
Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Generalized Timed Büchi Automata
(Revisited)

Philipp Schlehuber-Caissier
philipp@epita.lrde.fr

Post-Doc, LRDE, Epita

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Timed Büchi Automata

Timed Büchi Automata are, like Timed Automata, defined as a
tuple

A = (L, l0, LF , X, E, Inv)
however a run r = ((l0, v0), (l1, v1), (l2, v2), ...)

has to visit LF infinitely often in order to be accepting.

0

1x>4

2

x<3

3

Rejected : rrej = ((0, 0), (1, 5))
Accepted : racc = ((0, 0), ((2, 2), (3, 2))ω)

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Timed Büchi Automata

Timed Büchi Automata are, like Timed Automata, defined as a
tuple

A = (L, l0, LF , X, E, Inv)
however a run r = ((l0, v0), (l1, v1), (l2, v2), ...)

has to visit LF infinitely often in order to be accepting.

0

1x>4

2

x<3

3

Bonus question : Guarantee that time is allowed to diverge
Accepted : racc = ((0, 0), (2, 2), (3, 2), (2, 3), (3, 3), (2, 4), (3, 4), ...)

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Emptiness check

For reachability/safety properties, we use forward exploration.

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Emptiness check

For reachability/safety properties, we use forward exploration.
We therefore finished when a location l ∈ LF is attained.

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Emptiness check

For reachability/safety properties, we use forward exploration.
We therefore finished when a location l ∈ LF is attained.
For Büchi acceptance this is not sufficient as we need a
“Lasso” :
r = (rpre, (rcyc)ω)

pre
loop

0 1 2
3

4

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Emptiness check

For reachability/safety properties, we use forward exploration.
We therefore finished when a location l ∈ LF is attained.
For Büchi acceptance this is not sufficient as we need a
“Lasso” :
r = (rpre, (rcyc)ω)

pre
loop

0 1 2
3

4

This can be done using a Nested Dept First Search (NDFS).

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

NDFS

The basic idea of NDFS is to have two distinct depth first
traversals of the graph.

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

NDFS

The basic idea of NDFS is to have two distinct depth first
traversals of the graph.
One to find a prefix (“dfsBlue”) and one to find a cycle
(“dfsBlue”).

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

NDFS

The basic idea of NDFS is to have two distinct depth first
traversals of the graph.
One to find a prefix (“dfsBlue”) and one to find a cycle
(“dfsBlue”).
Needs to maintain three different sets of states :
Live, Explored, Dead

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

NDFS

0

1

3

2

4
5

Live=Cyan, Explored=Blue, Dead=Red
Cyan = Blue = Red = ∅

dfsBlue(0)

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

NDFS

0

1

3

2

4
5

succ /∈ Blue ∧ succ /∈ Cyan→ dfsBlue(succ)

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

NDFS

0

1

3

2

4
5

s /∈ LF → Blue = Blue ∪ s; Cyan = Cyan \ s

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

NDFS

0

1

3

2

4
5

s ∈ LF → dfsRed(s)

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

NDFS

0

1

3

2

4
5

succ /∈ Red→ dfsRed(succ)

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

NDFS

0

1

3

2

4
5

s is explored → Blue = Blue ∪ s; Cyan = Cyan \ s

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

NDFS

0

1

3

2

4
5

succ /∈ Blue ∧ succ /∈ Cyan→ dfsBlue(succ)

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

NDFS

0

1

3

2

4
5

succ /∈ Blue ∧ succ /∈ Cyan→ dfsBlue(succ)

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

NDFS

0

1

3

2

4
5

succ /∈ Blue ∧ succ /∈ Cyan→ dfsBlue(succ)

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

NDFS

0

1

3

2

4
5

s is explored → Blue = Blue ∪ s; Cyan = Cyan \ s

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

NDFS

0

1

3

2

4
5

s is explored → Blue = Blue ∪ s; Cyan = Cyan \ s

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

NDFS

0

1

3

2

4
5

s ∈ LF → dfsRed(succ)

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

NDFS

0

1

3

2

4
5

succ /∈ Red→ dfsRed(succ)

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

NDFS

0

1

3

2

4
5

succ /∈ Red→ dfsRed(succ)

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

NDFS

0

1

3

2

4
5

succ ∈ Cyan→ report cycle

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Couvreur

Another popular approach for checking Büchi emptiness is
Couvreur’s algorithm 1.
It’s main idea is to find an SCC that satisfies the acceptance
condition.

