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1Géosciences Rennes, 2Inria Rennes, 3LOMC, Université du Havre

June 21, 2010



Flow
simulations in
3D Discrete

Fracture
Networks

J-R. de Dreuzy
, J. Erhel , G.

Pichot, B.
Poirriez

Plan

Introduction

Problem
description

Derivation of
the linear
system

Resolution

On-going work

1 Problem description
Geometry
Flow equations

2 Derivation of the linear system
MHFEM
MHMFEM

3 Resolution
Schur complement matrix
Preconditioned Conjugate gradient
Results

4 On-going work



Flow
simulations in
3D Discrete

Fracture
Networks

J-R. de Dreuzy
, J. Erhel , G.

Pichot, B.
Poirriez

Plan

Introduction

Problem
description

Geometry

Flow equations

Derivation of
the linear
system

Resolution

On-going work

Stochastic Generation of DFN

Following a Discrete Fracture Network approach, fractures are planes with the
following statistical properties :

Parameter Random distribution
length power law
shape disks / ellipses
position uniform
orientation uniform
Conductivity homogeneous

/ correlated log-normal

Example of DFN with 217 fractures
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Stochastic Generation of DFN

The broad natural fracture length distribution is modeled by a power law
distribution (Bour et al, 2002) :

p(l)dl =
1

a− 1

l−a

l−a+1
min

dl ,

where p(l)dl is the probability of observing a fracture with a length in the interval
[l , l + dl ], lmin is the smallest fracture length, and a is a characteristic exponent.
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Flow model

Current assumptions :

The rock matrix is impervious : flow is only simulated in the fractures,

Study of steady state flow,

There is no longitudinal flux in the intersections of fractures.

Flow equations within each fracture Ωf :

∇ · u(x) = f(x), for x ∈ Ωf ,

u(x) = −T (x)∇p(x), for x ∈ Ωf ,

p(x) = pD(x), on ΓD ∩ Γf ,

u(x).ν = qN(x), on ΓN ∩ Γf ,

u(x).µ = 0, on Γf \{(Γf ∩ ΓD) ∪ (Γf ∩ ΓN)},

ν (resp. µ ) outward normal unit vectors

T (x) a given transmissivity field (unit [m2.s−1]), f(x) ∈ L2(Ωf ) sources/sinks.

Continuity conditions in each intersection :

pk,f = pk , on Σk , ∀f ∈ Fk ,∑
f∈Fk

uk,f .nk,f = 0, on Σk ,

with Fk the set of fractures with Σk (the k-th intersections) on the boundary,
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Mixed-Hybrid Finite Element Method

Mixed-Hybrid Finite Element Method (MHFEM) for DFNs

Réf. J. Erhel et al., SIAM SISC, Vol. 31, No. 4, pp. 2688-2705, 2009

Makes it easy to deal with complex geometry ;

Conforming mesh at the fracture intersections ;

A linear system with only trace of pressure unknowns :

AΛ = b,

with A a symmetric positive definite matrix, the flux at the edges and the
mean pressure are then easily derived locally on each triangle.

Specific mesh generation :

1 A first discretization of boundaries and
intersections is done in 3D by using elementary
cubes

2 The discretization of the boundaries and
intersections within the fracture f is obtained by
a projection of the previous voxel discretization
within the fracture plane.

3 Some local corrections to ensure some
topological properties.

4 Once the borders and intersections are
discretized, a 2D mesh of each fracture, using
triangular elements.
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Mixed-Hybrid Mortar Finite Element Method

In DFN, flow is highly channelled = an opportunity to reduce the number of
unknowns and the computational cost, by using a non conforming mesh at
intersections.
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Mixed-Hybrid Mortar Finite Element Method

Mixed-Hybrid Mortar Finite Element Method (MHMFEM) for DFNs

Réf. G. Pichot et al., Applicable Analysis, In print, 2010

A method to mesh the fractures independently and to refine the chosen fractures
using a posteriori estimators.

