A global reactive transport model

Jocelyne Erhel SAGE team, INRIA, RENNES

co-authors Souhila Sabit (SAGE team, INRIA, Rennes, France) Caroline de Dieuleveult (Mines ParisTech, Fontainebleau, France)

MOMAS, Marseille, November 2014

(ロ) (同) (E) (E) (E)

< □ > < 部 > < 注 > < 注 > 注 ● < 2/25

2 Physical model

↓ □ ▶ ↓ □ ▶ ↓ ■ ▶ ↓ ■ りへで 2/25

2 Physical model

3 DAE global approach

2 Physical model

- ③ DAE global approach
- 4 Numerical experiment

- 2 Physical model
- ③ DAE global approach
- 4 Numerical experiment

Water resources

Pictures: Yves Chaux, Rennes, France Diagram: http://www.ec.gc.ca/water/f_main.html

3 / 25

Reactive transport modeling

- Coupling transport by advection-dispersion with geochemistry
- System of Partial Differential Algebraic equations
- Model with thermodynamic equilibrium
- $\bullet\,$ Method of lines: first discretize in space then in time $\Rightarrow\,$ DAE system
- Explicit scheme (SNIA): decoupling but stability restrictions
- Implicit scheme (Global): stability but nonlinear coupled system

Our method: global approach GDAE

- S. Kräutle, P. Knabner, (2005); A new numerical reduction scheme for fully coupled multicomponent transport-reaction problems in porous media; Water Resources Research, Vol. 41, W09414, 17 pp.

S. Molins, J. Carrera, C. Ayora, Carlos and M.W. Saaltink, (2004); A formulation for decoupling components in reactive transport problems; Water Resources Research, Vol.40, W10301, 13 pp.

C. de Dieuleveult, J. Erhel , M. Kern; A global strategy for solving reactive transport equations; Journal of Computational Physics, 2009.

Numerical example

Andra qualification test

Injection of alcaline water NaOH in a porous medium with quartz SiO_2

Mugler, G. and Bernard-Michel, G. and Faucher, G. and Miguez, R. and Gaombalet, J-and Loth, L. and Ghavant, C), Project ALLIANCES: plan de qualification ; CEA, ANDRA, EDF.

5 / 25

Chemistry conditions

Chemistry equations

H_2O	\leftrightarrow	$H^+ + OH^-$	$K_1 = 10^{-14}$	
$H_4 SiO_4$	\leftrightarrow	$H_3 { m Si} O_4^- + H^+$	$K_2 = 10^{-9.8}$	(1)
H ₄ SiO ₄	\leftrightarrow	$\operatorname{Si}O_2(s) + 2H_2O$	$K_3 = 10^{3.6}$	

Chemistry conditions

Chemistry equations

H_2O	\leftrightarrow	$H^+ + OH^-$	$K_1 = 10^{-14}$	
H ₄ SiO ₄	\leftrightarrow	$H_3 \mathrm{Si} O_4^- + H^+$	$K_2 = 10^{-9.8}$	(1)
$H_4 SiO_4$	\leftrightarrow	$\operatorname{Si}O_2(s) + 2H_2O$	$K_3 = 10^{3.6}$	

Stoichiometric coefficients

	Na ⁺	OH^-	H ₄ SiO ₄
H^+	0	-1	0
$H_3SiO_4^-$	0	1	1
SiO ₂	0	0	1

Chemistry conditions

Chemistry equations

H_2O	\leftrightarrow	$H^+ + OH^-$	$K_1 = 10^{-14}$	
$H_4 \mathrm{Si}O_4$	\leftrightarrow	$H_3 \mathrm{Si} O_4^- + H^+$	$K_2 = 10^{-9.8}$	(1)
$H_4 \mathrm{Si}O_4$	\leftrightarrow	$\operatorname{Si}O_2(s) + 2H_2O$	$K_3 = 10^{3.6}$	

Stoichiometric coefficients

	Na ⁺	OH^-	H ₄ SiO ₄
H^+	0	-1	0
$H_3SiO_4^-$	0	1	1
SiO ₂	0	0	1

Initial values

	Na ⁺	OH^-	H ₄ SiO ₄
Outside M	0	0	10.
At M	10^{-2}	10^{-2}	10.

