widget for model completion
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d) Synthesis of a dialog box for specifying model complet@mameters
3) User interaction

a) Drawing a partial model on the canvas

b) Editing model completion parameters

c) Click on a button to generate complete model(s)
4) Model Completion (hidden from user)

a) Synthesis of baselAoy model from theAToM? class diagram.

b) Augmenting meta-model facts with basel&y model

c) Synthesis of an ALoY predicate from partial model and augmentation to basec& model

d) Synthesis of run commands from the model completion patars and augmentation to currentl Y model
e) Solving nal ALLoy model and returning complete models as recommendatioretanbdel editor

The speci cation of a domain-speci ¢ language is usuallynddy alanguage designewho interacts with domain experts
to identify the concepts, their properties and relatiopshin a domain of knowledge, science or engineering. Theuagg
designer also develops a repository of constraints amoagdncepts and its properties. The assembly of the concagts a
relationships is expressed asCtass Diagram (CD) by the language designer. In our methodology we useAffed® CD
formalism for this purpose. The constraints on @B are expressed in a formal constraint language. Preferaldgnstraint
language that has a nite number of solutions and is decaldbl our methodology we usfacts expressed in the language
ALLOY to represent such constraints. TGE and the set of constraints on it results in theta-modebf a Domain-speci ¢
Modelling Language (DSML)

A visual syntax designespeci es a concrete visual syntax for the concepts andio@lsiiips in the modelling language. In
our methodology we use th&ToM? icon editor to specify a visual syntax. In Section IV we disgin detail the speci cation
of the modelling language fdfinite State Machines (FSM) along with a visual syntax.

Once we have all the elements (meta-model and visual syntogssary for a domain-speci ¢ modelling languageadel
transformation engineedevelops a transformation to synthesize a visual domateispmodel editor from these elements.
The model editor consists of buttons, menus, and a canvaseAcan select and drop objects on a drawing canvas and ¢onnec
them using relationships. The objects are manifested asias speci ed in the icon editor for the concrete visual ayrity
the visual syntax designer. The relationships are linksvben these icons. In the model editor by clicking on the idua t
user can edit or specify the values of properties.

In our work, we extend this model transformation by transfimg the meta-model to antAoy model. The transformation
also synthesizes a button widget in the domain-speci ¢ rhedéor. A domain experbr usercan click on this button resulting
in the solving of the ALoYy model augmented with A oy predicates synthesized from the partial model drawn on dineas.
Recommendations as one or more complete models (if fouredyedurned to the model drawing canvas. In Section V we
present the transformation from the meta-model and théaparbdel to ALLOY . An illustrative outline of the model completion
methodology is shown in Figure 1.

One of the key bene ts in using A0Y is its ability to handle constraints speci ed on a set of @lgeusing quanti ers
such assome all, one andlone The new system allows us to synthesize models with new tshjéfcrequired) to ensure
that the complete model is consistent with its meta-modétlwhormally contains quanti ed constraints on sets of otgeof
different classes. The solver nds the closest completeehoda given scope and returns the result as a recommendation
model completion.

The methodology described in the paper supports any metieimdgth the following characteristics:

With classes containing attributes of the basic tyjmseger, String, andBoolean

With classes containing references with variable muttipés such as::bto other classes in the meta-model
Constraints on the concepts in the meta-model that are ssipte as ALoy facts and predicates. These facts and
predicates are constraints in rst-order relational logith quanti ers.

We currently do not support oating-point attributes in raehodels. Although such properties can be approximated as
integers. We also do not support the entire range of chagtteunicode for string attributes. We either model striagsa
sequence of characters or as an integer value. Higher-omhestraints where a constraint is speci ed on another caimgt
is not supported. In a constraint language such asoX this transforms to the expression of the unsupported highaer
relations (a tuple of relations) instead of supported astler relations (a tuple of atoms).

IV. SPECIFYING ADOMAIN-SPECIFICMODELLING LANGUAGE

In this section we explain the steps taken to declaratiyebesy a domain-speci c modelling language. We USnite State
Machines (FSM) as a running example for a modelling language. H&M modelling language is a visual language with
circles representing states and directed arrows repiegemnansitions between states. To de ne a modelling lagguand to
generate a visual model editor from it requires three inputs

1) A Meta-model as aToM® Class Diagram (CD)
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TABLE |
DOMAINS FORPRIMITIVE DATATYPES

Type Domain

Boolean f0;1g
Integer fMinint;:;;Maxint g
String fra";"b";\c";"eventl";::; g

2) A Set ofAlloy Facts on the concepts in tl@&D
3) A Visual Syntax
We brie y describe the speci cations of these aspects of F®M language in the following sub-sections.

A. Meta-model

A model consists of objects and relationships between tfidra.meta-model of the modelling language speci es the types
of all the objects and their possible inter-relationshipsaispeci ¢ domain. The type of an object is referred to adass
The meta-model for th&SM modelling language is presented in Figure 2. The classekeinmeta-model aréSM, State
and Transition.

In this paper we use th@lass Diagram formalism in AToM?® for specifying a meta-model. Th@lass Diagram formalism
can specify itself and hence exhibits the propertypobtstrapping We use the visual language notation of class diagrams to
specify the meta-model for theSM modelling language in Figure 2.

Each class in the meta-model ha®perties A property is either arattribute or areference An attribute is of a primitive
type which is eitheinteger, String, or Boolean. For instance, the attributes of the clé&site areisinitial andisFinal both
of which are of primitive type Boolean. An example domain afues for the primitive attributes is given in Table I. The
String variable can be a nite set consisting of a null string, andtenlength strings that specify a set of strings. In this pape
we consider a nite domain for each attribute.

