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Water resources

Pictures: Yves Chaux, Rennes, France
Diagram: http://www.ec.gc.ca/water/f_main.html

3 / 25

http://www.ec.gc.ca/water/f_main.html


Introduction
Physical model

DAE global approach
Numerical experiment

Conclusion

Reactive transport modeling

Coupling transport by advection-dispersion with geochemistry
System of Partial Differential Algebraic equations
Model with thermodynamic equilibrium
Method of lines: first discretize in space then in time ⇒ DAE system
Explicit scheme (SNIA): decoupling but stability restrictions
Implicit scheme (Global): stability but nonlinear coupled system

Our method: global approach GDAE

S. Kräutle, P. Knabner, (2005); A new numerical reduction scheme for
fully coupled multicomponent transport-reaction problems in porous
media; Water Resources Research, Vol. 41, W09414, 17 pp.

S. Molins, J. Carrera, C. Ayora, Carlos and M.W. Saaltink, (2004); A
formulation for decoupling components in reactive transport problems;
Water Resources Research, Vol.40, W10301, 13 pp.

C. de Dieuleveult, J. Erhel , M. Kern; A global strategy for solving
reactive transport equations; Journal of Computational Physics,2009.
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Numerical example

Andra qualification test

Injection of alcaline water NaOH in a porous medium with quartz SiO2



ε = 1.

v =

(
5.7 10−7

0.

)
m.s−1

dm = 0
αL = 0.2 m
αT = 0.05 m
T = 30 days
no flux boundary conditions

Mugler, G. and Bernard-Michel, G. and Faucher, G. and Miguez, R. and Gaombalet, J. and Loth, L. and Chavant, C.), Projet

ALLIANCES: plan de qualification ; CEA, ANDRA, EDF. 5 / 25
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Chemistry conditions

Chemistry equations

H2O ↔ H+ + OH− K1 = 10−14

H4SiO4 ↔ H3SiO−
4 + H+ K2 = 10−9.8

H4SiO4 ↔ SiO2(s) + 2H2O K3 = 103.6
(1)

Stoichiometric coefficients

Na+ OH− H4SiO4

H+ 0 -1 0

H3SiO
−
4 0 1 1

SiO2 0 0 1

Initial values

Na+ OH− H4SiO4

Outside M 0 0 10.

At M 10−2 10−2 10.

6 / 25



Introduction
Physical model

DAE global approach
Numerical experiment

Conclusion

Chemistry conditions

Chemistry equations

H2O ↔ H+ + OH− K1 = 10−14

H4SiO4 ↔ H3SiO−
4 + H+ K2 = 10−9.8

H4SiO4 ↔ SiO2(s) + 2H2O K3 = 103.6
(1)

Stoichiometric coefficients

Na+ OH− H4SiO4

H+ 0 -1 0

H3SiO
−
4 0 1 1

SiO2 0 0 1

Initial values

Na+ OH− H4SiO4

Outside M 0 0 10.

At M 10−2 10−2 10.

6 / 25



Introduction
Physical model

DAE global approach
Numerical experiment

Conclusion

Chemistry conditions

Chemistry equations

H2O ↔ H+ + OH− K1 = 10−14

H4SiO4 ↔ H3SiO−
4 + H+ K2 = 10−9.8

H4SiO4 ↔ SiO2(s) + 2H2O K3 = 103.6
(1)

Stoichiometric coefficients

Na+ OH− H4SiO4

H+ 0 -1 0

H3SiO
−
4 0 1 1

SiO2 0 0 1

Initial values

Na+ OH− H4SiO4

Outside M 0 0 10.

At M 10−2 10−2 10.
6 / 25



Introduction
Physical model

DAE global approach
Numerical experiment

Conclusion

Chemical model
Transport model
Coupling

Mass action laws

Aqueous reactions

xi (c) = Kci

Nc∏
j=1

c
Sij
j , i = 1, . . .Nx (2)

Sorption reactions

yi (c, s) = Ksi

Nc∏
j=1

c
Aij

j

Ns∏
j=1

s
Bij

j , i = 1, . . .Ny , (3)

Precipitation reactions

Πi (c) = Kpi

Nc∏
j=1

c
Eij
j , i = 1, . . .Np (4)
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Chemical model
Transport model
Coupling

Mass conservation laws

Chemical variables and functions

X =

 c
s
p

 , Φ(X ) =

 c + ST x(c) + AT y(c, s) + ETp
s + BT y(c, s)
Π(c)

 (5)

Chemical model 
Φ(X ) =

 T
W
1

 ,

c ≥ 0,
s ≥ 0,
p > 0.