Chemical model Transport model Coupling

Mass action laws

Aqueous reactions

$$x_i(c) = K_{ci} \prod_{j=1}^{N_c} c_j^{S_{ij}}, \quad i = 1, \dots N_x$$
 (2)

◆□ → < 部 → < 差 → < 差 → 差 < の < (*) 7/25

Chemical model Transport model Coupling

Mass action laws

Aqueous reactions

$$x_i(c) = K_{ci} \prod_{j=1}^{N_c} c_j^{S_{ij}}, \quad i = 1, \dots N_x$$
 (2)

Sorption reactions

$$y_i(c,s) = K_{si} \prod_{j=1}^{N_c} c_j^{A_{ij}} \prod_{j=1}^{N_s} s_j^{B_{ij}}, \quad i = 1, \dots N_y,$$
(3)

< □ > < □ > < □ > < ≧ > < ≧ > < ≧ > ≥ のへで 7/25

Chemical model Transport model Coupling

Mass action laws

Aqueous reactions

$$x_i(c) = K_{ci} \prod_{j=1}^{N_c} c_j^{S_{ij}}, \quad i = 1, \dots N_x$$
 (2)

Sorption reactions

$$y_i(c,s) = K_{si} \prod_{j=1}^{N_c} c_j^{A_{ij}} \prod_{j=1}^{N_s} s_j^{B_{ij}}, \quad i = 1, \dots N_y,$$
(3)

Precipitation reactions

$$\Pi_{i}(c) = \mathcal{K}_{\rho i} \prod_{j=1}^{N_{c}} c_{j}^{E_{ij}}, \quad i = 1, \dots N_{\rho}$$
(4)

・ロ ・ < 部 ・ < 主 ・ < 主 ・ 主 の Q (や 7/25

Chemical model Transport model Coupling

Mass conservation laws

Chemical variables and functions

$$X = \begin{pmatrix} c \\ s \\ p \end{pmatrix}, \quad \Phi(X) = \begin{pmatrix} c + S^{T}x(c) + A^{T}y(c,s) + E^{T}p \\ s + B^{T}y(c,s) \\ \Pi(c) \end{pmatrix}$$
(5)

Chemical model Transport model Coupling

Mass conservation laws

Chemical variables and functions

$$X = \begin{pmatrix} c \\ s \\ p \end{pmatrix}, \quad \Phi(X) = \begin{pmatrix} c + S^{T}x(c) + A^{T}y(c,s) + E^{T}p \\ s + B^{T}y(c,s) \\ \Pi(c) \end{pmatrix}$$
(5)

Chemical model

$$\begin{cases} \Phi(X) = \begin{pmatrix} T \\ W \\ 1 \end{pmatrix}, \\ c \ge 0, \\ s \ge 0, \\ p > 0. \end{cases}$$
(6)

Chemical model Transport model Coupling

◆□→ ◆圖→ ◆臣→ ◆臣→ 三臣

9 / 25

Transport model

Advection-Dispersion operator

$$\mathcal{L}(u) = \nabla \cdot (vu - D\nabla u)$$
$$D = d_m I + \alpha_T ||v|| I + (\alpha_L - \alpha_T) \frac{vv^T}{||v||}$$

Chemical model Transport model Coupling

Transport model

Advection-Dispersion operator

$$\mathcal{L}(u) = \nabla \cdot (vu - D\nabla u)$$
$$D = d_m I + \alpha_T ||v|| I + (\alpha_L - \alpha_T) \frac{vv^T}{||v||}$$

Transport of mobile species

$$C(X) = c + S^{T} x(c) \tag{7}$$

$$\omega \frac{\partial T_i}{\partial t} + \mathcal{L}(C_i) = Q_i, \quad i = 1, \dots, N_c$$
(8)

with boundary and initial conditions

Chemical model Transport model Coupling

Transport model

Advection-Dispersion operator

$$\mathcal{L}(u) = \nabla \cdot (vu - D\nabla u)$$
$$D = d_m I + \alpha_T ||v|| I + (\alpha_L - \alpha_T) \frac{vv^T}{||v||}$$

Transport of mobile species

$$C(X) = c + S^{T} x(c) \tag{7}$$

$$\omega \frac{\partial T_i}{\partial t} + \mathcal{L}(C_i) = Q_i, \quad i = 1, \dots, N_c$$
(8)

with boundary and initial conditions

Space discretization

with (for example) a finite difference method

$$T=(T_1,\ldots,T_{N_m})$$

(9)