Describing the state of a class of objects with only pringitattributes is not suf cient in many cases. Modelling many
real-world systems elicits the need to model complex mfatiips such as modelling that an object contains anothesfse
objects or an object is related to another nite set of olgeThis set of related objects is constrained byutiplicity. When
a class is related to another class, the related classestoedéach other viaeferencesFor instance, in Figure 2 the classes
State and Transition refer to each other via references annotated with unidinealt relationships. The multiplicity constraints
are also annotated with the relationship.

Containmentelationships exist between tiSM class and th&tate and Transition classes. The black- Il ended arrow at
the FSM Class signi es that all objects of typState and Transition are always inside aRSM object. There is exactly one
FSM object that contains albtate and Transition objects.

Apart from attributes and references, objects can inhedpgrties from other classes. The attributes and refeseata
class called auperclassare inherited bysubclassesSimilarly, a subclass inherits the references in the su@ss. There is no
inheritance in o uFSM meta-model, nevertheless we consider transformationhafritance relationships in the transformation
presented in Section V.

B. Constraints on Meta-model

Constraints on a meta-model are not always convenientlyi sgeusing diagrams such aSDs. They are better expressed
in a textual constraint language who's semantics have re-dfitbct (does not change the state of an object or struofuitee
model) on the meta-model or its instances (models). ®MG standard for constraint speci cation is ti@bject Constraint
Language (OCL); however, in our current work we use rst-order relatiohagic statements in the form of Aoy facts. In
this paper, we transfor®CL constraints to ALoy manually. In future, we intend to transform a subseO@L to ALLOY
using an automatic model transformation. This is a challeptask asOCL and ALLOY are very different in terms of what
they expressOCL is a query language with no side-effects whileL®Yy enforces certain values on objects and properties
such that facts are always satis ed (if consiste@TL is a language in higher-order logic without a thoroughlyIvade ned
semantics. ALOY on the other hand is a rst-order relational logic languagthwuanti ers that has well-de ned semantics
for analysis. Bridging this gap in expressiveness is thalleuin completely automating th@CL to ALLOY transformation.
Therefore, we directly presentlAoy facts speci ed on a meta-model's objects and properties.riaf bintroduction to the
ALLOY language is given in Section V-A.

In Table Il we present the constraints on thR8M meta-model in natural language and asLAY facts.

The ALLOY signatures [10] used to specify the KoY facts are extracted from tHeSM meta-modeCD. This transformation
is discussed in Section V. In the appendix we present the Eaeng\LLOY model for theFSM modelling language. This
ALLOY model can be loaded into theLAOY Analyzer [20] for directly obtaining validF<SM models.
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TABLE Il

CONSTRAINTS IN NATURAL LANGUAGE AND AS ALLOY FACTS

Constraint Name and De nition

Alloy Fact

exactlyOneFSM There must be exactly
oneFSM object in aFSM model

atleastOneFinalState: There must be at
least one nal state in &SM model

exactlyOnelnitialState : There must be
exactly one initial state in thESM model

sameSourceDiffTarget : All transitions
with the same source must have different
target

setTargetAndSource: The target of an
incoming transition to &tate itself and
the source of all its outgoing transitions is
the sameState

noUnreachableStates There can be no
unreachable states in tHeSM from an
initial state. Since, its a ternary constraint
we approximate it by stating that a non-
initial state can be reached from an initial
state up to a maximum depth of N (N=3
is the given example).

unigueStateLabels : All State objects
have unique labels

fact exactlyOneFSM

{
one FSM

}

fact at leastOneFinalState

{

some s:State|s.isFinal==True

}

fact exactlyOnelnitialState

{

one s:State|s.isInitial==True

}

fact sameSourceDiffTarget

{
all tl1:Transition,t2:Transition|
(t1!=t2 and tl.source==t2.source) =>
tl.target!=t2.target

}

fact setTargetAndSource

all s:State |
s.incomingTransition.target = s
s.outgoingTransition.source=s

}

and

fact noUnreachableStates

1
\Y

all s:State| (s.isInitial==False)
#s.incomingTransition >=1 and
(s.isInitial==True and #State >
#s.outgoingTransition >=1 and
s.outgoingTransition.target!=s

}

1) =>

fact uniqueStatelLabels

{
#State>1 => all sl:State,s2:State |

sl!=s2=>sl.label != s2.label

}
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C. Visual Syntax

The nal step (in specifying &SML for synthesizing a model editor) we take is to specify thectete visual syntax of
the class of objects in the meta-model. The visual syntariggewhat an object looks like on a 2D canvas. An icon editor
in AToM? is used to specify the visual syntax of the classes in the -meigel.

An icon editor is used to specify the visual syntax of metadel@oncepts such as classes and relationships. The icon for
State is a circle annotated with three of its attributésH{nal, islnitial, and label). The connectors in the diagram are points
of connection betweeBtate objects andlransition objects.

The visual syntax can also by dynamically changed based empitbperties of the model. In an iconic visual modelling
language such asSM, the rst step taken in specifying a visual syntax is drawamgicon that represents a class of objects.
If needed it is annotated with text and its properties. Cotore are added to the visual object so that it can be coroh¢ate
other objects if they are related.

