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Timed Büchi Automata

Timed Büchi Automata are, like Timed Automata, defined as a
tuple

A = (L, l0, LF , X, E, Inv)
however a run r = ((l0, v0), (l1, v1), (l2, v2), ...)

has to visit LF infinitely often in order to be accepting.
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1x>4

2

x<3

3

Rejected : rrej = ((0, 0), (1, 5))
Accepted : racc = ((0, 0), ((2, 2), (3, 2))ω)
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Timed Büchi Automata

Timed Büchi Automata are, like Timed Automata, defined as a
tuple

A = (L, l0, LF , X, E, Inv)
however a run r = ((l0, v0), (l1, v1), (l2, v2), ...)

has to visit LF infinitely often in order to be accepting.
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Bonus question : Guarantee that time is allowed to diverge
Accepted : racc = ((0, 0), (2, 2), (3, 2), (2, 3), (3, 3), (2, 4), (3, 4), ...)
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Emptiness check

For reachability/safety properties, we use forward exploration.
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Emptiness check

For reachability/safety properties, we use forward exploration.
We therefore finished when a location l ∈ LF is attained.
For Büchi acceptance this is not sufficient as we need a
“Lasso” :
r = (rpre, (rcyc)ω)

pre
loop
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Emptiness check

For reachability/safety properties, we use forward exploration.
We therefore finished when a location l ∈ LF is attained.
For Büchi acceptance this is not sufficient as we need a
“Lasso” :
r = (rpre, (rcyc)ω)

pre
loop

0 1 2
3

4

This can be done using a Nested Dept First Search (NDFS).
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NDFS

The basic idea of NDFS is to have two distinct depth first
traversals of the graph.
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NDFS

The basic idea of NDFS is to have two distinct depth first
traversals of the graph.
One to find a prefix (“dfsBlue”) and one to find a cycle
(“dfsBlue”).
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NDFS

The basic idea of NDFS is to have two distinct depth first
traversals of the graph.
One to find a prefix (“dfsBlue”) and one to find a cycle
(“dfsBlue”).
Needs to maintain three different sets of states :
Live, Explored, Dead
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NDFS
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Live=Cyan, Explored=Blue, Dead=Red
Cyan = Blue = Red = ∅

dfsBlue(0)
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NDFS
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succ /∈ Blue ∧ succ /∈ Cyan→ dfsBlue(succ)
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NDFS
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s /∈ LF → Blue = Blue ∪ s; Cyan = Cyan \ s
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NDFS
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s ∈ LF → dfsRed(s)
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NDFS
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succ /∈ Red→ dfsRed(succ)
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NDFS
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s is explored → Blue = Blue ∪ s; Cyan = Cyan \ s
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NDFS

0

1

3

2

4
5

s ∈ LF → dfsRed(succ)
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NDFS
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succ ∈ Cyan→ report cycle
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Couvreur

Another popular approach for checking Büchi emptiness is
Couvreur’s algorithm 1.
It’s main idea is to find an SCC that satisfies the acceptance
condition.

1. Couvreur, J. M., Duret-Lutz, A., & Poitrenaud, D. (2005, August). On-the-fly emptiness checks for generalized
Büchi automata. In International SPIN Workshop on Model Checking of Software (pp. 169-184). Springer, Berlin,
Heidelberg.
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Couvreur
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To be coherent with SPOT,
we will use a transition based acceptance here.
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Couvreur
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When discovering a new state, it gets its own scc
and is put on the live stack Green



Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Couvreur

0

1

3

2
❶

4
❶

5

When discovering a new state, it gets its own scc
and is put on the live stack Green



Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Couvreur
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When discovering a new state, it gets its own scc
and is put on the live stack Green
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Couvreur
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When backtracking the root of an scc,
all of the states are “declared dead” and added to Red.
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Couvreur

0

1

3

2
❶

4
❶

5

When backtracking the root of an scc,
all of the states are “declared dead” and added to Red.



Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Couvreur
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We keep on exploring.
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Couvreur
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Until we find a back-edge. That is an edge which take us back to a
live state (one that is in Green)
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Couvreur
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All scc’s between them get merged.
The acceptanace marks are accumulated.
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Using subsumption

Both algorithms handle nodes like discrete states
Using subsumption where appropriate
is likely to speed-up calculations
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Using subsumption

NDFS Couvreur



Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

Using subsumption

NDFS

Dead subsumption :
s ∈ Red
becomes
∃s′ ∈ Red : s � s′

Couvreur

Dead subsumption :
s ∈ Red
becomes
∃s′ ∈ Red : s � s′
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Using subsumption

NDFS

Dead subsumption :
s ∈ Red
becomes
∃s′ ∈ Red : s � s′

Red→ Cyan subsumption :
∃s′ ∈ Cyan : s′ � s report
cycle

Couvreur

Dead subsumption :
s ∈ Red
becomes
∃s′ ∈ Red : s � s′

Livestack subsumption :
All live states for which
s′ ∈ Green, s′ � succ holds
are valid successors as well
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Using subsumption

NDFS

Dead subsumption :
s ∈ Red
becomes
∃s′ ∈ Red : s � s′

Red→ Cyan subsumption :
∃s′ ∈ Cyan : s′ � s report
cycle
Equality for Blue and Cyan :
Subsumption cannot be used
on
succ ∈ Blue ∪ Cyan.

Couvreur

Dead subsumption :
s ∈ Red
becomes
∃s′ ∈ Red : s � s′

Livestack subsumption :
All live states for which
s′ ∈ Green, s′ � succ holds
are valid successors as well
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Compairison

Positive and negative aspects
+ Faster : only requires one traversal
+ Faster : usually less compairisons
+ Easier : Only two sets of states
+ Requires less memory
+ Directly applicable to generalized Büchi acceptance
− Provides no actual counterexample

1. Laarman, A., Olesen, M. C., Dalsgaard, A. E., Larsen, K. G., & Van De Pol, J. (2013, July). Multi-core
emptiness checking of timed Büchi automata using inclusion abstraction. In International Conference on Computer
Aided Verification (pp. 968-983). Springer, Berlin, Heidelberg.
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Benchmarks 1
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Benchmarks 1
processed transitions
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Benchmarks 1
dead states
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Further optimizations 1

❶

❶

...
❶

In f( ⓿ )& In f( ❶ )& In f( ❷ )
[g e n . Bü ch i 3 ]

⓿

Pruning based on last SCC
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In f( ⓿ )& In f( ❶ )& In f( ❷ )
[g e n . Bü ch i 3 ]

⓿

Pruning based on last SCC
We can skip the successor if covered by some node in the scc and

the transition has no new color.
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Further optimizations 2

...

Superseded nodes
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Further optimizations 2

...
...

Superseded nodes
We can skip the successors of a node
if a larger node was already explored.
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Further optimizations 3
The set of dead states Red (NDFS/Couvreur) are typically
implemented as hash maps.
This means we have to check the states against a sub-set sharing
the same hash value.

In order to decrease the (average) number of comparisons, we sort
the set of candidate states.

[
s0 s1 s2 s3 s4

]
y succ � s2

[
s2 s0 s1 s3 s4

]
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Benchmarks 1 - Optimization impact
check time

case nr.
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Benchmarks 1 - Optimization impact
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Benchmarks 1 - NDFS vs COUVREUR
check time
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Benchmarks 1 - NDFS vs COUVREUR
dead states
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The problem of zeno runs

A run is considered zeno if it makes infinitely many switches in a
finite amount of time. That is time gets “frozen”.

Such runs are unrealistic and therefore discarded.

Strong non-zeno construction → Adding a clock 2

2. Tripakis, S., Yovine, S., & Bouajjani, A. (2005). Checking timed Büchi automata emptiness efficiently. Formal
Methods in System Design, 26(3), 267-292.



Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

The problem of zeno runs

A run is considered zeno if it makes infinitely many switches in a
finite amount of time. That is time gets “frozen”.

Such runs are unrealistic and therefore discarded.

