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Water resources

Pictures: Yves Chaux, Rennes, France
Diagram: http://www.ec.gc.ca/water/f_main.html
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Reactive transport modeling

Coupling transport by advection-dispersion with geochemistry
System of Partial Differential Algebraic equations
Model with thermodynamic equilibrium
Method of lines: first discretize in space then in time ⇒ DAE system
Explicit scheme (SNIA): decoupling but stability restrictions
Implicit scheme (Global): stability but nonlinear coupled system

Our method: global approach GDAE

S. Kräutle, P. Knabner, (2005); A new numerical reduction scheme for
fully coupled multicomponent transport-reaction problems in porous
media; Water Resources Research, Vol. 41, W09414, 17 pp.

S. Molins, J. Carrera, C. Ayora, Carlos and M.W. Saaltink, (2004); A
formulation for decoupling components in reactive transport problems;
Water Resources Research, Vol.40, W10301, 13 pp.

C. de Dieuleveult, J. Erhel , M. Kern; A global strategy for solving
reactive transport equations; Journal of Computational Physics,2009.
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Chemical model
Transport model
Coupling

Mass action laws

Aqueous reactions

xi (c) = Kci

Nc∏
j=1

c
Sij
j , i = 1, . . .Nx (1)

Sorption reactions

yi (c, s) = Ksi

Nc∏
j=1

c
Aij

j

Ns∏
j=1

s
Bij

j , i = 1, . . .Ny , (2)

Precipitation reactions

Πi (c) = Kpi

Nc∏
j=1

c
Eij
j , i = 1, . . .Np (3)
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Chemical model
Transport model
Coupling

Mass conservation laws

Chemical variables and functions

X =

 c
s
p

 , Φ(X ) =

 c + ST x(c) + AT y(c, s) + ETp
s + BT y(c, s)
Π(c)

 (4)

Chemical model 
Φ(X ) =

 T
W
1

 ,

c ≥ 0,
s ≥ 0,
p > 0.

(5)
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Chemical model
Transport model
Coupling

Transport model

Advection-Dispersion operator

L(u) = ∇ · (vu − D∇u)

D = dmI + αT‖v‖I + (αL − αT )
vvT

‖v‖

Transport of mobile species

C(X ) = c + ST x(c) (6)

ω
∂Ti

∂t
+ L(Ci ) = Qi , i = 1, . . . ,Nc (7)

with boundary and initial conditions

Space discretization

with (for example) a finite difference method

T = (T1, . . . ,TNm ) (8)
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Chemical model
Transport model
Coupling

Coupling transport with chemistry

Semi-discrete reactive transport model
ω dTi

dt
+ LCi (X ) = Qi + Gi , i = 1, . . . ,Nc ,

Φ(Xj)−

 Tj

Wj

1

 = 0 j = 1, . . . ,Nm,

initial condition for T ,

(9)

DAE formulation

{
ω dvecT

dt
+ (L⊗ I )vecC(X )− vecQ − vecG = 0, i = 1, . . . ,Nc ,

vecΦ(X )− (I ⊗ N)vecT − vecF = 0
(10)
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Implicit time discretization
GRT3D software

DAE Global approach with substitution

Time discretization: BDF scheme

dvecT

dt
' a

∆t
vecT +

1

∆t
vecZ ,{

aω
∆t

vecT + (L⊗ I )vecC(X )− ... = 0,
−(I ⊗ N)vecT + vecΦ(X )− ... = 0,

Substitution

R(X ) =
∆t

aω
(L⊗ N) vecC(X ) + vecΦ(X )− ...

The Jacobian of R is

JR(X ) =
∆t

aω
(L⊗ N) diag (

dC

dX
(Xj)) + diag(JΦ(Xj)).

Nonlinear system

R(X ) = 0

solved with Newton method
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Implicit time discretization
GRT3D software

GRT3D software

Transport modules

The velocity v is computed with MODFLOW

The transport operator L is computed with MT3D

Chemistry modules

The functions Φ(X ) and C(X )

The derivatives JΦ(X ) and dC(X )/dX

Coupling modules

The function R(X )

The derivative JR(X )

The DAE solver IDA in SUNDIALS using Newton-LU method

The sparse linear solver UMFPACK
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Implicit time discretization
GRT3D software

Versions of GRT3D

First version with logarithms

No elimination of T and C

Reduced version with logarithms

Elimination of T and C in the linearized equations

Optimized version without logarithms

Elimination of T and C in the linearized equations
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Andra qualification test
Numerical results

Numerical experiment

Andra qualification test

Injection of alcaline water NaOH in a porous medium with quartz SiO2



ε = 1.

v =

(
5.7 10−7

0.

)
m.s−1

dm = 0
αL = 0.2 m
αT = 0.05 m
T = 30 days
no flux boundary conditions

Mugler, G. and Bernard-Michel, G. and Faucher, G. and Miguez, R. and Gaombalet, J. and Loth, L. and Chavant, C.), Projet

ALLIANCES: plan de qualification ; CEA, ANDRA, EDF. 12 / 17
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Andra qualification test
Numerical results

Chemistry conditions

Chemistry equations

H2O ↔ H+ + OH− K1 = 10−14

H4SiO4 ↔ H3SiO−
4 + H+ K2 = 10−9.8

H4SiO4 ↔ SiO2(s) + 2H2O K3 = 103.6
(11)

Stoichiometric coefficients

Na+ OH− H4SiO4

H+ 0 -1 0

H3SiO4− 0 1 1

SiO2 0 0 1

Initial values

Na+ OH− SiO2

Outside M 0 0 10.

At M 10−2 10−2 10.
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Andra qualification test
Numerical results

Accuracy results

Accuracy of computed pH

EH+ = ‖x̃H+ − xH+‖

Mesh first GRT3D reduced GRT3D optimized GRT3D

21x14 1.333005E-11 1.591450E-11 8.040057E-11

41x28 2.489791E-09 2.489787E-09 8.113751E-11

81x56 7.640456E-09 7.640825E-09 3.055914E-10

71x101 7.747011E-09 7.746415E-09 4.161827E-10

161x112 7.9736E-09 7.9738E-09 2.6672E-10

322x224 - 3.0871E-09 4.3067E-10

14 / 17
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Andra qualification test
Numerical results

Performance results

CPU time of GRT3D

Computations done on two six-core Intel Xeon processors X5690, with a
frequence of 3.46 GHz and 4GB of RAM per core.

Mesh first GRT3D reduced GRT3D optimized GRT3D

21x14 18 s 4 s 2 s

48x28 1 min 36 s 21 s 8s

81x56 6 min 33 s 1 min 53 s 50 s

71x101 11 min 55 s 3 min 28 s 1 min 21 s

161x112 32 min 43 s 16 min 30 s 4 min 32 s

322x224 - 1 h 52 min 37 min 38 s

15 / 17
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Andra qualification test
Numerical results

Comparison results

Performance/Accuracy results

Comparison with an analytical solution

ENa+ = [
1

NmNt

∑
n,j

(x̃Na+ (mj , tn)− xNa+ (mj , tn))]1/2
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SNIA
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Conclusion

Summary

The DAE global approach (implicit scheme and Newton method) is very
efficient

Substitution is very efficient

The model without logarithms is more efficient than with logarithms

Future work

Precipitation-dissolution with vanishing p

Parallel computations
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