1. Couvreur, J. M., Duret-Lutz, A., & Poitrenaud, D. (2005, August). On-the-fly emptiness checks for generalized
Büchi automata. In International SPIN Workshop on Model Checking of Software (pp. 169-184). Springer, Berlin,
Heidelberg.

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Couvreur

0

1

3

2
❶

4
❶

5

To be coherent with SPOT,
we will use a transition based acceptance here.

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Couvreur

0

1

3

2
❶

4
❶

5

When discovering a new state, it gets its own scc
and is put on the live stack Green

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Couvreur

0

1

3

2
❶

4
❶

5

When discovering a new state, it gets its own scc
and is put on the live stack Green

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Couvreur

0

1

3

2
❶

4
❶

5

I

When discovering a new state, it gets its own scc
and is put on the live stack Green

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Couvreur

0

1

3

2
❶

4
❶

5

I

When backtracking the root of an scc,
all of the states are “declared dead” and added to Red.

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Couvreur

0

1

3

2
❶

4
❶

5

When backtracking the root of an scc,
all of the states are “declared dead” and added to Red.

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Couvreur

0

1

3

2
❶

4
❶

5

We keep on exploring.

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Couvreur

0

1

3

2
❶

4
❶

5

We keep on exploring.

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Couvreur

0

1

3

2
❶

4
❶

5

We keep on exploring.

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Couvreur

0

1

3

2
❶

4
❶

5

Until we find a back-edge. That is an edge which take us back to a
live state (one that is in Green)

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Couvreur

0

1

3

2
❶

4
❶

5

All scc’s between them get merged.
The acceptanace marks are accumulated.

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Using subsumption

Both algorithms handle nodes like discrete states
Using subsumption where appropriate
is likely to speed-up calculations

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Using subsumption

NDFS Couvreur

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Using subsumption

NDFS

Dead subsumption :
s ∈ Red
becomes
∃s′ ∈ Red : s � s′

Couvreur

Dead subsumption :
s ∈ Red
becomes
∃s′ ∈ Red : s � s′

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Using subsumption

NDFS

Dead subsumption :
s ∈ Red
becomes
∃s′ ∈ Red : s � s′

Red→ Cyan subsumption :
∃s′ ∈ Cyan : s′ � s report
cycle

Couvreur

Dead subsumption :
s ∈ Red
becomes
∃s′ ∈ Red : s � s′

Livestack subsumption :
All live states for which
s′ ∈ Green, s′ � succ holds
are valid successors as well

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Using subsumption

NDFS

Dead subsumption :
s ∈ Red
becomes
∃s′ ∈ Red : s � s′

Red→ Cyan subsumption :
∃s′ ∈ Cyan : s′ � s report
cycle
Equality for Blue and Cyan :
Subsumption cannot be used
on
succ ∈ Blue ∪ Cyan.

Couvreur

Dead subsumption :
s ∈ Red
becomes
∃s′ ∈ Red : s � s′

Livestack subsumption :
All live states for which
s′ ∈ Green, s′ � succ holds
are valid successors as well

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Compairison

Positive and negative aspects
+ Faster : only requires one traversal
+ Faster : usually less compairisons
+ Easier : Only two sets of states
+ Requires less memory
+ Directly applicable to generalized Büchi acceptance
− Provides no actual counterexample

1. Laarman, A., Olesen, M. C., Dalsgaard, A. E., Larsen, K. G., & Van De Pol, J. (2013, July). Multi-core
emptiness checking of timed Büchi automata using inclusion abstraction. In International Conference on Computer
Aided Verification (pp. 968-983). Springer, Berlin, Heidelberg.