V. TRANSFORMATION FROMMETA-MODEL AND A PARTIAL MODEL TOALLOY

The transformation of a meta-model consists of transfogntiire Class Diagram of a domain-speci ¢ modelling language
to ALLOY signatures and speci cation of other constraints as @v facts. We rst describe ALoy and then explain our
transformations using relevant examples in the followiagti®ns.

A. TheALLovY Language

We present ALoy [20] [10] as a common constraint language equipped with gesdb help complete partial models. It
is founded on quanti ed rst-order logic with support for epators in relational calculus. The domain of a constraintieh
in ALLOY is given by a set of types called signatures. These sigratusy contain a number of elds. Constraints may be
added as facts or predicates to theLAy model to express additional invariantsL120Y can be used to perform two kinds of
analysis. First, we can solve a predicate to generate mosilrices that satisfy the facts in anL®Y model. Second, we can
use ALLOY to generatiorcounter-examplefor assertions that we assume to be true. These, analygesréhe small scope
hypothesis ( [10]): only a nite subspace is searched basethe assumption that if there is an instance or a countengbeam
there is one of small size. The rest of the article containsers¢é commented or described Loy listings to give the reader
a better intuition of the language.

B. Transformation of a Class Diagram

The transformation of a class diagram consists of the tommsition of a class and its properties, transformation ef th
multiplicity constraints in the class diagram ta_foy facts, transformation of containment constraints to. &y facts and
nally the transformation of inheritance to anLAoy extends relationship between_ Loy signatures. This results in a base
ALLoy model. We discuss these transformations in detail below.

1) Class and its PropertiesA class is transformed to anLAoy signature. Consider th&tate class in the=<SM meta-model
in Figure 2. This class is transformed to the followingL&Yy signature:

sig State

{
label: Int,
outgoingTransition: set Transition,
incomingTransition: set Transition,
fsmCurrentState: one FSM,
fsmStates: one FSM,
isFinal:one Bool,
islnitial:one Bool

}

The class containpropertieswhich are eitherattributesor referenceso other objects. We see how these properties are
transformed to ALOY using ourState class example. Thattributes of the class are transformed telds in the ALLoY
signature. For instance, tHabel attribute of theState class is transformed to anLAoy eld of type Int. The ALLOY
implementation contains a built-in implementation for thenition of integers (nt) for which a domain size can be set using
a bit length. The attributeisFinal andisinitial are set as elds of typ®ool (boolean values). ALoy also contains a built-in
implementation oBool. There are several operations de ned on Bmol andInt types in ALLoY which allow us to specify
several complex constraints on such properties. An at&iblitypeString is transformed to &tring type we de ne as follows
in ALLOY:

abstract sig Character{}
one sig A extends Character {}
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one sig B extends Character {}

sig String
{

content : seq Character

}

First, we describe an abstract signatGtearacter and characters such &sB,C,D,... that inherit fromCharacter. However,
the language in ALOY prevents the use of digits. A substitute will be to use D1,.D2¢r the digit 1,2,... respectively. A
String signature is now de ned as a sequence of characters. In #psrpwe consider integers as simpli ed abstractions for
strings and replace all possible string types to integefter/all, characters have a numerical encoding in a compiiter
specify constraints otring objects also requires the speci cation of. Loy functions on theString class.

The referenceof a class are also transformed to elds in thel®dy signature of its containing class. For instance, in the
State object the referencesutgoingTransitiorandincomingTransitiorare transformed to anlAoy eld expressing a set of
Transition instances. Theetkeyword indicates that there can Be Transition objects related to th8tate object. The other
guanti ers like setare one meaning exactly one andne meaning0::1 objects. For instance, the refererfsenStateso one
FSM object indicates that there must be exactly one contdh$ for all State objects.

2) Multiplicity: If we want to specify a reference to a set of objects with mlittity betweena andb number of objects
we synthesize an A oY fact. For instance, if we want to specify thaState object has at least 3 and at mostransition
object references as incoming transitions, we synthebizddllowing fact:

fact multiplicity_incomingTransition

{

#State.incomingTransition >=3 and #State.incomingTrans ition<=7

}

3) Containment:We synthesize an A0y fact from a containment relation between two classes. Famgike, the fact that
all Transition objects are contained in tHESM object is expressed as the following Loy fact:

fact containmentTransition

{

Transition in FSM.transitions

}

All Transition objects in a complete model of tHeSM modelling language now have a containment relation with the
top-level FSM object.

4) Inheritance: Inheritance between a superclass and subclass in a metal-imddansformed to aextendsrelation. The
current FSM meta-model used as a running example in the paper does ntdirt@an inheritance relationship. However,
imagine a meta-model with an abstract cladsstractState which is inherited by two subclass&ate and Composite. We
rst synthesize amabstractsignature for theAbstractState class such as:

abstract sig AbstractState

{

label: Int,

outgoingTransition: set Transition,
incomingTransition: set Transition,
container: lone Composite,
fsmCurrentState: one FSM,
fsmStates: one FSM

}

The State class which inherits from thig\bstractState class looks like:

sig State extends AbstractState
{

isFinal: one Bool,

islnitial: one Bool

}

The attributes islnitial and isFinal attributes are transfed to elds in ALLoy. The eld isFinal : one Bool implies that all
State objects have an isFinal property that can be either True meF&imilarly, the isInitial eld in allState objects can be
either True or False. These elds model an intial state, gtdtes, and regular states in BSM.
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C. SpecifyingALLOY facts on the Meta-model

We specify ALoy facts using the names of the classes and properties oATtid® class diagram in a text-box called
Textual Meta-informatiorn the meta-modelling language canvas. The speci catiofaofs in ALLOY is possible because the
ALLOY model we generate from th&ToM? class diagram preserves the names of classes and promeréibking the use of
the ALLOY constraint language for speci cation of constraints on itineta-model. All the facts in Table Il are speci ed on the
FSM class diagram. During the model completion process thags fae augmented to the baselL&y model. This gives us
a complete description of the meta-model.