Strong non-zeno construction → Adding a clock 2

Guessing zone graph → Add information to the nodes 3

2. Tripakis, S., Yovine, S., & Bouajjani, A. (2005). Checking timed Büchi automata emptiness efficiently. Formal
Methods in System Design, 26(3), 267-292.
3. Herbreteau, F., Srivathsan, B., & Walukiewicz, I. (2010, July). Efficient emptiness check for timed büchi

automata. In International Conference on Computer Aided Verification (pp. 148-161). Springer, Berlin, Heidelberg.
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GZG

Guessing zone graph

Main idea
For each node, track set of clocks Y ⊆ X
which can evaluate to zero : (q, Z, Y )

In transitions : add a clock x to Y if it is reset
Add the constraint ∀x ∈ X \ Y : x > 0 for every transition

Change the acceptance to see Y = ∅ infinitely often.
On each transition : Either keep Y or reset it Y = ∅



Timed Büchi Automata EC - NDFS EC - Couvreur EC with subsumption Zeno runs

GZG

Guessing zone graph - Algo 1
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GZG

Guessing zone graph - Spec. based

Main idea :
Instead of conceiving a dedicated algorithm,
add the non-zeno requirement to the specification.

Clear node has to appear infinitely often
If a clock encounters infinitely often an upper bound,
it also has to be reset infinitely often.

specnz = spec ∧ GF clear
∧
i

(FG !upi|GF resi)
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GZG

GF clear
∧
i

(FG !upi|GF resi)

In f(⓿ )& In f(❶ )& In f(❷ )
[g e n . Bü ch i 3 ]

0

1

1

r 0  |  r 1

!u 0 !u 1 !u 0  &  !u 1

cle a r  &  !r 0  &  !r 1

!cle a r  &  !r 0  &  r 1
❶

!cle a r  &  r 0  &  !r 1
⓿

!cle a r  &  r 0  &  r 1
⓿ ❶

cle a r  &  !r 0  &  !r 1
❷

cle a r  &  !r 0  &  r 1
❶ ❷

cle a r  &  r 0  &  !r 1
⓿ ❷

cle a r  &  r 0  &  r 1
⓿ ❶ ❷

2

!cle a r  &  !r 1  &  !u 0
⓿

!cle a r  &  r 1  &  !u 0
⓿ ❶

cle a r  &  !r 1  &  !u 0
⓿ ❷

cle a r  &  r 1  &  !u 0
⓿ ❶ ❷

3

!cle a r  &  !r 0  &  !u 1
❶

!cle a r  &  r 0  &  !u 1
⓿ ❶

cle a r  &  !r 0  &  !u 1
❶ ❷

cle a r  &  r 0  &  !u 1
⓿ ❶ ❷

4

!cle a r  &  !u 0  &  !u 1
⓿ ❶

cle a r  &  !u 0  &  !u 1
⓿ ❶ ❷
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GZG

Modified TA

(q, Z) (q′, Z ′)(g, R)

with
Z ′ =

−−−−−−−→
[R](Z ∩ g)

(q, Z, Y )
(gz, R)

(q′, Z ′, Y ′)

(q′, Z ′, Y ′′)

(gz, R)

with
gz = g ∩ {xi > 0|xi ∈ X \ Y }
Z ′ =

−−−−−−−−→
[R](Z ∩ gz)

Y ′ = Y ∪R
Y ′′ = ∅
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GZG

Benchmarks 2 - Non-zeno
check time
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GZG

Benchmarks 2 - Non-zeno
dead states
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NDFS
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Inclusion on Y

Inclusion relation on Y

“smaller” Y → smaller successor zones
Y “grows” slowly, but can be reset any time

Inclusion relation

(q, Z, Y ) v (q′, Z ′, Y ′)
iff

q = q′, Z � Z ′ and Y ⊆ Y ′
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Inclusion on Y

Inclusion relation on Y

Problem
The inclusion relation disregards the acceptance condition.
Nodes with Y = X are maximal, but not accepting

For a run to be accepted we have to see the clear node Y = ∅.

Solution
Always consider the successors with Y = ∅ first.
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Inclusion on Y

Benchmarks 3 - With Inclusion
check time
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Inclusion on Y

Benchmarks 3 - With Inclusion
dead states
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Inclusion on Y

Current work

Support parallel EC using Bloemen 4

Find better formulations for non-zeno condition

4. Bloemen, V., & van de Pol, J. (2016, November). Multi-core SCC-based LTL model checking. In Haifa
Verification Conference (pp. 18-33). Springer, Cham.
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