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Stochastic Generation of DFN
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e e— Following a Discrete Fracture Network approach, fractures are planes with the
. J. Erhel , G. following statistical properties :
Pichot, B.
Poirriez
Parameter Random distribution
length power law
Geometry shape disks / ellipses
Flow equations position uniform
rientati niform
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Geometry
Flow equations

Stochastic Generation of DFN

The broad natural fracture length distribution is modeled by a power law
distribution (Bour et al, 2002) :

I—a

a—1 l—a+1
min

p(N)dl = di,

where p(/)dl is the probability of observing a fracture with a length in the interval
[/, 1+ dl], Imin is the smallest fracture length, and a is a characteristic exponent.

Few large fractures Both large and small fractures

3

Network classification in function of a



Flow model

Flow Current assumptions :
simulations in 0 oo - - . .
3D Discrete @ The rock matrix is impervious : flow is only simulated in the fractures,
Fracture
Networks @ Study of steady state flow,
“}- g:henl'e'gy @ There is no longitudinal flux in the intersections of fractures.
: Pichot, 'B
Poittiez Flow equations within each fracture Q¢ :

V -u(x) = f(x), for x € Qy,
u(x) = =T (x)Vp(x), for x € Qf,
p) = pP(x),  onlpnry,
Geometry u(x).v = q"(x), on 'y Nly,
u(x).p. =0, on F\{(TrNTp)U((TerNTy)},

Flow equations




Mixed-Hybrid Finite Element Method

 Flow Mixed-Hybrid Finite Element Method (MHFEM) for DFNs
R Réf. J. Erhel et al., SIAM SISC, Vol. 31, No. 4, pp. 2688-2705, 2009
Fracture

Networks @ Makes it easy to deal with complex geometry ;

J"'}.' g:,,e",'f';;’ @ Conforming mesh at the fracture intersections;
Pichot, B. o -
Poirriez @ A linear system with only trace of pressure unknowns :
AN = b,

with A a symmetric positive definite matrix, the flux at the edges and the
mean pressure are then easily derived locally on each triangle.

Specific mesh generation :

@ A first discretization of boundaries and

MHFEM intersections is done in 3D by using elementary
MHMFEM S—— cubes




Mixed-Hybrid Mortar Finite Element Method

In DEN, flow is highly channelled = an opportunity to reduce the number of
unknowns and the computational cost, by using a non conforming mesh at
intersections.

80%
du flux

du flux

Extrait de Ofsson [1992]
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MHFEM
MHMFEM

Mixed-Hybrid Mortar Finite Element Method

Mixed-Hybrid Mortar Finite Element Method (MHMFEM) for DFNs
Réf. G. Pichot et al., Applicable Analysis, In print, 2010

A method to mesh the fractures independently and to refine the chosen fractures
using a posteriori estimators.

@ Same advantages as MHFEM

@ A simple mesh generation

@ A reduced number of unknowns while keeping a solution of good quality
@ a complex numerical method with Mortar conditions

A new specific mesh generation : For each fracture f,

choose a mesh step and perform :

Q A first discretization of boundaries and
intersections in 2D by using elementa



Meshing procedure : Example
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Mesh step: 0.08




Mortar principle

Flow
simulations in
32 [Pl Mortar method principle :
racture
Networks

1R, de Dreuzy It consists in choosing arbitrarily for each intersection a master fracture (m) and a

, J. Erhel , G. slave fracture (s).
Pichot, B.
Poirriez

Plan F1
FO

Introduction
Problem
description

Derivation of

FO/F1(s) F2

the linear

system

MHFEM

MHMFEM ]
Resolution Mesh step: 0.08

On-going work
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Definitions

Unknowns Local (fracture f) Global (network)
Cell mean P P = (P¢)s
hydraulic head
_ [ Mgjin
m=( v )

Traces At in = (AE)E inner edge Nin = (Agjin)e
of hydraulic head Af,i = (AE)E intersection edge: Az = (Af,i)f

Af,m = ()‘E)E master edge A = (Af,m f

Af,s = (>\E)E slave edge As = (Af,s)f
Jump of flux Qfin = (QE,f)E inner edge
through the edges Qf,z = (QE,f)E intersection edge Qx = (Qf,i)f




Mortar global conditions
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+ 4. Erhel, G. Trace of hydraulic head Jump of flux
Pichot, B.
Poirriez
As = CAm Qm aF CTQs =0
Ax = AmAm + Ashs An"Qs = Qm
AsTQ}: = Qs
with C a block matrix of dimension NsxNp,, with blocks (Ci) of dimension
Ny, sxNj,m for which each block represents the L%-projection from the master side
MHFEM 1 1 cl .