D. Transformation of a Partial Model

We de ne a partial model as a graph of objects such that: (B dlijects are instances of classes in the modelling language
metamodel (2) The partial model either does not conform #&léimguage metamodel or its invariants expressed in a textua
constraint language. A complete model on the other handagentll the objects of the partial model and additional clsje
or property value assignments in new/existing objects shahit conforms both to the metamodel and its invariants.

A partial model, such as in Figure 3 (a),asitomaticallytransformed to a set of IA Oy predicates by navigating it object
by object in the canvas. We navigate all objects of a certgie and put them together as anldY predicate. We want to
keep the already speci ed properties for each object in teigd model but also allow for extensibility. For instander all
the State objects in the partial model of Figure 3 (a) we create an@y predicate as shown in the rst predicate of Figure 3
(b). The ALLOY predicate states that there exists at least $tag¢e object s1, at least on8tate object s2, at least onState
object s3, at least ongtate object s4 (representing the foState objects in the partial model), at least ofnsition object
tl, and at least on&ransition object t2 such that s1,s2,s3,s4 are not equal and t1,t2 arequal. The predicate also states
that theTransition objects t1 and t2 are in the set of outgoing transitionsState object s1.Transition object t1 is in the
set of incoming transitions of s1. Thansition object t2 is in the set of incoming transitions of s2. Theds aee open for
inclusion of newTransition objects. These predicates preserve all knowledge comarg fhe partial model while allowing
the extension to relations to more objects.

We present a procedure to describe the transformation frenpartial model to a set of IAoy predicates below:

The following represents the procedure to synthesize an ALLOY predicate from a partial model

1) We start by synthesizing the header of a partial model:

pred partialModel {

2) For all objects ofo; of type Class; in a partial model we synthesize arn.ifoy expression:

someg; : Class;;:::j
3) For all objects ofg; of type Class; and all objectsoy; of type Class; in a partial model we synthesize an.koy
expression:
0; ! = 0y , each expression separateddoyd

4) For all de ned attributesyjx  of 0 we synthesize the expression:
oj :ak = Vv, wherev is the speci ed value separated by commas

5) For all de ned referencesjx of 0 we synthesize the expression:

v in o; :rijk , wherev is the object in the set of referred objects separated by @snm

6) We nish the predicate by closing the brace.

E. TransformingALLoy Model Completion Parameters

The user is provided with a dialog box to inserbdel completion parametersodel completion parameters include nite
scopes such as the upper bound on the number of objects oflassy or the upper-bound on the number of objects for each
class, or the exact number of objects for each class, or aumixif upper bounds and exact number of objects for different
classes. The default scope is number of objects in the partdel. An other parameter is the number of solutions rexglir
S. This information is used to synthesize ant®Y run commandhat is nally inserted in the ALoy model. For example,
if the partial model predicate is callgghrtialModelland the user states that he wants exactly one object of clasp o 10
objects of class B, and a scope of 5 for integers then theviollp run statements is synthesized:

run partialModell for exactly 1 A, 10 B, 5 Int
If the number of objects in the partial model is N, then theadéifrun command the editor generates is:

run partialModell for N

VI. MoDEL COMPLETION PROCESS

The model completion process integrated in the domainispewdel editor takes as input th&ToM® class diagram,
augmented ALoy facts, and a partial model drawn in the model editor syn#teesfrom the class diagram of a modelling
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language, and set of parameters to de ne the scope of theletenpodels to be synthesized. The process is invoked when a
user draws a partial model in the modelling canvas and clickthe Generate Completion Recommendatibngon.

The following steps are executed during the completion gssc

1) An ALLoy model (ALS) le is synthesized containing the signature digions of the classes in th&ToM? class diagram

and the facts corresponding to the multiplicity and contaént constraints as described in Section V-B

2) The modelling language facts are augmented to thecdk model. These facts are speci ed as described in Section V-C

3) The partial model drawn in the model editor canvas is ftansed to a predicate as described in Section V-D and

augmented to the currentLAoy model

4) The model completion parameters are transformed to aosomand (See Section V-E) and augmented to theay

model giving us an adequate description for model compietio

5) An ALLoy API call is made to load the Loy model, parse it and store signatures, facts, predicateg;ammand as

objects in memory.

6) An ALLoY API call is made to transform the rst-order relational logiignatures, facts, predicates and model completion

parameters to a nite Boolean CNF.

7) We then use the A oy API to invoke a third-party SAT solver such as ZChaff [36] oinidat [25] [26] to solve the

Boolean CNF.

8) If a solution exists, then it is stored as an XML le. If a nber of solutions (given by model completion parame3gr

are required then we attempt to produ#gesolutions and store them in XML Files.

9) The editor then loads and parses these XML les. The cotepieodel recommendations are presented in the domain-

speci ¢ model editor in their concrete visual syntax. Themusan click onNextto scan through all possible completions.
The results of model completion are also stored as model réggesenting graph structures in a temporary directory.
They can be loaded into the model editor when required or bgeghother program for transformation.