(6)

8 / 25



Introduction
Physical model

DAE global approach
Numerical experiment

Conclusion

Chemical model
Transport model
Coupling

Mass conservation laws

Chemical variables and functions

X =

 c
s
p

 , Φ(X ) =

 c + ST x(c) + AT y(c, s) + ETp
s + BT y(c, s)
Π(c)

 (5)

Chemical model 
Φ(X ) =

 T
W
1

 ,

c ≥ 0,
s ≥ 0,
p > 0.

(6)

8 / 25



Introduction
Physical model

DAE global approach
Numerical experiment

Conclusion

Chemical model
Transport model
Coupling

Transport model

Advection-Dispersion operator

L(u) = ∇ · (vu − D∇u)

D = dmI + αT‖v‖I + (αL − αT )
vvT

‖v‖

Transport of mobile species

C(X ) = c + ST x(c) (7)

ω
∂Ti

∂t
+ L(Ci ) = Qi , i = 1, . . . ,Nc (8)

with boundary and initial conditions

Space discretization

with (for example) a finite difference method

T = (T1, . . . ,TNm ) (9)
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Chemical model
Transport model
Coupling

Coupling transport with chemistry

Semi-discrete reactive transport model
ω dTi

dt
+ LCi (X ) = Qi + Gi , i = 1, . . . ,Nc ,

Φ(Xj)−

 Tj

Wj

1

 = 0 j = 1, . . . ,Nm,

initial condition for T , positivity constraints for Φ

(10)

DAE formulation

{
ω dvecT

dt
+ (L⊗ I )vecC(X )− vecQ − vecG = 0, i = 1, . . . ,Nc ,

vecΦ(X )− (I ⊗ N)vecT − vecF = 0
(11)
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Implicit time discretization
Newton method
GRT3D software

DAE Global approach with substitution

Time discretization: BDF scheme

dvecT

dt
' a

∆t
vecT +

1

∆t
vecZ ,{

aω
∆t

vecT + (L⊗ I )vecC(X )− ... = 0,
−(I ⊗ N)vecT + vecΦ(X )− ... = 0,

Substitution

R(X ) =
∆t

aω
(L⊗ N) vecC(X ) + vecΦ(X )− ...

The Jacobian of R is

JR(X ) =
∆t

aω
(L⊗ N) diag (

dC

dX
(Xj)) + diag(JΦ(Xj)).

Nonlinear system

R(X ) = 0

solved with Newton method

11 / 25
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Implicit time discretization
Newton method
GRT3D software

Newton method

Jacobian matrix

JΦ(X ) =

I + ST dx
dc

+ AT ∂y
∂c

AT ∂y
∂s

ET

BT ∂y
∂c

I + BT ∂y
∂s

0
dΠ
dc

0 0



Difficulties

The derivatives dx
dc

, etc, are not easy to compute

The positivity constraints must be satisfied at each time step

12 / 25



Introduction
Physical model

DAE global approach
Numerical experiment

Conclusion

Implicit time discretization
Newton method
GRT3D software

Newton method

Jacobian matrix

JΦ(X ) =

I + ST dx
dc

+ AT ∂y
∂c

AT ∂y
∂s

ET

BT ∂y
∂c

I + BT ∂y
∂s

0
dΠ
dc

0 0


Difficulties

The derivatives dx
dc

, etc, are not easy to compute

The positivity constraints must be satisfied at each time step

12 / 25



Introduction
Physical model

DAE global approach
Numerical experiment

Conclusion

Implicit time discretization
Newton method
GRT3D software

Chemistry with logarithmic variables

Change of variables

assuming c > 0, s > 0, use X̂ = (log(c), log(s), p)

The positivity constraints are satisfied

The Jacobian is easy to compute

Jacobian matrix with logarithmic variables

JΦ̂(X̂ ) =

diag(exp(ĉ)) + STdiag(x) S + ATdiag(y) A ATdiag(y) B ET

BT diag(y) A diag(exp(ŝ)) + BTdiag(y) B 0
E 0 0



Difficulties

Concentrations can become very small

The matrix becomes almost singular for a component with almost null
concentration

13 / 25
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Implicit time discretization
Newton method
GRT3D software

Precipitation Dissolution

Complementary problem

Π(c) = 1 and p > 0 replaced by{
(1− Π(c))× p = 0,
1− Π(c) ≥ 0 and p ≥ 0

Chemistry model 
c + ST x(c) + AT y(c, s) + ETp = T ,
s + BT y(c, s) = W ,
min(1− Π(c), p) = 0,
c ≥ 0, s ≥ 0, 1− Π(c) ≥ 0 and p ≥ 0

Semismooth Newton method

Generalized derivative of min function

The positivity constraints must be satisfied
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Implicit time discretization
Newton method
GRT3D software