Chemical model Transport model Coupling

Coupling transport with chemistry

Semi-discrete reactive transport model

$$\omega \frac{dT_i}{dt} + LC_i(X) = Q_i + G_i, \quad i = 1, \dots, N_c,$$

$$\Phi(X_j) - \begin{pmatrix} T_j \\ W_j \\ 1 \end{pmatrix} = 0 \quad j = 1, \dots, N_m,$$
(10)
initial condition for *T*, positivity constraints for Φ

Chemical model Transport model Coupling

Coupling transport with chemistry

Semi-discrete reactive transport model

$$\omega \frac{dT_i}{dt} + LC_i(X) = Q_i + G_i, \quad i = 1, \dots, N_c,$$

$$\Phi(X_j) - \begin{pmatrix} T_j \\ W_j \\ 1 \end{pmatrix} = 0 \quad j = 1, \dots, N_m,$$
 (10)
initial condition for T , positivity constraints for Φ

DAE formulation

$$\omega \frac{d \operatorname{vec} T}{dt} + (L \otimes I) \operatorname{vec} C(X) - \operatorname{vec} Q - \operatorname{vec} G = 0, \quad i = 1, \dots, N_c,$$

$$\operatorname{vec} \Phi(X) - (I \otimes N) \operatorname{vec} T - \operatorname{vec} F = 0$$
(11)

Implicit time discretization Newton method GRT3D software

イロト イロト イヨト イヨト 二日

11/25

DAE Global approach with substitution

Time discretization: BDF scheme

$$\frac{d\text{vec }T}{dt} \simeq \frac{a}{\Delta t}\text{vec }T + \frac{1}{\Delta t}\text{vec }Z,$$

$$\begin{cases} \frac{a\omega}{\Delta t}\text{vec }T + (L\otimes I)\text{vec }C(X) - \dots = 0, \\ -(I\otimes N)\text{vec }T + \text{vec }\Phi(X) - \dots = 0, \end{cases}$$

Implicit time discretization Newton method GRT3D software

DAE Global approach with substitution

Time discretization: BDF scheme

$$\frac{d\text{vec }T}{dt} \simeq \frac{a}{\Delta t}\text{vec }T + \frac{1}{\Delta t}\text{vec }Z,$$

$$\begin{cases} \frac{a\omega}{\Delta t}\text{vec }T + (L\otimes I)\text{vec }C(X) - \dots = 0, \\ -(I\otimes N)\text{vec }T + \text{vec }\Phi(X) - \dots = 0, \end{cases}$$

Substitution

$$R(X) = \frac{\Delta t}{a\omega} (L \otimes N) \operatorname{vec} C(X) + \operatorname{vec} \Phi(X) - \dots$$

The Jacobian of R is

$$J_{\mathcal{R}}(X) = \frac{\Delta t}{a\omega}(L \otimes N) \operatorname{diag}\left(\frac{dC}{dX}(X_j)\right) + \operatorname{diag}(J_{\Phi}(X_j)).$$

Implicit time discretization Newton method GRT3D software

DAE Global approach with substitution

Time discretization: BDF scheme

$$\frac{d\text{vec }T}{dt} \simeq \frac{a}{\Delta t}\text{vec }T + \frac{1}{\Delta t}\text{vec }Z,$$

$$\begin{cases} \frac{a\omega}{\Delta t}\text{vec }T + (L\otimes I)\text{vec }C(X) - \dots = 0, \\ -(I\otimes N)\text{vec }T + \text{vec }\Phi(X) - \dots = 0, \end{cases}$$

Substitution

$$R(X) = \frac{\Delta t}{a\omega} (L \otimes N) \operatorname{vec} C(X) + \operatorname{vec} \Phi(X) - \dots$$

The Jacobian of R is

$$J_{R}(X) = \frac{\Delta t}{a\omega}(L \otimes N) \operatorname{diag}\left(\frac{dC}{dX}(X_{j})\right) + \operatorname{diag}(J_{\Phi}(X_{j})).$$

Nonlinear system

$$R(X)=0$$

solved with Newton method

うへ (や 11 / 25

Implicit time discretization Newton method GRT3D software

Newton method

Jacobian matrix

$$J_{\Phi}(X) = \begin{pmatrix} I + S^{T} \frac{dx}{dc} + A^{T} \frac{\partial y}{\partial c} & A^{T} \frac{\partial y}{\partial s} & E^{T} \\ B^{T} \frac{\partial y}{\partial c} & I + B^{T} \frac{\partial y}{\partial s} & 0 \\ \frac{d\Pi}{dc} & 0 & 0 \end{pmatrix}$$