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Benchmarks 1
check time

COUV
NDFS

case nr.

se
co
nd

s

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Benchmarks 1
processed transitions

COUV
NDFS

case nr.

tr
an
sit
io
ns

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Benchmarks 1
dead states

COUV
NDFS

case nr.

st
or
ed

de
ad

st
at
es

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Further optimizations 1

❶

❶

...
❶

In f(⓿)& In f(❶)& In f(❷)
[g e n . Bü ch i 3]

⓿

Pruning based on last SCC

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Further optimizations 1

❶

❶

...
❶

In f(⓿)& In f(❶)& In f(❷)
[g e n . Bü ch i 3]

⓿

Pruning based on last SCC
We can skip the successor if covered by some node in the scc and

the transition has no new color.

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Further optimizations 1

❶

❶

...
❶

In f(⓿)& In f(❶)& In f(❷)
[g e n . Bü ch i 3]

⓿

Pruning based on last SCC
We can skip the successor if covered by some node in the scc and

the transition has no new color.

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Further optimizations 2

...

Superseded nodes

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Further optimizations 2

...
...

Superseded nodes
We can skip the successors of a node
if a larger node was already explored.

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Further optimizations 3
The set of dead states Red (NDFS/Couvreur) are typically
implemented as hash maps.
This means we have to check the states against a sub-set sharing
the same hash value.

In order to decrease the (average) number of comparisons, we sort
the set of candidate states.

[
s0 s1 s2 s3 s4

]
y succ � s2

[
s2 s0 s1 s3 s4

]

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Benchmarks 1 - Optimization impact
check time

case nr.

se
co
nd

s

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Benchmarks 1 - Optimization impact
processed transitions

case nr.

tr
an
sit
io
ns

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Benchmarks 1 - Optimization impact
dead states

case nr.

st
or
ed

de
ad

st
at
es

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Benchmarks 1 - NDFS vs COUVREUR
check time

COUV
NDFS

case nr.

se
co
nd

s

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Benchmarks 1 - NDFS vs COUVREUR
dead states

COUV
NDFS

case nr.

st
or
ed

de
ad

st
at
es

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

The problem of zeno runs

A run is considered zeno if it makes infinitely many switches in a
finite amount of time. That is time gets “frozen”.

Such runs are unrealistic and therefore discarded.

Strong non-zeno construction → Adding a clock 2

2. Tripakis, S., Yovine, S., & Bouajjani, A. (2005). Checking timed Büchi automata emptiness efficiently. Formal
Methods in System Design, 26(3), 267-292.

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

The problem of zeno runs

A run is considered zeno if it makes infinitely many switches in a
finite amount of time. That is time gets “frozen”.

Such runs are unrealistic and therefore discarded.

Strong non-zeno construction → Adding a clock 2

Guessing zone graph → Add information to the nodes 3

2. Tripakis, S., Yovine, S., & Bouajjani, A. (2005). Checking timed Büchi automata emptiness efficiently. Formal
Methods in System Design, 26(3), 267-292.
3. Herbreteau, F., Srivathsan, B., & Walukiewicz, I. (2010, July). Efficient emptiness check for timed büchi

automata. In International Conference on Computer Aided Verification (pp. 148-161). Springer, Berlin, Heidelberg.

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

GZG

Guessing zone graph

Main idea
For each node, track set of clocks Y ⊆ X
which can evaluate to zero : (q, Z, Y)

In transitions : add a clock x to Y if it is reset
Add the constraint ∀x ∈ X \ Y : x > 0 for every transition

Change the acceptance to see Y = ∅ infinitely often.
On each transition : Either keep Y or reset it Y = ∅

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

GZG

Guessing zone graph - Algo 1

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

GZG

Guessing zone graph - Spec. based

Main idea :
Instead of conceiving a dedicated algorithm,
add the non-zeno requirement to the specification.