GRT3D software

Transport modules

The velocity v is computed with MODFLOW

The transport operator L is computed with MT3D

Chemistry modules

The functions Φ(X ) and C(X )

The derivatives JΦ(X ) and dC(X )/dX

Coupling modules

The function R(X )

The derivative JR(X )

Solving modules

The DAE solver IDA in SUNDIALS using Newton-LU method

The sparse linear solver UMFPACK
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Implicit time discretization
Newton method
GRT3D software

Versions of GRT3D

First version with logarithms

No elimination of T and C

Reduced version with logarithms

Elimination of T and C in the linearized equations

Optimized version without logarithms

Elimination of T and C in the linearized equations
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Andra qualification test
Benchmark of MoMaS group

Andra test case: performance results

CPU time of GRT3D

Computations done on two six-core Intel Xeon processors X5690, with a
frequence of 3.46 GHz and 4GB of RAM per core.

Mesh first GRT3D reduced GRT3D optimized GRT3D

21x14 18 s 4 s 2 s

48x28 1 min 36 s 21 s 8s

81x56 6 min 33 s 1 min 53 s 50 s

71x101 11 min 55 s 3 min 28 s 1 min 21 s

161x112 32 min 43 s 16 min 30 s 4 min 32 s

322x224 - 1 h 52 min 37 min 38 s

17 / 25
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Andra qualification test
Benchmark of MoMaS group

Andra test case: comparison results

Performance/Accuracy results

Comparison with an analytical solution

ENa+ = [
1

NmNt

∑
n,j

(x̃Na+ (mj , tn)− xNa+ (mj , tn))]1/2
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Andra qualification test
Benchmark of MoMaS group

Numerical experiment: MoMaS 2D easy test case

Geometry and computed velocity field

0.6

0.2

1.

2.1

0.3

0.6

0.3

1.

1.7

1.

medium A

medium B

medium A

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Outflow
Inflow2

Inflow1

J. Carrayrou, M. Kern and P. Knabner, Reactive transport benchmark of
MoMaS, Comput. Geo., 2010
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Andra qualification test
Benchmark of MoMaS group

MoMaS benchmark: transport conditions

Flow and transport data

Data Medium A Medium B

Porosity ω 0.25 0.5

Permeability K(L.T − 1) 10−2 10−5

Molecular diffusion dm 0 0

Dispersivity αL(L) 10−2 6.10−2

Dispersivity αT (L) 10−3 6.10−3

MoMaS benchmark: Flow and transport boundary conditions

Inflow Outflow Other

velocity = 2.2510−2(LT−1) head = 1(L) no flow

Injection period 0 ≤ t ≤ 5000 no diffusive flux no total flux
Leaching period t ≥ 5000 any time any time

20 / 25
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Andra qualification test
Benchmark of MoMaS group

Chemistry conditions

Stoichiometric coefficients

c1 c2 c3 c4 s K

x1 0 -1 0 0 0 10−12

x2 0 1 1 0 0 1

x3 0 -1 0 1 0 1

x4 0 -4 1 3 0 0.1

x5 0 4 3 1 0 106

y1 0 3 1 0 1 106

y2 0 -3 0 1 2 10−1

The component c1 is a spectator ion.

Modified benchmark: the constant K5 is changed from 1035 to 106.
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Chemistry conditions

Total W of fixed component

Medium A Medium B

1 10

Initial and boundary conditions of total aqueous components

T1 T2 T3 T4

Initial value 0 -2 0 2

Injection value 0.3 0.3 0.3 0

Leaching value 0 -2 0 2

Ti = 0→ ci = 0 for i = 1, 3, 4
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Performance results

Results with GRT3D ; Mesh size 40× 84

GRT3D version with c1 without c1

CPU time system size CPU time system size

First version 9h 52 mn 43680 7h 20 mn 33600

Reduced 4h 44 mn 16800 4h 4 mn 13440

Optimized 3h 9 mn 16800 2h 12 mn 13440

Results with GRT3D ; Mesh size 80× 168

GRT3D version with c1 without c1

CPU time system size CPU time system size

First version 135 h 12 mn 174720 66 h 22 mn 134400

Reduced 83 h 24 mn 67200 54 h 56 mn 53760

Optimized 50 h 12 mn 67200 32 h 20 mn 53760

with logarithms, c > 0 but when c ' 0, the Jacobian is ill-conditioned
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MoMaS test: movies

components c2 and s
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Summary: accuracy and efficiency

DAE global approach (implicit scheme and Newton method)

Control of time step and Newton iterations

Substitution

No logarithms but positivity constraints

Future work

Precipitation-dissolution with vanishing p

Parallel computations

Adaptive mesh refinement
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