It is important to note that the partial model is speci ed asoarce of knowledge about what objects and properties that
the user wants to absolutely see in the complete model. Ircahgplete model we can see the intact contents of the partial
model. However, the object identi ers of the partial modet aot preserved in the complete model. We also do not perform
pattern matching to identify the original partial model iretcomplete model, although such a mechanism can be in@tegor
if needed. In the default case we nd the nearest-consistemiplete model(s) to a given partial model.

If a solution is not found the ALoY API returns ano solution found exceptioto AToM? (the invoker). We show this
result in a dialog box in théToM® environment. In our work we do not debug a partial model to thé exact source of
inconsistency. This incurs a computational cost and time@seed to check every partial model predicate expressiaimsig
the meta-model constraints to see which characteristiteeopartial model leads to an inconsistency. We leave it ¢éouer
and depend on his/her expertise of DEML to identify the inconsistent part of the partial model andreat it.

VIl. EXAMPLES

In this section, we consider four examples of partial modelthe FSM modelling language. The examples are shown in
Figure 4 (a), 4 (b), 4 (c) , 4 (d) respectively. The synthasipeedicates for these models are shown in Figures 4 (e), 4 (f)
and 4 (g) , 4 (h). The example in Figure 4 (a) contains only State object with none of the properties having been set.
The example in Figure 4 (b) contains tv@iate objects and dransition object not connected. In Figure 4 (c) we consider
a more complex model with severdtate and Transition objects with some properties set and some not. Finally, guré 4
(d) we present a model containing at least t8tate objects withisInitial set to True.

We perform the model completion of these models using twdhous of setting parameters for completion:

Scope Here we specify a scope as a model completion parametescdpe is a unique number that de nes the maximum
number of objects for all concepts in the meta-model. We sbdbe default scope to be 10. The correspondingaX
run statement generated is:

pred partialModel {}

run partialModel for 10
The partialModel predicate is empty and is simply used to obtain a completeefriadtance. We solve for up to a scope
of 10 objects for each concept in the meta-model.
Exact Number and/or ScopeAnother mechanism to complete a model is to specify thetexamber of objects and/or
scope for objects we expect in the complete model.

pred partialModel {}

run partialModel for exactly 1 FSM, exactly 5 State,

exactly 10 Transition, 5 int
Here we nd a solution for a partial model containing exadtli#SM object, exactly State objects, exactly 1dransition
objects. Finally we set a bit-width for integers which is hi§ means that all integers range betwee2? to 2°.

All the above parameters were initially set in the synthesikToM® modelling environment. The user is only exposed to the
graphical syntax of the concepts in the meta-model and wtdxbox to specify the exact number of objects or a scope. Th
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TABLE Il
MODEL COMPLETIONTIMES

Partial Model Description Timescope (8) TiMegxact  TiMEscopescaled T IMEExactScaled
(I=Inconsistent)

Fig. 4 (a) Only oneState ob- 1.283 0.447 118.045 32.002
ject with no proper-
ties speci ed

Fig. 4 (b) Two State objects 1.289 0.496 115.994 31.488
and one Transition
object

Fig. 4 (c) Several State and 1.315 0.575 11.4301 32.517

Transition  objects
with some properties
specied and some
not

Fig. 4 (d) Several State and 1.291 (1) 0.402 (1) 111.352 (1) 31.734 (1)
Transition  objects
with  two initial
State objects

model completions were performed on a Macbook Pro laptop it Intel Core 2 Duo processor running at 2.6 GHz clock
speed and with 2 GB of RAM. We use theLiLoy analyzer API to invoke the SAT solver Minisat [25] [26] fromh&@mers
University to solve the Boolean CNF synthesized from the @&v model. The time to obtain the solutions for the four partial
models for the completion parameters is presented in Tadble |

We show the complete models themselves in Figure 5 with aesodd0. Normally, there is more than one solution to
a model completion. We show one of the possible solutions.dd/@ot show that the complete models synthesized for the
exact number of objects due to large size of the models. Herydvis interesting to note in Table Ill that the time taken t
synthesize models with the exact number of objects spedioedeach class is a lot faster even though the models arerlarge
This is because the additional knowledge about the numbebjefcts makes the search space of the models much smaller,
therefore allowing us to obtain a solution faster.

The complete model in Figure 5 (a) satis es all the meta-nhodastraints such that the sindgl¢ate label has a unique value
7. There is at least one nal state and exactly one initialestén addition, the complete model containgransition object
of the State to itself with an event 7. This new object added to the coneplebdel does not violate any of the knowledge
already present in the partial model.

The second complete model in Figure 5 (b) originally was diglamodel with twoState objects and &ransition object.
The complete model now contains two n8tate objects and exactly one initistate object. There is also an inclusion of
a Transition object in the complete model. The synthesized model corddorall meta-model constraints.

The third complete model in 5 (c) contains a complex partiadet with additional objects that preserve the knowledge
in the partial model. We can scale up to a model with severatlfed atoms using A OY to obtain results in a reasonable
amount of time (for online user interaction with the modwlienvironment). An atom consists of any non-divisible tgniti
the ALLOY model. This includes objects and their properties conuecig relations.

The fourth partial model in 4 (d) consisted of two init@tate objects which is not permitted by the meta-model constraint
which states that thESM meta-model must contain only one initidtate object. Therefore, the SAT solver was unable to
nd a complete model that could take into account the partiadel.

A. Scalability Concerns

In this section we address the question of scalability inapproach. We identify two forms of scalability:

1) Scalability in the size of the meta-models such as in thabar of classes, properties and complexity of constraints.

