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Gaussian field

Random field K(x)
Domain Ω of Rd , x ∈ Ω

K(x) = exp(µ+ σY (x))

where Y is a zero mean normal correlated field,
µ is the mean of K , σ is the variance of K(x)
Stationary field
cov [Y ](x , y) = cov [Y ](x − y , 0)
Covariance function:

cov [Y ](x , y) = C(|x − y |)
Remark that C(0) = 1
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Sampling a Gaussian field: 1d case

Covariance matrix
Domain Ω = [0, 1]
Discrete grid of N + 1 equally spaced points x0 = 0, x1, . . . , xN = 1
Sampled covariance function ci = C(xi ) with i = 0, 1, . . . ,N
Covariance matrix

Rij = C(|xi − xj |) = cov [Y ](xi , xj)

Discrete sampled field

Yi = Y (xi )

random vector of normal variables with zero mean and covariance matrix R

Ki = exp(µ+ σYi )
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Covariance matrix

Covariance matrix R

Rij = C(|xi − xj |) = cov [Y ](xi , xj)

R is a symmetric positive definite Toeplitz matrix of size N + 1

R =



c0 c1 . . . cN−1 cN
c1 c0 c1 . . . cN−1

. . . . . . .

. . . . . . .

. . . . . . .
cN−1 . . . c1 c0 c1

cN cN−1 . . . c1 c0


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Generating a sampled Gaussian field

Factorization
R = BBT

Vector θ of random normal variables with zero mean and uncorrelated

Y = Bθ

is a random vector of normal variables with zero mean and covariance matrix R

Generation of N + 1 random variables
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Factorizations of a covariance matrix

Cholesky factorization R = LLT

Eigenvalue decomposition R = V∆V T = (V
√

∆)(V
√

∆)T

Spectral decomposition

Cholesky and eigenvalue decompositions are quite expensive for large N
The matrix R can be ill-conditioned, implying numerical difficulties
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Circulant embedding of a covariance matrix: 1d case

Circulant embedding of R
a = (c0, . . . , cN , cN−1, . . . , c1) ∈ R2N

Circulant matrix A = circ(a)
The matrix A is real symmetric of size 2N and is spd if N is large enough

Example with N = 4

A =



c0 c1 c2 c3 c4 c3 c2 c1

c1 c0 c1 c2 c3 c4 c3 c2

c2 c1 c0 c1 c2 c3 c4 c3

c3 c2 c1 c0 c1 c2 c3 c4

c4 c3 c2 c1 c0 c1 c2 c3

c3 c4 c3 c2 c1 c0 c1 c2

c2 c3 c4 c3 c2 c1 c0 c1

c1 c2 c3 c4 c3 c2 c1 c0


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Spectral decomposition of the circulant embedding

Eigenvalue decomposition of A

Discrete Fourier Transform: F = (e−2iπkj/2N)0≤j,k≤2N−1

Inverse Discrete Fourier Transform: F−1 = 1
2N

F ∗ = 1
2N

F

A = FDF−1 =
1

2N
FDF ∗

where D = diag(s) with s = Fa = Fa (s is real)
s2N−k = sk , k = 1, . . . ,N
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Generating two random fields with 4N random variables

Factorization of A
If A is spd then A = (F

√
D/2N)(F

√
D/2N)∗

A = (1/
√

2NFdiag(
√
s))(1/

√
2NFdiag(

√
s))∗

If A is not spd, a can be completed by a padding or N can be increased

Random complex vector of size 2N

θ = Re(θ) + iIm(θ)

Re(θ) and Im(θ) random normal zero mean uncorrelated real variables

Y1 =
1√
2N

Re(Fdiag(
√
s)θ)(0 : N) and Y2 = 1/

√
2NIm(Fdiag(

√
s)θ)(0 : N)

Two vectors of random normal zero mean N + 1 variables with correlation R
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Generating one random field with 2(N + 1) random variables

