Generation of a stationary Gaussian random field

Jocelyne Erhel
SAGE team, Inria, Rennes, France

co-authors
Mestapha Oumouni (SAGE team, Inria, Rennes)
Géraldine Pichot (SAGE team, Inria, Rennes)
Anthony Beaudoin (UMR Pprime, university of Poitiers)
Jean-Raynald de Dreuzy (UMR Geosciences, CNRS, Rennes)

MOMAS, Nice, October 2015
1 Introduction
1 Introduction

2 Random field generation
1. Introduction
2. Random field generation
3. Numerical experiments
1 Introduction

2 Random field generation

3 Numerical experiments

4 Conclusion
Random field $K(x)$
Domain Ω of \mathbb{R}^d, $x \in \Omega$

$$K(x) = \exp(\mu + \sigma Y(x))$$

where Y is a zero mean normal correlated field,
μ is the mean of K, σ is the variance of $K(x)$

Stationary field
$\text{cov}[Y](x, y) = \text{cov}[Y](x - y, 0)$
Covariance function:

$$\text{cov}[Y](x, y) = C(|x - y|)$$

Remark that $C(0) = 1$
Covariance matrix
Domain $\Omega = [0, 1]$
Discrete grid of $N + 1$ equally spaced points $x_0 = 0, x_1, \ldots, x_N = 1$
Sampled covariance function $c_i = C(x_i)$ with $i = 0, 1, \ldots, N$
Covariance matrix

$$R_{ij} = C(|x_i - x_j|) = \text{cov}[Y](x_i, x_j)$$

Discrete sampled field

$$Y_i = Y(x_i)$$

random vector of normal variables with zero mean and covariance matrix R

$$K_i = \exp(\mu + \sigma Y_i)$$
Covariance matrix R

$$R_{ij} = C(|x_i - x_j|) = \text{cov}[Y](x_i, x_j)$$

R is a symmetric positive definite Toeplitz matrix of size $N + 1$

$$R = \begin{pmatrix}
 c_0 & c_1 & \cdots & c_{N-1} & c_N \\
 c_1 & c_0 & c_1 & \cdots & \cdots \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 \vdots & \vdots & \ddots & c_1 & c_0 \\
 c_{N-1} & \cdots & c_1 & c_0 & c_1 \\
 c_N & c_{N-1} & \cdots & c_1 & c_0
\end{pmatrix}$$
Generating a sampled Gaussian field

Factorization

\[R = BB^T \]

Vector \(\theta \) of random normal variables with zero mean and uncorrelated

\[Y = B\theta \]

is a random vector of normal variables with zero mean and covariance matrix \(R \)

Generation of \(N + 1 \) random variables
Factorizations of a covariance matrix

- Cholesky factorization: $R = LL^T$
- Eigenvalue decomposition: $R = V\Delta V^T = (V\sqrt{\Delta})(V\sqrt{\Delta})^T$
- Spectral decomposition

Cholesky and eigenvalue decompositions are quite expensive for large N. The matrix R can be ill-conditioned, implying numerical difficulties.
Circulant embedding of a covariance matrix: 1d case

Circulant embedding of R

$a = (c_0, \ldots, c_N, c_{N-1}, \ldots, c_1) \in \mathbb{R}^{2N}$

Circulant matrix $A = \text{circ}(a)$

The matrix A is real symmetric of size $2N$ and is spd if N is large enough

Example with $N = 4$

$$A = \begin{pmatrix} c_0 & c_1 & c_2 & c_3 & c_4 & c_3 & c_2 & c_1 \\ c_1 & c_0 & c_1 & c_2 & c_3 & c_4 & c_3 & c_2 \\ c_2 & c_1 & c_0 & c_1 & c_2 & c_3 & c_4 & c_3 \\ c_3 & c_2 & c_1 & c_0 & c_1 & c_2 & c_3 & c_4 \\ c_4 & c_3 & c_2 & c_1 & c_0 & c_1 & c_2 & c_3 \\ c_3 & c_4 & c_3 & c_2 & c_1 & c_0 & c_1 & c_2 \\ c_2 & c_3 & c_4 & c_3 & c_2 & c_1 & c_0 & c_1 \\ c_1 & c_2 & c_3 & c_4 & c_3 & c_2 & c_1 & c_0 \end{pmatrix}$$
Spectral decomposition of the circulant embedding

Eigenvalue decomposition of A

Discrete Fourier Transform: $F = (e^{-2i\pi kj/2N})_{0 \leq j, k \leq 2N-1}$

Inverse Discrete Fourier Transform: $F^{-1} = \frac{1}{2N} F^* = \frac{1}{2N} \bar{F}$

$$A = FDF^{-1} = \frac{1}{2N} FDF^*$$

where $D = \text{diag}(s)$ with $s = \bar{F}a = Fa$ (s is real)
$s_{2N-k} = s_k$, $k = 1, \ldots, N$
Generating two random fields with $4N$ random variables

Factorization of A
If A is spd then $A = (F \sqrt{D/2N})(F \sqrt{D/2N})^*$

$$A = (1/\sqrt{2NF} \text{diag}(\sqrt{s}))(1/\sqrt{2NF} \text{diag}(\sqrt{s}))^*$$

If A is not spd, a can be completed by a padding or N can be increased

Random complex vector of size $2N$

$$\theta = \text{Re}(\theta) + i\text{Im}(\theta)$$

$\text{Re}(\theta)$ and $\text{Im}(\theta)$ random normal zero mean uncorrelated real variables

$$Y_1 = \frac{1}{\sqrt{2N}} \text{Re}(F \text{diag}(\sqrt{s}) \theta)(0 : N) \text{ and } Y_2 = 1/\sqrt{2N} \text{Im}(F \text{diag}(\sqrt{s}) \theta)(0 : N)$$