Clear node has to appear infinitely often
If a clock encounters infinitely often an upper bound,
it also has to be reset infinitely often.

specnz = spec ∧ GF clear
∧
i

(FG !upi|GF resi)

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

GZG

GF clear
∧
i

(FG !upi|GF resi)

In f(⓿)& In f(❶)& In f(❷)
[g e n . Bü ch i 3]

0

1

1

r 0 | r 1

!u 0 !u 1 !u 0 & !u 1

cle a r & !r 0 & !r 1

!cle a r & !r 0 & r 1
❶

!cle a r & r 0 & !r 1
⓿

!cle a r & r 0 & r 1
⓿ ❶

cle a r & !r 0 & !r 1
❷

cle a r & !r 0 & r 1
❶ ❷

cle a r & r 0 & !r 1
⓿ ❷

cle a r & r 0 & r 1
⓿ ❶ ❷

2

!cle a r & !r 1 & !u 0
⓿

!cle a r & r 1 & !u 0
⓿ ❶

cle a r & !r 1 & !u 0
⓿ ❷

cle a r & r 1 & !u 0
⓿ ❶ ❷

3

!cle a r & !r 0 & !u 1
❶

!cle a r & r 0 & !u 1
⓿ ❶

cle a r & !r 0 & !u 1
❶ ❷

cle a r & r 0 & !u 1
⓿ ❶ ❷

4

!cle a r & !u 0 & !u 1
⓿ ❶

cle a r & !u 0 & !u 1
⓿ ❶ ❷

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

GZG

Modified TA

(q, Z) (q′, Z ′)(g, R)

with
Z ′ =

−−−−−−−→
[R](Z ∩ g)

(q, Z, Y)
(gz, R)

(q′, Z ′, Y ′)

(q′, Z ′, Y ′′)

(gz, R)

with
gz = g ∩ {xi > 0|xi ∈ X \ Y }
Z ′ =

−−−−−−−−→
[R](Z ∩ gz)

Y ′ = Y ∪R
Y ′′ = ∅

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

GZG

Benchmarks 2 - Non-zeno
check time

COUV
NDFS

case nr.

se
co
nd

s

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

GZG

Benchmarks 2 - Non-zeno
dead states

COUV
NDFS

case nr.

st
or
ed

de
ad

st
at
es

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Inclusion on Y

Inclusion relation on Y

“smaller” Y → smaller successor zones
Y “grows” slowly, but can be reset any time

Inclusion relation

(q, Z, Y) v (q′, Z ′, Y ′)
iff

q = q′, Z � Z ′ and Y ⊆ Y ′

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Inclusion on Y

Inclusion relation on Y

Problem
The inclusion relation disregards the acceptance condition.
Nodes with Y = X are maximal, but not accepting

For a run to be accepted we have to see the clear node Y = ∅.

Solution
Always consider the successors with Y = ∅ first.

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Inclusion on Y

Benchmarks 3 - With Inclusion
check time

COUV
NDFS

case nr.

se
co
nd

s

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Inclusion on Y

Benchmarks 3 - With Inclusion
dead states

COUV
NDFS

case nr.

st
or
ed

de
ad

st
at
es

Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Inclusion on Y

Current work

Support parallel EC using Bloemen 4

Find better formulations for non-zeno condition

4. Bloemen, V., & van de Pol, J. (2016, November). Multi-core SCC-based LTL model checking. In Haifa
Verification Conference (pp. 18-33). Springer, Cham.

	Timed Büchi Automata
	EC - NDFS
	EC - Couvreur
	EC with subsumption
	Zeno runs
	GZG
	Inclusion on Y