2) Scalability in the size of the models that conform to a matalel.

We rst consider the scalability of ®SML meta-model. A meta-model can be scaled in terms of the cémaephe class
diagram. This includes number of classes, number of ateibin a class, and number of references in a class. We can also
scale the implicit constraints in the meta-model classrdiagsuch as number of inheritances, containment relataornsrange
of multiplicities. Finally, we can scale a meta-model basadthe number of facts and arity of each fact on the concepts in
the meta-model and the coupling between these constréifgcannot de ne the notion of scalability as an increase & th
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number of classes or attributes to observe greater timelte.sbhis is because change in constraints on classes aitulites
can also lead to higher solution times. Even a simple langsagh as=SM contains some hard to solve constraints such as
noUnreachableState3his constraint states that any non-initial state will én& be connected to the initiSitate via at most
three transitions. This is a nite approximation of the ctagt that there can be no unreachable states iR%. The time
taken to solve the partial model increases considerablyeiinerease the depth to 5. The scaled constraint is:

fact noUnreachableStates

{
all s: State | (s. islnitial == False) =>
all incl : s.incomingTransition |
incl.source.isInitial = True or
all inc2 : incl.source.incomingTransition
| inc2.source.islnitial = True or
all inc3 : inc2.source.incomingTransition
| inc3.source.islnitial = True or
all inc4 : inc3.source.incomingTransition
| inc4.source.islnitial = True or
all inc5 : inc4.source.incomingTransition
| inc5.source.islnitial = True

}

The numerical results for model completion are summarizediable IIl. In the columnsT imescope and TimMegxact We

present the time taken to solve a model completion for thealad meta-model witmoUnreachableStatesaving a depth

of 3. In the columnsTimescopescaled and TiMegexactscaled W€ present the time taken to solve a model completion for a
scaled meta-model withoUnreachableStatesaving depth of 5. In general, when the exact number of abject scopg is
speci ed the time taken to solve a model is less than the tiaken for a given scope. This is because, the solver knows in
advance about the number of objects needed to satisfy aliresgents in the model. While, when a scope is speci ed the
solver starts from attempting to solve models with no olgjdot each signature and incrementally increases the nuofber
objects of each signature until a solution is found. The thaleen to solve a partial model for scaled meta-model is about
90 times that of time taken to solve a partial model expresseah an unscaled version of the meta-model. These results
are obtained by averaging and dividing the values shown an@es Timescopescaled @and Timescope for scope of 10. For
exact values the time taken is about 70 times higher for théedcversion of the meta-model. These results are obtaiped b
averaging and dividing the results in the colunifisnegyact and Timegxactscaled -

We summarize the discussion on the scalability of our apgrda variations in meta-model structure. The scalability o
this approach cannot be de ned based on general rules thegase in the number of classes or properties will increlase t
time to nd solutions. This we see due to the fact that simplgreasing the depth of theoUnreachableStatesonstraint for
a 3 class language such BSM led to a many-fold increase in solution time. There is a caxphter-dependence between
the classes, its properties, constraints on them, and thimlpaodel. A thorough experimental study needs to be peréal
for a speci c language where each factor such as number gbefa properties, relationships and constraints aredvaxier
several ranges of values. This can then give us an idea aboualspeci c language performs using our approach for model
completion. This study is out of the scope of our paper as w@gse a rst solution applicable to any modelling language.

The scalability of the size of the model instances of a metaehis the second form of scalability. The question is for
a given xed DSML, what is the largest model we can obtain in a reasonable anuuime? For example, we synthesize
a complete model from Partial Model 3 using the parametetactty 1 FSM object, exactly 8State objects, exactly 10
Transition objects, 5 Int. The solution was found in 72930 ms (= 73 s). iRtaractive model completion 73 s could be too
much when compared to almost instantaneous code complattonls such as Eclipse. However, we give the user full edntr
over the model completion parameters. With experience,ameput the correct number of objects he is looking for in the
complete model resulting in a faster feedback. When ourcagmbr is used for automatic model synthesis such as for atitboma
test model generation [32] or for design space exploratdd Jve pay less attention to instantaneous responses. $g ttases
we obtain several hundred or even thousands of complete féextiee models through several hours of model synthesis.

Scaling model completion also provides re ective insightoi the design of the language itself. A language with caiirss
that are highly constrained or not optimally designed carhgas take a long time to resolve. However, this does not rule
out the fact that manual creation of the model will be easieraf user of the language. He/she can also be entangled in the
complexity of the constraint while creating his model. Téfere, automatic model completion also reveals design &ws
modelling languages that can be corrected in parallel taiobtasonable completion times.
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VIIl. CONCLUSION

We present a methodology to synthesize domain-speci c hediors with meta-model directed model completion for
domain-speci ¢ modelling languages. Our goal has been twige model editors with completion capabilities similartéxt
or code editors in IDEs such as Eclipse or word processons aacMicrosoft Word. A potential future application of our
approach is generation of test models from partial knowdedgDSML user draws a partial test model for testing a model
transformation and subsequently sets model completioanpeters. Then he/she clicks on a button to generate contpktte
models that are valid test cases for model transformatibleseover, the model completions are displayed in the cdacre
visual syntax of the modelling language while evading adl tletails in the CNF, XML les, or other intermediate low-kv
representations. This aspect of our tool helps reduce e tib develop models in the modelling environment as the aisigr
works in his domain language. The user does not need to manaisform his models to a different constraint language,
solve his models and return the results to the editor anymsioe the underlying model completion process is hiddemfro
the user. After all, the goal of MDE is to leverage modellingthe highest possible level of abstraction.

