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Introduction

Gaussian field

Random field K(x)
Domain Q of RY, x € Q

K(x) = exp(p + o Y (x))

where Y is a zero mean normal correlated field,
1 is the mean of K, o is the variance of K(x)
Stationary field
cov[Y](x,y) = cov[Y](x — y,0)
Covariance function:

cov[Y](x,y) = C(Ix — y)
Remark that C(0) =1



Introduction

Sampling a Gaussian field: 1d case

Covariance matrix

Domain Q = [0, 1]

Discrete grid of N 4 1 equally spaced points xp = 0, x1,...,xy = 1
Sampled covariance function ¢; = C(x;) with i =0,1,..., N
Covariance matrix

Rij = C(|xi — x;|) = cov[Y](xi, x;)

Discrete sampled field

Yi = Y(x)

random vector of normal variables with zero mean and covariance matrix R

Ki = exp(p + oY)



Introduction

Covariance matrix

Covariance matrix R
Rj = C(Ixi — xj|) = cov[Y](xi, x;)

R is a symmetric positive definite Toeplitz matrix of size N + 1

Co C1 . . . CN—1 CN
C1 (@] C1 CN—-1
R =
CN—1 C1 Co C1
CN CN—1 C1 Co



Random field generation

Generating a sampled Gaussian field

Factorization
R=BB"

Vector 6 of random normal variables with zero mean and uncorrelated
Y = BO

is a random vector of normal variables with zero mean and covariance matrix R
Generation of N + 1 random variables



Random field generation

Factorizations of a covariance matrix

@ Cholesky factorization R = LLT
@ Eigenvalue decomposition R = VAV = (VV/A)(VVA)T
@ Spectral decomposition

Cholesky and eigenvalue decompositions are quite expensive for large N
The matrix R can be ill-conditioned, implying numerical difficulties



Random field generation

Circulant embedding of a covariance matrix: 1d case

Circulant embedding of R

a=(c,...,cn,CN-1,...,c1) € R?

Circulant matrix A = circ(a)

The matrix A is real symmetric of size 2N and is spd if N is large enough

Example with N = 4
CiT C € € €3 € €3 ©
C2 C1 Co C1 C2 C3 Cy C3
C4 C3 € C1 € € C G

CG3 € CG3 € € C ¢ &
Ch €3 € €3 €& € C €



Random field generation

Spectral decomposition of the circulant embedding

Eigenvalue decomposition of A

—2i-rrkj/2N)

Discrete Fourier Transform: F = (e 0<j,k<2N—1

Inverse Discrete Fourier Transform: F~1 = ﬁF* = ﬁf

_ 1
A= FDF ' = __FDF*
2N
where D = diag(s) with s = Fa = Fa (s is real)
SON—k = Sk, k= 17-~~,N



Random field generation

Generating two random fields with 4V random variables

Factorization of A

If Ais spd then A= (F\/D/2N)(F+/D/2N)*
A = (1/V2NFdiag(v/s))(1/V2NFdiag(v/s))*

If Ais not spd, a can be completed by a padding or N can be increased
Random complex vector of size 2/V
0 = Re(0) + ilm(0)

Re(0) and Im(0) random normal zero mean uncorrelated real variables

1
V2N

Two vectors of random normal zero mean N + 1 variables with correlation R

Y: = Re(Fdiag(v/s)6)(0 : N) and Y> = 1/v2NIm(Fdiag(v/s)6)(0 : N)




Random field generation

Generating one random field with 2(NV + 1) random variables

Random complex vector u + iv of size N + 1

u and v random Gaussian zero mean uncorrelated real variables with
Elu}] = E[V}]=1/2,k=1,...,N—1

vo=wvw =0

Elud] = E[G] = 1

Random complex vector of size 2/V

0 = Re(6) + ilm(0)

with
Re(0) = (wo, ..., un,un—1,...,u1) and Im(0) = (vo,..., VN, —VN—1,...,—V1)
1
Y = —(Fdia 5)0)(0: N
S (Fag(VE)0)(0' )