Same advantages as MHFEM

A simple mesh generation

A reduced number of unknowns while keeping a solution of good quality

a complex numerical method with Mortar conditions

A new specific mesh generation : For each fracture f,

choose a mesh step and perform :

1 A first discretization of boundaries and
intersections in 2D by using elementary squares,
it leads to a stair-case like discretizations ;

2 Some local corrections to ensure some
topological properties.

3 Once the borders and intersections are
discretized, a 2D mesh of each fracture, using
triangular elements.
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Meshing procedure : Example

The discretization of intersections is non matching
⇒ Mortar conditions are required to ensure the continuity of heads and fluxes.
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Mortar principle

Mortar method principle :

It consists in choosing arbitrarily for each intersection a master fracture (m) and a
slave fracture (s).

Particular case : each edge is either master or slave

General case : some edges have several master or slave properties

Réf. G. Pichot et al., in preparation, 2010
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Definitions

Unknowns Local (fracture f ) Global (network)
Cell mean Pf P = (Pf )f
hydraulic head

Λf =

(
Λf,in
Λf,Σ

)
Traces Λf,in = (λE )E inner edge Λin = (Λf,in)f
of hydraulic head Λf,Σ = (λE )E intersection edge, ΛΣ = (Λf ,Σ)f

Λf,m = (λE )E master edge Λm = (Λf,m)f
Λf,s = (λE )E slave edge Λs = (Λf,s)f

Jump of flux Qf,in = (QE,f )E inner edge

through the edges Qf,Σ = (QE,f )E intersection edge QΣ = (Qf,Σ)f

Qf,m = (QE,f )E master edge Qm = (Qf,m)f

Qf,s = (QE,f )E slave edge Qs = (Qf,s)f

Notations : Nf ,m (resp. Nf ,s) number of master (resp. slave) edges within the
fracture f , and Nf ,Σ, number of intersection edges. Global numbers are :

Nm =
∑Nf

f =1 Nf ,m, Ns =
∑Nf

f =1 Nf ,s and NΣ =
∑Nf

f =1 Nf ,Σ.
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Mortar global conditions

Trace of hydraulic head Jump of flux

Λs = CΛm Qm + CT Qs = 0

ΛΣ = AmΛm + AsΛs Am
T QΣ = Qm

As
T QΣ = Qs

with C a block matrix of dimension NsxNm, with blocks (Ck) of dimension
Nk,sxNk,m for which each block represents the L2-projection from the master side
to the slave side with coefficients Cln, l ∈ {1, ...,Nk,s}, n ∈ {1, ...,Nk,m} :

Cln =

(
|Em

n ∩ E s
l |

|E s
l |

)
,

where the notation |E | stands for the length of the edge E .

As and Am are ponderation matrices that gives ΛΣ as the mean of Λm and Λs.
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Linear system



D P −
(

Rin RΣ(Am + AsC)
)( Λin

Λm

)
= f,

(
Min MΣ(Am + AsC)
(Am

T + CT As
T )MT

Σ (Am
T + CT As

T )BΣ(AsC + Am)

)(
Λin
Λm

)

−
(

RT
in

(Am
T + CT As

T )RT
Σ

)
P− v = 0.

obtained by inverting locally Poiseuille’s law on each triangle and by expressing the
fluxes in term of traces of hydraulic head and mean heads in the following
equations :

First set of equations : mass conservation

Second set of equations : continuity of flux through inner edges

Third set of equations : continuity of flux through intersection edges
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Linear system

We get a linear system of the form D −R

−RT M

( P
Λ

)
=

(
f
v

)
Then the system reduces to :

AΛ = b,

with A = M − RT D−1 R, Λ =

(
Λin
Λm

)
and b = v + RT D−1f.

Assuming the transmissivity is locally symmetric positive definite, the matrix

J =

 D −R

−RT M


is symmetric and, with the presence of Dirichlet boundary conditions within at least
one fracture, it is positive definite.

Then A is also symmetric positive definite.



Flow
simulations in
3D Discrete

Fracture
Networks

J-R. de Dreuzy
, J. Erhel , G.

Pichot, B.
Poirriez

Plan

Introduction

Problem
description

Derivation of
the linear
system

MHFEM

MHMFEM

Resolution

On-going work

Consistency of the results

Criteria checked for all simulations :

Null sum of the fluxes over all the system

Null sum of the fluxes over all intersections between fractures

Boundary conditions satisfied

Continuity of the flux on inner edges (that is egdes that are not intersection).