Our approach uses a modelling language metamodel , thexsyauta its static semanticsn the form of metamodel
constraints to perform model completion. However, since finesented approach is modelling language independent we
do not considedynamic semanticgften realized in a simulator for model completion. Neveltiss, we project several
implications to simulation as it goes hand in hand with mbdgl Model simulators, such as MATLAB/Simulink for causal
block diagrams, often contaimard-coded declarative constraints or program statemeinds check and report on the validity
of input models during simulation. For example, a causatkldiagram simulator analyzes input models to detect cyaheks
warns the modeller. These statements that are integratetnmlator code come from heterogenous sources of knowledge
such as domain experience, static/dynamic analysis, atitige This gradual inclusion of model validity knowledgieedtly
into simulator code makes them bulky and slow to executes Hpiproach also obscures the user from potentially using
this knowledge to build correct models. Extracting knowgdedrom simulators and developing modelling language iavés
to guide modellers to create invariant-validated modelergges acorrect by constructiorphilosophy. Further, using these
invariants for automatic model completion of partial madeiakes the modelling and simulation process less errarepas
models are rst checked and then completed to satisfy iavesi before simulation.

Our lightweight approach is effective for small yet usefubaelling languages. Time to complete models by the state of
the art SAT solvers for about 50 objects in the model is notarthan a few minutes fdFSM. The completion time greatly
depends on the complexity the DSML. The time taken to obtain complete models also gives ushhsigout how restricted
a DSML is and how it can be relaxed.

As future work we intend to run thorough performance experita on a speci ¢ industry strengibfSML. Such aDSML
will have a larger meta-model with a several complex commgsaWe will limit ourselves to the con nes of rst-order laional
logic in ALLOY as the language to express constraints. We also wish td #misset of detailed requirements to synthesize
DSML modelling environments with completion. For example, aari@sting factor is user interaction time. If a complete siod
is not returned within a given time then the user can no longgte developments quickly. Other aspects of model conopleti
include completion of models when two or more meta-modeésiavolved, expression of partial models as invariants or
constraints, and aiding the user by helping him/her setrpaters for model completion.

APPENDIX |
ALLOY MODEL SYNTHESIZED FROMFSM META-MODEL WITH FACTS AND PARTIAL MODEL PREDICATES

module metamodelFSM

open util/lboolean as Bool

sig FSM

{

states:set State,
currentState: lone State,
transitions: set Transition

}

sig State

label: Int,
outgoingTransition: set Transition,
incomingTransition: set Transition,
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fsmCurrentState: one FSM,
fsmStates: one FSM,
isFinal:one Bool,
islnitial:one Bool

}
sig Transition
{

event: Int,

target: one State,
source: one State,
fsmTransitions:one FSM

}

/IMeta-model constraints//

/[Exactly one initial state
fact exactlyOnelnitialState

{

one s:State|s.islnitial == True

}

/IAtleast one final state
fact at leastOneFinalState

{

some s:State | s.isFinal == True

}

/[Exactly one HFSM
fact exactlyOneFSM

{
one FSM

}

fact sameSourceDiffTarget

{
all tl:Transition,t2:Transition| (t1!=t2 and tl.source=
tl.target!=t2.target

}

fact setTargetAndSource

{

all s:State| s.incomingTransition.target = s and
s.outgoingTransition.source=s

}

fact noUnreachableStates

{

all s: State | (s. islnitial == False) =>

all incl : s.incomingTransition |
incl.source.isInitial = True or

all inc2 : incl.source.incomingTransition
| inc2.source.islnitial = True or

all inc3 : inc2.source.incomingTransition
| inc3.source.islnitial = True

=t2.source) =>

15
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fact uniqueStatelLabels

{
#State>1 => all sl:State,s2:State | sll=s2=>sl.label != s2 label
}
fact containmentState
{
State in FSM.states
}
fact containmentTransition
{
Transition in FSM.transitions
}

/IPartial Model Facts
//Partial Model 1

pred partialModell Fact
{

some State

}

/[Partial Model 2

pred partialModel2_Fact

{

some sl:State,s2:State,tl:Transition |s1l!=s2 and
t1 in sl.outgoingTransition and t1 in
s2.incomingTransition

}

//Partial Model 3

pred partialModel3_Fact

{

some sl:State,s2:State,s3:State,s4:State,
t1:Transition, t2:Transition|

sl!=s2 and s2!=s3 and s3!=s4 and sl!=s3 and
sll=s4 and s2!=s4 and tl!=t2 and

tl in s2.incomingTransition and t2 in
s3.incomingTransition and tl in sl.outgoingTransition
and t2 in sl.outgoingTransition and

s2.islnitial = True and s4.isFinal = True

/[Partial Model 4

pred partialModel4_Fact

{

some sl:State,s2:State,s3:State,s4:State,
tl:Transition,t2: Transition|

sl!l=s2 and s2!=s3 and s3!=s4 and sl!=s3 and
sll=s4 and s2!=s4 and tl!=t2 and

t1 in s2.incomingTransition and t2 in
s3.incomingTransition and tl in sl.outgoingTransition
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and t1 in sl.outgoingTransition and
s2.isInitial=True and s3.islnitial=True

}

run partialModell_Fact for 10

run partialModel2_Fact for 10

run partialModel3_Fact for 10

run partialModel4_Fact for 10

run partialModell_Fact for exactly 1 FSM, exactly 5 State,
exactly 5 Transition, 5 int

run partialModel2_Fact for exactly 1 FSM, exactly 5 State,
exactly 5 Transition, 5 int

run partialModel3_Fact for exactly 1 FSM, exactly 5 State,
exactly 5 Transition, 7 int

run partialModel4_Fact for exactly 1 FSM, exactly 5 State,
exactly 5 Transition, 5 int
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Fig. 1.