Random complex vector u + iv of size N + 1
u and v random Gaussian zero mean uncorrelated real variables with
E [u2

k ] = E [v 2
k ] = 1/2, k = 1, . . . ,N − 1

v0 = vN = 0
E [u2

0 ] = E [v 2
N ] = 1

Random complex vector of size 2N

θ = Re(θ) + iIm(θ)

with
Re(θ) = (u0, . . . , uN , uN−1, . . . , u1) and Im(θ) = (v0, . . . , vN ,−vN−1, . . . ,−v1)

Y =
1√
2N

(Fdiag(
√
s)θ)(0 : N)

Vector of real normal zero mean N + 1 variables with correlation R
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Using (N + 1) random variables with uniform law

Approximation of a Gaussian law by a uniform law
Real random vector φ of size N + 1
with φk ∈ [0, 2π[ random variable of uniform law
Random complex vector of size 2N
θk = e iφk , k = 1, . . . ,N − 1 and θ0 =

√
2 cos(φ0), θN =

√
2 cos(φN)

and θ = (θ0, . . . , θN , θN−1, . . . , θ1)

Y =
1√
2N

(Fdiag(
√
s)θ)(0 : N)

Vector of real zero mean N + 1 variables with approximate Gaussian law and
correlation R
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Algorithm with uniform laws

Sample the covariance function: vector c and circulant vector a

Apply DFT to compute s = Fa

Generate random phase vector φ and compute complex vector θ

Apply DFT to compute F (diag(
√
s)θ)

Compute random discrete field Y

Implementation using FFT and random number generator
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Generation of a random field in 2d and 3d

Discrete regular grid in the domain Ω with N + 1 points in each direction
The covariance matrix R is block-Toeplitz
The embedding uses symmetry in each direction to get a block-circulant matrix
A
The random vectors also use symmetry in each direction
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Parallel algorithm

Domain decomposition of the regular grid with one process per subdomain
Splitting of the circulant vector a in FFT with one process per block
Communications between processes to redistribute data
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First numerical example: exponential covariance

Domain Ω = [0 Lx ]× [0 Ly ]
Covariance function

C(x) = exp(−|x1|/l1 − |x2|/l2)

Ergodic field

lim
|D|→∞

1

|D|

∫
D

Y (x)dx = E [Y ] = 0

lim
|D|→∞

1

|D|

∫
D

Y (x)2dx = C(0) = 1
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Numerical results

Domain size: Lx = Ly = 28 = 256 and correlation lengths: l1 = l2 = 2
Two discrete random fields
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Numerical results

Monte-Carlo convergence: M realizations of Y (m)

C̃i =
1

M

M∑
m=1

Y
(m)
i Y

(m)
0

Error |Ci − C̃i | with M = 104
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Numerical results

Approximate mean and variance using ergodicity

µ =
1

N + 1

N∑
i=0

Yi

σ2 =
1

N

N∑
i=0

Y 2
i

N 25 × 25 28 × 28 210 × 210

µ 0.0281 -0.0102 0.004

σ2 0.9579 0.9983 0.9988
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Second numerical example: non separable exponential covariance

Domain Ω = [0 Lx ]× [0 Ly ]
Covariance function

C(x) = exp(−|x2
1 |/l2

1 − |x2|2/l2
2 )

The circulant matrix A is spd only for large domains and large N
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Numerical results

Domain size: Lx = Ly = 28 = 256 and correlation lengths: l1 = l2 = 3
One discrete random field σY with σ = 2
Monte-Carlo error on the covariance function with M = 104
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Third numerical example: Gaussian covariance

Domain Ω = [0 Lx ]× [0 Ly ]
Covariance function

C(x) = exp(−|x2
1 |/l2

1 − |x2|2/l2
2 )

The circulant matrix A is spd only for large domains and large N
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Numerical results

Domain size: Lx = 2 and Ly = 1 and correlation lengths: l1 = l2 = 1/10
One discrete random field K = exp(σY ) with σ = 1
Monte-Carlo error on the covariance function with M = 104
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Conclusion

Summary

Several variants for generating a correlated Gaussian field

Parallel software GENFIELD (soon available)

Use of random fields in hydrogeology

Future work

Comparison of K-L expansion and spectral decomposition

Generation of K when the discrete density is given

Use of random fields with multigrid methods
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