50 fractures, 315 intersections, 41967 edges, Mean head computation
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Convergence criterium

Numerical convergence is estimated via a discrete relative L2 error :

1 A computation is performed on a fine mesh Tη that gives a reference mean
pressure pη

2 Simulations are performed on coarsened grids Th of mesh step h > η.

The mean head obtained on coarse meshes, ph, are then compared with pη
[Martin et al. 2005] :

||ph − pη ||2L2(Ω)
=

∑
Tη∈Tη

(Πηph − pη)2|Tη |∑
Tη∈Tη

(pη)2|Tη |
,

|Tη | the area of the triangle Tη ∈ Tη
Πηph the projection of ph onto the fine mesh Tη .
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Convergence analysis

On 25 Monte-Carlo simulations :

Parameter Random distribution
length power law
shape disks
position uniform
orientation uniform

Parameter Value
a 3.5
L/lmin 2
NMC 25
Mesh step from 0.05 to 0.09
Density 2

Log10 of the Convergence criterium vs mesh scale
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Linear system

Linear system to solve :

In the previous section, we have seen that using MHFEM or MHFEM with Mortar
leads to a linear system in term of trace of hydraulic head unknowns :

AΛ = b.

with A a symmetric positive definite matrix.

Possible solvers :

Direct solver (using Cholesky factorization) : ok but is memory and CPU
expensive for large DFNs

Iterative solver : multigrid method

Iterative solver : Preconditioned Conjugate Gradient (PCG) method

Semi-iterative solver : Domain Decomposition method

Remark :

On the next slides, the PCG approach is applied to the matrix obtained via a
conforming Mixed-Hybrid FEM. But there should be not difficulty to use it on the
matrix obtained using a non-conforming mesh (with Mortar). It is part of our
forthcoming work.
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Schur complement matrix construction

A specific matrix shape :

The network : Ωs = ∪i Ωi , i = 1,..., Nf , Nf total number of fractures.

A1,1 . . . . . . . . . A1,Nf +1

...
. . . 0

...
... Ai,i Ai,Nf +1

... 0
. . .

...
AT

1,Nf +1 . . . AT
i,Nf +1 . . . ANf +1,Nf +1


One block for each fracture

Same memory complexity as a 2D
problem

Schur complement matrix :

S = ANf +1,Nf +1 −
∑Nf

i=1 AT
i,Nf +1A−1

i,i Ai,Nf +1

Equivalent system : SΛΣ = b̃, with b̃ = bNf +1 −
∑

i

AT
i,Nf +1A−1

i,i bi

With ΛΣ the trace of hydraulic head unknowns at the intersection edges.

⇒ Solving with PCG : no need to compute S : only matrix-vector products
involving subdomain solutions
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Schur complement and fractures

Local system construction : For a fracture numbered (i)

A#
i =



0 . . . . . . . . .
... Ai,i Ai,Nf +1

...
. . .

...
... AT

i,Nf +1 . . . A
(i)
Nf +1,Nf +1


, A =

Nf∑
i=1

A#
i

Network geometry is relevant for a Schur complement approach

With too many fractures, one subdomain contains several fractures

Creation of connected fractures set

Software Scotch : decomposes the network in Nk connected fractures sets Fk ,
k = 1, ...Nk , Fk = ∪i Ωi , i ∈ Ik , with Ik the set of indices generated by Scotch

Constructs the k-th block-matrix B#
k = PT (

∑
i∈Ik

A#
i )P, k = 1, ...Nk , and P

a permutation matrix.



Flow
simulations in
3D Discrete

Fracture
Networks

J-R. de Dreuzy
, J. Erhel , G.

Pichot, B.
Poirriez

Plan

Introduction

Problem
description

Derivation of
the linear
system

Resolution

Schur
complement
matrix

Preconditioned
Conjugate
gradient

Results

On-going work

Schur complement and fractures

Local block matrix : For a block k, k = 1, ...Nk :

B#
k =



0 . . . . . . . . .
... Bk,k Bk,Nk +1

...
. . .