Fig. 2.

Step 1: Specify a meta-model
(class diagram) in AToM3

0..1 fsmCurrentState INIESIVINNNN

1 fsmStates Textual

0..1 currentstate

isfinal: Boolean ~ event string

1 source

fsmTransitions
Meta-information
X states 0..* transitions

\‘;\S\;‘m\‘"?nu\ean 0* 0”*
1 target]| outgoingTrarjsition| incomingTransition

Step 2: Specify Alloy Facts on the
class diagram in AToM3

}

//Atleast one final state

Textual }
Meta-information oy 2]
fact exactlyOneFSM{

one FSM
}

,—>

fact exactlyOnelnitialState {
one s:State|s.isInitial == True

fact atleastOneFinalState {
some s:State | s.isFinal == True

Step 3: Specify visual syntax in
AToM3 icon editor

wiase amm

<<Bool>>

“-|Initial ?
- |Final

<<Bool>>

TG |

Y

Step 4: Specify a partial model
in synthesized editor
0

Step 8: Parse XML and return

recommendation(s)

solution(s) as a model completion

Initial ?

Initial ?
0
0

Final ?
0
Initial ? ©.

Final ?0

Generate Model Editor

Step 5: Model transformation
from partial model, meta-model,
and constraints.

XML file(s)

Step 7: Call Alloy API to solve Boolean CNF
using a SAT solver and save solution(s) as

Input: Meta-model, constraints,
and partial model
Output: Alloy Model

Step 6: Call Alloy API to
Transform Alloy Model to Boolean CNF

Methodology Overview

1 fsmCurrentState

0..1 currentstate

FSM

1 fsmStates

0..* states

1 fsmTransitions

0..* transitions

State

Transition

isFinal : Boolean
isInitial: Boolean
label : Int

event : String

0.*

1 target

1source outgoingTransition

The Finite State Machine Meta-model

0”*
incomingTransition
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Initial ? ©
Final ?
Initial ? ©

Initial ? ©

Final ?
Final ? 0)
(0]

(a)

Synthesized Predicate
pred partialModel

{
some s1: State, 52 : State, 53 ; State, 54 ; State,

t1: Transition, t2 : Transition |
sll=s2ands2!=s3and s3!=sd and s1 !=s3 and
sll=sdands2!=sdand t1!=1t2 and
t1 in s2.incomingTransition and t2 in s3.incomingTransition
and t1 in s1.outgoingTransition and t2 in s1.outgoingTransition and
s2.isinitial = True and sd.isFinal = True

}

(b)

Fig. 3. (a) Partial Model (b) Synthesized Predicates fromtidgaviodel
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Initial 2 ©

Final ?@
o

(a)

Initial ? ©
Initial ? 9 Final ?
() °
Final ?
o

Initial ? ©

Final ?

o Initial ? ©
Initial ?

Final ?
Final ? o
1

(c)

Initial 2L

Initial ? ©
Final ?

Initial ? L
Initial ? © N

@ Final ?
Final ? (¢]
(0]

(d)

Synthesized Predicates

fact partialModel_Factl
{

some State
}

(e)
Synthesized Predicates
pred partialModel2 Fact
{
some sl : State, 52 : State, t1 : Transition | 51 != 52 and
t1in s1.outgoingTransition and t1 in s2.incomingTransition

}

()

Synthesized Predicates
pred partialModel3 Fact

{

some 51 : State, 52 : State, $3: State, 54 : State, t1: Transition, t2 : Transition |
sl1=s2ands2!=s3and s3 !=sdand s1!=s3and s = sd and 52 = 54 and
t1 1=t2 and t1 in s2.incomingTransition and t2 in s3.incomingTransition and
t1in sLoutgoingTransition and 2 in s1.outgoingTransition and

s2.islnitial = True and s4.isFinal = True

}

(9)

Synthesized Predicates
pred partialModeld Fact

{

some s1: State, s2: State, 3 : State, s4 : State, t1 : Transition, t2 : Transition |

sll=s2ands2 !=s3and s3!=sdand s1!=s3and sl !=sd and s2 = 4
and t1 =2 and t1 in s2.incomingTransition and 2 in s3.incomingTransition
and t1 in sLoutgoingTransition and 1 in sL.outgoingTransition and
s2.islnitial = True and s3.islnitial = True

}

(h)

21

Fig. 4. (a) Partial model 1, (b) Partial model 2, (c) Partiadal 3, (d) Partial model 4, (e) Predicate synthesized foiidPanodel 1 (f) Predicate synthesized
for Partial model 2, (g) Predicate synthesized for Partiateh 3, (f) Predicate synthesized for Partial model 4
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Fig. 5.

event: 7
Initial 7

Final ?

(a)

Initial ? L

Final ?
1

event: 7

Initial ?

Final ?

event: 7
(b)
Initial ? L
event: 7
Initial ? 9
Final ? /\
o §§
KN
&
&
>
Initial ? ©

Final ?

(c)

(a) Complete Model for Partial Model 1 (b) Complete débfor Partial Model 2 (c) Complete Model for Partial Model 3
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