Two vectors of random normal zero mean $N + 1$ variables with correlation R
Generating one random field with $2(N+1)$ random variables

Random complex vector $u + iv$ of size $N + 1$

u and v random Gaussian zero mean uncorrelated real variables with

$E[u_k^2] = E[v_k^2] = 1/2$, $k = 1, \ldots, N - 1$

$v_0 = v_N = 0$

$E[u_0^2] = E[v_N^2] = 1$

Random complex vector of size $2N$

$$\theta = \text{Re}(\theta) + i\text{Im}(\theta)$$

with

$\text{Re}(\theta) = (u_0, \ldots, u_N, u_{N-1}, \ldots, u_1)$ and $\text{Im}(\theta) = (v_0, \ldots, v_N, -v_{N-1}, \ldots, -v_1)$

$$Y = \frac{1}{\sqrt{2N}}(F\text{diag}(\sqrt{s})\theta)(0 : N)$$

Vector of real normal zero mean $N + 1$ variables with correlation R
Using \((N + 1)\) random variables with uniform law

Approximation of a Gaussian law by a uniform law

Real random vector \(\phi\) of size \(N + 1\)
with \(\phi_k \in [0, 2\pi]\) random variable of uniform law

Random complex vector of size \(2N\)

\(\theta_k = e^{i\phi_k}, k = 1, \ldots, N - 1\) and \(\theta_0 = \sqrt{2}\cos(\phi_0), \theta_N = \sqrt{2}\cos(\phi_N)\)
and \(\theta = (\theta_0, \ldots, \theta_N, \overline{\theta_{N-1}}, \ldots, \overline{\theta_1})\)

\[Y = \frac{1}{\sqrt{2N}}(F\text{diag}(\sqrt{s})\theta)(0 : N)\]

Vector of real zero mean \(N + 1\) variables with approximate Gaussian law and correlation \(R\)
Algorithm with uniform laws

- Sample the covariance function: vector c and circulant vector a
- Apply DFT to compute $s = Fa$
- Generate random phase vector ϕ and compute complex vector θ
- Apply DFT to compute $F(diag(\sqrt{s})\theta)$
- Compute random discrete field Y

Implementation using FFT and random number generator
Discrete regular grid in the domain Ω with $N + 1$ points in each direction
The covariance matrix R is block-Toeplitz
The embedding uses symmetry in each direction to get a block-circulant matrix A
The random vectors also use symmetry in each direction
Parallel algorithm

Domain decomposition of the regular grid with one process per subdomain
Splitting of the circulant vector \(a \) in FFT with one process per block
Communications between processes to redistribute data
First numerical example: exponential covariance

Domain $\Omega = [0 \, L_x] \times [0 \, L_y]$

Covariance function

$$C(x) = \exp(-|x_1|/l_1 - |x_2|/l_2)$$

Ergodic field

$$\lim_{|D| \to \infty} \frac{1}{|D|} \int_D Y(x) \, dx = E[Y] = 0$$

$$\lim_{|D| \to \infty} \frac{1}{|D|} \int_D Y(x)^2 \, dx = C(0) = 1$$
Domain size: $L_x = L_y = 2^8 = 256$ and correlation lengths: $l_1 = l_2 = 2$

Two discrete random fields
Monte-Carlo convergence: M realizations of $Y^{(m)}$

$$\tilde{C}_i = \frac{1}{M} \sum_{m=1}^{M} Y_i^{(m)} Y_0^{(m)}$$

Error $|C_i - \tilde{C}_i|$ with $M = 10^4$
Approximate mean and variance using ergodicity

\[\mu = \frac{1}{N + 1} \sum_{i=0}^{N} Y_i \]

\[\sigma^2 = \frac{1}{N} \sum_{i=0}^{N} Y_i^2 \]

<table>
<thead>
<tr>
<th>N</th>
<th>(2^5 \times 2^5)</th>
<th>(2^8 \times 2^8)</th>
<th>(2^{10} \times 2^{10})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\mu)</td>
<td>0.0281</td>
<td>-0.0102</td>
<td>0.004</td>
</tr>
<tr>
<td>(\sigma^2)</td>
<td>0.9579</td>
<td>0.9983</td>
<td>0.9988</td>
</tr>
</tbody>
</table>
Domain $\Omega = [0 \, L_x] \times [0 \, L_y]$

Covariance function

$$C(x) = \exp(-|x_1|^2/l_1^2 - |x_2|^2/l_2^2)$$

The circulant matrix A is spd only for large domains and large N
Domain size: $L_x = L_y = 2^8 = 256$ and correlation lengths: $l_1 = l_2 = 3$
One discrete random field σ_Y with $\sigma = 2$
Monte-Carlo error on the covariance function with $M = 10^4$
Third numerical example: Gaussian covariance

Domain $\Omega = [0 \ L_x] \times [0 \ L_y]$

Covariance function

$$C(x) = \exp(-|x_1|^2/l_1^2 - |x_2|^2/l_2^2)$$

The circulant matrix A is spd only for large domains and large N
Numerical results

Domain size: $L_x = 2$ and $L_y = 1$ and correlation lengths: $l_1 = l_2 = 1/10$

One discrete random field $K = \exp(\sigma Y)$ with $\sigma = 1$

Monte-Carlo error on the covariance function with $M = 10^4$
Conclusion

Summary

- Several variants for generating a correlated Gaussian field
- Parallel software GENFIELD (soon available)
- Use of random fields in hydrogeology
Conclusion

Summary

- Several variants for generating a correlated Gaussian field
- Parallel software GENFIELD (soon available)
- Use of random fields in hydrogeology

Future work

- Comparison of K-L expansion and spectral decomposition
- Generation of K when the discrete density is given
- Use of random fields with multigrid methods