Vector of real normal zero mean N + 1 variables with correlation R



Random field generation

Using (N + 1) random variables with uniform law

Approximation of a Gaussian law by a uniform law

Real random vector ¢ of size N 41

with ¢« € [0, 27 random variable of uniform law

Random complex vector of size 2/V

O =€ k=1,...,N—1and 6 = V2 cos(¢o), On = /2 cos(én)
and 0 = (90,...,9/\/,%,...,071)

1 _
Y = E(Fdlag(ﬁ)e)(o : N)

Vector of real zero mean N + 1 variables with approximate Gaussian law and
correlation R



Random field generation

Algorithm with uniform laws

Sample the covariance function: vector ¢ and circulant vector a
Apply DFT to compute s = Fa

Generate random phase vector ¢ and compute complex vector 6
Apply DFT to compute F(diag(+/s)6)

Compute random discrete field Y

Implementation using FFT and random number generator



Random field generation

Generation of a random field in 2d and 3d

Discrete regular grid in the domain Q with N + 1 points in each direction
The covariance matrix R is block-Toeplitz
The embedding uses symmetry in each direction to get a block-circulant matrix

A
The random vectors also use symmetry in each direction



Random field generation

Parallel algorithm

Domain decomposition of the regular grid with one process per subdomain
Splitting of the circulant vector a in FFT with one process per block
Communications between processes to redistribute data



Numerical experiments

First numerical example: exponential covariance

Domain Q = [0 L,] x [0 L]
Covariance function

C(x) = exp(=Pal/h — |xl/k)

Ergodic field

. 1

lim —/ Y(x)dx = E[Y] =0
1Dl Jp

|D|—o0

. 1 2
lim — Y(x)'dx = C(0) =1
|DHoo|D|/D ) ©

16 /24



Numerical experiments

Numerical results

Domain size: Lx =Ly = 28 — 256 and correlation lengths: h = hL =2
Two discrete random fields
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Numerical experiments

Numerical results

Monte-Carlo convergence: M realizations of Y (™

1 M

& — (m) y/(m)
G = i m§:1 Y "Y,
Error |G — G| with M = 10*
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Numerical experiments

Numerical results

Approximate mean and variance using ergodicity

1 N
(PP

2% x 25 | 28 x 28 | 210 x 210
0.0281 | -0.0102 0.004
0.9579 | 0.9983 | 0.9988

A= |z
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Numerical experiments

Second numerical example: non separable exponential covariance

Domain Q =[0 L] x [0 L]
Covariance function

C(x) = exp(=xi |/ = [x[*/ )

The circulant matrix A is spd only for large domains and large N



Numerical experiments

Numerical results

Domain size: Lx = Ly = 28 = 256 and correlation lengths: ) = h =3
One discrete random field oY with 0 =2
Monte-Carlo error on the covariance function with M = 10*
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Numerical experiments

Third numerical example: Gaussian covariance

Domain Q =[0 L] x [0 L]
Covariance function

C(x) = exp(=xi |/ = [x[*/ )

The circulant matrix A is spd only for large domains and large N

N
N
™
R



Numerical experiments

Numerical results

Domain size: Lx =2 and Ly = 1 and correlation lengths: 1 = L =1/10
One discrete random field K = exp(cY) with 0 =1
Monte-Carlo error on the covariance function with M = 10*

one realization of K=exp(Y)




Conclusion

Conclusion

@ Several variants for generating a correlated Gaussian field
@ Parallel software GENFIELD (soon available)

@ Use of random fields in hydrogeology
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Conclusion

Several variants for generating a correlated Gaussian field
Parallel software GENFIELD (soon available)
Use of random fields in hydrogeology

Comparison of K-L expansion and spectral decomposition

Generation of K when the discrete density is given

Use of random fields with multigrid methods
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