↓ □ → ↓ □ → ↓ ■ → ↓ ■ → ↓ ■ → ↓ □ → ↓ □ → ↓ ■ →

Implicit time discretization Newton method GRT3D software

Newton method

Jacobian matrix

$$J_{\Phi}(X) = \begin{pmatrix} I + S^T \frac{dx}{dc} + A^T \frac{\partial y}{\partial c} & A^T \frac{\partial y}{\partial s} & E^T \\ B^T \frac{\partial y}{\partial c} & I + B^T \frac{\partial y}{\partial s} & 0 \\ \frac{d\Pi}{dc} & 0 & 0 \end{pmatrix}$$

Difficulties

- The derivatives $\frac{dx}{dc}$, etc, are not easy to compute
- The positivity constraints must be satisfied at each time step

Implicit time discretization Newton method GRT3D software

(ロ) (同) (E) (E) (E)

13/25

Chemistry with logarithmic variables

Change of variables

- assuming c > 0, s > 0, use $\hat{X} = (\log(c), \log(s), p)$
- The positivity constraints are satisfied
- The Jacobian is easy to compute

Implicit time discretization Newton method GRT3D software

Chemistry with logarithmic variables

Change of variables

- assuming c > 0, s > 0, use $\hat{X} = (\log(c), \log(s), p)$
- The positivity constraints are satisfied
- The Jacobian is easy to compute

Jacobian matrix with logarithmic variables

$$J_{\hat{\Phi}}(\hat{X}) = \begin{pmatrix} \operatorname{diag}(\exp(\hat{c})) + S^{\mathsf{T}}\operatorname{diag}(x)S + A^{\mathsf{T}}\operatorname{diag}(y)A & A^{\mathsf{T}}\operatorname{diag}(y)B & E^{\mathsf{T}}\\ B^{\mathsf{T}}\operatorname{diag}(y)A & \operatorname{diag}(\exp(\hat{s})) + B^{\mathsf{T}}\operatorname{diag}(y)B & 0\\ E & 0 & 0 \end{pmatrix}$$

Implicit time discretization Newton method GRT3D software

Chemistry with logarithmic variables

Change of variables

- assuming c > 0, s > 0, use $\hat{X} = (\log(c), \log(s), p)$
- The positivity constraints are satisfied
- The Jacobian is easy to compute

Jacobian matrix with logarithmic variables

$$J_{\hat{\Phi}}(\hat{X}) = \begin{pmatrix} \operatorname{diag}(\exp(\hat{c})) + S^T \operatorname{diag}(x) S + A^T \operatorname{diag}(y) A & A^T \operatorname{diag}(y) B & E^T \\ B^T \operatorname{diag}(y) A & \operatorname{diag}(\exp(\hat{s})) + B^T \operatorname{diag}(y) B & 0 \\ E & 0 & 0 \end{pmatrix}$$

Difficulties

- Concentrations can become very small
- The matrix becomes almost singular for a component with almost null concentration

Implicit time discretization Newton method GRT3D software

Precipitation Dissolution

Complementary problem

 $\Pi(c) = 1$ and p > 0 replaced by

$$\left(egin{array}{c} (1-\Pi(c)) imes p=0,\ 1-\Pi(c)\geq 0 ext{ and } p\geq 0 \end{array}
ight.$$

Implicit time discretization Newton method GRT3D software

Precipitation Dissolution

Complementary problem

 $\Pi(c) = 1$ and p > 0 replaced by

$$(1-\Pi(c)) imes p=0,\ 1-\Pi(c)\geq 0 ext{ and } p\geq 0$$

Chemistry model

$$\begin{cases} c + S^{T}x(c) + A^{T}y(c,s) + E^{T}p = T, \\ s + B^{T}y(c,s) = W, \\ \min(1 - \Pi(c), p) = 0, \\ c \ge 0, s \ge 0, 1 - \Pi(c) \ge 0 \text{ and } p \ge 0 \end{cases}$$

4 □ ト 4 部 ト 4 差 ト 4 差 ト 差 今 Q ペ 14/25

Implicit time discretization Newton method GRT3D software

Precipitation Dissolution

Complementary problem

 $\Pi(c) = 1$ and p > 0 replaced by

$$egin{aligned} & (1-\Pi(c)) imes p=0, \ & 1-\Pi(c)\geq 0 \ ext{and} \ p\geq 0 \end{aligned}$$