...
... BT

k,Nk +1 . . . B
(k)
Nk +1,Nk +1


Initial matrix :

B =

Nk∑
k=1

B#
k = PT AP

Schur Complement for the matrix B :

SB = BNk +1,Nk +1 −
Nk∑
k=1

BT
k,Nk +1B−1

k,kBk,Nk +1

Equivalent system : SBΛΣ = b̃B , with b̃B = bNk +1 −
∑

k

BT
k,Nk +1B−1

k,kbk
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Conjugate gradient

Initialisation :

Choose ΛΣ,0

r0 = b̃B − SB ΛΣ,0

p0 = r0

Iterations : Do

qj = SBpj ⇐ Computation of matrix/vector product

αj =
rT
j rj

pT
j qj

ΛΣ,j+1 = ΛΣ,j + αjpj

rj+1 = rj − αjqj

βj =
rT
j+1rj+1

rT
j rj

pj+1 = rj+1 + βjpj

j = j + 1

Until convergence.
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Computation of matrix/vector product :

SBpj =

Nk∑
k=1

Skpj

=

Nk∑
k=1

(
B

(k)
Nk +1,Nk +1pj − BT

k,Nk +1B−1
k,kBk,Nk +1pj

)
=

Nk∑
k=1

(
B

(k)
Nk +1,Nk +1pj − BT

k,Nk +1B−1
k,kvk,j

)
Cholesky factorization :

Bk,k = Lk,kLT
k,k

B−1
k,kvk,j = L−T

k,k L−1
k,kvk,j
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PCG with Neumann-Neumann Preconditioning

Initialisation :

Choose ΛΣ,0

r0 = b̃B − SB ΛΣ,0

z0 = M−1r0

p0 = z0

Iterations : Do

qj = SBpj

αj =
rTj zj

pT
j qj

ΛΣ,j+1 = ΛΣ,j + αj pj

rj+1 = rj − αj qj

zj+1 = M−1rj+1

βj =
rTj+1zj+1

rTj zj

pj+1 = zj+1 + βj pj

j = j + 1

Until convergence.

Preconditioner : M−1 =
1

Nk

Nk∑
k=1

S̃−1
k

If floating subdomain = subdomain with no
Dirichlet boundary condition : Sk singular
⇒ Non singular approximation S̃k

Otherwise S̃k=Sk
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Computation of zj+1 = M−1rj+1

M−1 not given explicitly

Solving zk,j = S̃−1
k rj can be done by solving

Bk

(
xk

zk,j

)
=

(
0
r

)
with Bk =

(
Bk,k Bk,Nk +1

BT
k,Nk +1 B

(k)
Nk +1,Nk +1

)

zj =

Nk∑
k=1

zk,j

Cholesky factorization :

Bk = LkLT
k with Lk =

(
Lk,k 0

Lk,Nk +1 L
(k)
Nk +1,Nk +1

)

This factorization is used within CG to compute B−1
k,kvk,j .
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Results

number of Number of iterations and execution time
subdomains Without NN With NN
2 153 it / 10.8 s 37 it / 4.4 s
4 164 it / 12.5 s 75 it / 9.3 s
8 166 it / 13.7 s 96 it / 12.4 s
16 165 it / 14.4 s 149 it / 20.2 s

Table: Iteration number and execution time for a network with 128 fractures for a
varying number of subdomains

PCG with Neumann-Neumann is efficient with a few subdomains

Parallel computation can improve significantly the results (in terms of
memory and CPU requirements)

When the number of subdomains is too large, global preconditioning can
improve convergence.
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On-going work

Non conforming mesh and Mortar method

Build a posteriori estimators to optimize mesh generation

Perform more large scale Monte-Carlo simulations to check convergence

Run large scale DFNs simulations to derive upscaling rules

Solving the linear system

compare subdomain decompositions with other methods

Apply PCG to the matrix obtained with a non conforming mesh

Parallelize PCG with Neumann-Neumann to reduce memory requirements
and improve execution time

Use global preconditioning (Coarse Grid, Deflation, Balancing) to optimize
PCG with Neumann-Neumann
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