Chemistry model

$$\begin{cases} c + S^{T}x(c) + A^{T}y(c,s) + E^{T}p = T, \\ s + B^{T}y(c,s) = W, \\ \min(1 - \Pi(c), p) = 0, \\ c \ge 0, s \ge 0, 1 - \Pi(c) \ge 0 \text{ and } p \ge 0 \end{cases}$$

Semismooth Newton method

- Generalized derivative of min function
- The positivity constraints must be satisfied

Implicit time discretization Newton method GRT3D software

GRT3D software

Transport modules

- The velocity v is computed with MODFLOW
- The transport operator L is computed with MT3D

Implicit time discretization Newton method GRT3D software

GRT3D software

Transport modules

- The velocity v is computed with MODFLOW
- The transport operator L is computed with MT3D

Chemistry modules

- The functions $\Phi(X)$ and C(X)
- The derivatives $J_{\Phi}(X)$ and dC(X)/dX

Implicit time discretization Newton method GRT3D software

GRT3D software

Transport modules

- The velocity v is computed with MODFLOW
- The transport operator L is computed with MT3D

Chemistry modules

- The functions $\Phi(X)$ and C(X)
- The derivatives $J_{\Phi}(X)$ and dC(X)/dX

Coupling modules

- The function R(X)
- The derivative J_R(X)

Implicit time discretization Newton method GRT3D software

GRT3D software

Transport modules

- The velocity v is computed with MODFLOW
- The transport operator L is computed with MT3D

Chemistry modules

- The functions $\Phi(X)$ and C(X)
- The derivatives $J_{\Phi}(X)$ and dC(X)/dX

Coupling modules

- The function R(X)
- The derivative $J_R(X)$

Solving modules

- The DAE solver IDA in SUNDIALS using Newton-LU method
- The sparse linear solver UMFPACK

Implicit time discretization Newton method GRT3D software

Versions of GRT3D

First version with logarithms

No elimination of T and C

< □ > < 部 > < 書 > < 書 > 差 → ○ < ♡ < ♡ 16/25

Implicit time discretization Newton method GRT3D software

Versions of GRT3D

First version with logarithms

No elimination of T and C

Reduced version with logarithms

Elimination of T and C in the linearized equations

Implicit time discretization Newton method GRT3D software

Versions of GRT3D

First version with logarithms

No elimination of T and C

Reduced version with logarithms

Elimination of T and C in the linearized equations

Optimized version without logarithms

Elimination of T and C in the linearized equations

Andra qualification test Benchmark of MoMaS group

Andra test case: performance results

CPU time of GRT3D

Computations done on two six-core Intel Xeon processors X5690, with a frequence of 3.46 GHz and 4GB of RAM per core.

Mesh	first GRT3D	reduced GRT3D	optimized GRT3D
21×14	18 s	4 s	2 s
48x28	1 min 36 s	21 s	8s
81×56	6 min 33 s	1 min 53 s	50 s
71×101	11 min 55 s	3 min 28 s	1 min 21 s
161×112	32 min 43 s	16 min 30 s	4 min 32 s
322x224	-	1 h 52 min	37 min 38 s

Andra qualification test Benchmark of MoMaS group

Andra test case: comparison results

Performance/Accuracy results

Comparison with an analytical solution

$$E_{Na^+} = [rac{1}{N_m N_t} \sum_{n,j} (ilde{x}_{Na^+}(m_j,t_n) - x_{Na^+}(m_j,t_n))]^{1/2}$$

うく(~ 18/25

Andra qualification test Benchmark of MoMaS group

Numerical experiment: MoMaS 2D easy test case

Geometry and computed velocity field

J. Carrayrou, M. Kern and P. Knabner, Reactive transport benchmark of MoMaS, Comput. Geo., 2010

Andra qualification test Benchmark of MoMaS group

MoMaS benchmark: transport conditions

Flow and transport data

Data	Medium A	Medium B
Porosity ω	0.25	0.5
Permeability $K(L, T-1)$	10^{-2}	10^{-5}
Molecular diffusion d_m	0	0
Dispersivity $\alpha_L(L)$	10^{-2}	6.10^{-2}
Dispersivity $\alpha_T(L)$	10^{-3}	6.10^{-3}

MoMaS benchmark: Flow and transport boundary conditions

Inflow	Outflow	Other
velocity = $2.2510^{-2}(LT^{-1})$	head = 1(L)	no flow
Injection period $0 \le t \le 5000$	no diffusive flux	no total flux
Leaching period $t \ge 5000$	any time	any time

Andra qualification test Benchmark of MoMaS group

Chemistry conditions

Stoichiometric coefficients

	C 1	C 2	C 3	C 4	5	K
<i>x</i> ₁	0	-1	0	0	0	10^{-12}
<i>x</i> ₂	0	1	1	0	0	1
<i>X</i> 3	0	-1	0	1	0	1
<i>x</i> ₄	0	-4	1	3	0	0.1
<i>X</i> 5	0	4	3	1	0	10 ⁶
<i>y</i> 1	0	3	1	0	1	10 ⁶
<i>y</i> ₂	0	-3	0	1	2	10^{-1}

Andra qualification test Benchmark of MoMaS group

Chemistry conditions

Stoichiometric coefficients

	C 1	C 2	C 3	C 4	5	K
<i>x</i> ₁	0	-1	0	0	0	10^{-12}
<i>x</i> ₂	0	1	1	0	0	1
<i>X</i> 3	0	-1	0	1	0	1
<i>x</i> ₄	0	-4	1	3	0	0.1
<i>X</i> 5	0	4	3	1	0	10 ⁶
<i>y</i> 1	0	3	1	0	1	10 ⁶
<i>y</i> ₂	0	-3	0	1	2	10^{-1}

The component c_1 is a spectator ion.

Modified benchmark: the constant K_5 is changed from 10^{35} to 10^6 .

Andra qualification test Benchmark of MoMaS group

Chemistry conditions

Total W of fixed compone	ent	
	Medium A	Medium B
	1	10

◆□ → < □ → < □ → < Ξ → < Ξ → < Ξ → ○ Q (~ 22/25

Andra qualification test Benchmark of MoMaS group

Chemistry conditions

Total	W	of	fixed	component
-------	---	----	-------	-----------

Medium A	Medium B
1	10

Initial and boundary conditions of total aqueous components

	T_1	T_2	<i>T</i> ₃	T_4
Initial value	0	-2	0	2
Injection value	0.3	0.3	0.3	0
Leaching value	0	-2	0	2

$$T_i = 0 \rightarrow c_i = 0$$
 for $i = 1, 3, 4$

Andra qualification test Benchmark of MoMaS group

Performance results

Results with GRT3D ; Mesh size 40×84

GRT3D version	with c1		without <i>c</i> 1	
	CPU time	system size	CPU time	system size
First version	9h 52 mn	43680	7h 20 mn	33600
Reduced	4h 44 mn	16800	4h 4 mn	13440
Optimized	3h 9 mn	16800	2h 12 mn	13440

Results with GRT3D ; Mesh size 80×168

GRT3D version	with	C 1	without <i>c</i> 1		
	CPU time	system size	CPU time	system size	
First version	135 h 12 mn	174720	66 h 22 mn	134400	
Reduced	83 h 24 mn	67200	54 h 56 mn	53760	
Optimized	50 h 12 mn	67200	32 h 20 mn	53760	

23 / 25

Andra qualification test Benchmark of MoMaS group

Performance results

Results with GRT3D ; Mesh size 40×84

GRT3D version	with c ₁		without c1	
	CPU time	system size	CPU time	system size
First version	9h 52 mn	43680	7h 20 mn	33600
Reduced	4h 44 mn	16800	4h 4 mn	13440
Optimized	3h 9 mn	16800	2h 12 mn	13440

Results with GRT3D ; Mesh size 80×168

GRT3D version	with	C 1	without <i>c</i> 1		
	CPU time	system size	CPU time	system size	
First version	135 h 12 mn	174720	66 h 22 mn	134400	
Reduced	83 h 24 mn	67200	54 h 56 mn	53760	
Optimized	50 h 12 mn	67200	32 h 20 mn	53760	

with logarithms, c > 0 but when $c \simeq 0$, the Jacobian is ill-conditioned

Andra qualification test Benchmark of MoMaS group

MoMaS test: movies

components c2 and s

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 目 の Q (や 24 / 25

Conclusion

Summary: accuracy and efficiency

- DAE global approach (implicit scheme and Newton method)
- Control of time step and Newton iterations
- Substitution
- No logarithms but positivity constraints

Conclusion

Summary: accuracy and efficiency

- DAE global approach (implicit scheme and Newton method)
- Control of time step and Newton iterations
- Substitution
- No logarithms but positivity constraints

Future work

- Precipitation-dissolution with vanishing p
- Parallel computations
- Adaptive mesh refinement