MHMFEM



Linear system
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Pichot, B. DP — ( Rin  Rx(Am + AsC) ) ( ﬁ'r: ) =f,

Poirriez

M, Mz(Am + ASC) Ain
(Am" +CTAST)MI  (Am” + CT AsT)Bx(ASC + An) Am

—(R;I'-'T TAT T>P_VZO'
(Am” +CTA;T)RE

obtained by inverting locally Poiseuille’s law on each triangle and by expressing the

MHFEM
MHMFEM
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Linear system

We get a linear system of the form
o ) (R)=()
—RT M A \"
Then the system reduces to :
AN = b,
with A = M — RTD-R, A = ( e ) and b= v+ RTDf,
m
Assuming the transmissivity is locally symmetric positive definite, the matrix

D —R

—-RT WM™
is symmetric and, with the presence of Dirichlet boundary conditions within at least
one fracture, it is positive definite.




Consistency of the results

Flow
simulations in
3D Discrete B a . .
Fracture Criteria checked for all simulations :
Networks
@ Null sum of the fluxes over all the system
J-R. de Dreuzy
’Plfl::f' |'3.G' @ Null sum of the fluxes over all intersections between fractures
Poirri .. i
ez @ Boundary conditions satisfied
@ Continuity of the flux on inner edges (that is egdes that are not intersection).
fracture network
MHFEM

MHMFEM




Convergence criterium

Flow
simulations in
3D Discrete
Fracture
Networks
S OBy Numerical convergence is estimated via a discrete relative L? error :
Pichot, B. . . .
:oi::ie, @ A computation is performed on a fine mesh 7;, that gives a reference mean
pressure py
@ Simulations are performed on coarsened grids 7}, of mesh step h > 7.
The mean head obtained on coarse meshes, pp, are then compared with p;,
[Martin et al. 2005] :
2
S I a0 = ETneTn(nﬂph = Pn)*[ Tl
MHMFEM Ph = Pulli2@) =

ET,,eT,,(Pﬂ)2|Tn| 7

@ |Ty| the area of the triangle T, € Ty,

@ [, py the projection of pj onto the fine mesh 7;,.




Convergence analysis

@ On 25 Monte-Carlo simulations :

Parameter | Random distribution ]ja,rameter V;’ l; d
length power law :
- L/ Imin 2
shape disks Nc 5
po.smon. un!form Mesh step from 0.05 to 0.09
orientation uniform :
Density 2
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Mesh scale




Linear system

Flow
simulations in
3D Discrete Linear system to solve :
Fracture
Networks In the previous section, we have seen that using MHFEM or MHFEM with Mortar
S OBy leads to a linear system in term of trace of hydraulic head unknowns :
Pichot, B.
Poirriez AN = b.
with A a symmetric positive definite matrix.
Possible solvers :
o Direct solver (using Cholesky factorization) : ok but is memory and CPU
expensive for large DFNs
@ lterative solver : multigrid method
Resolution
Schur iti

complement
matrix
Preconditioned
Conjugate
gradient
Results



Schur complement matrix construction

_ Flow A specific matrix shape :
n
3D Discrete .
Fracture The network : Qs = U;Q;, i = 1,..., N¢, Nf total number of fractures.
Networks A1,1 .. Al,Nf+1

J-R. de Dreuzy ¥ i

, J. Erhel , G. 0 %o 0 . AN h
Pichot, B. . : .

Poirriez

A Ai N1

T T )
A1,Nf+1 Ai,N,r+1 oo AN N1

@ One block for each fracture J i

Schur
complement
matrix
Preconditioned
Conjugate
gradient
Results




Schur complement and fractures

Flow
simulations in
3D Discrete

“Flr:ﬂ"f: Local system construction : For a fracture numbered (/)
letworks

J-R. de Dreuzy 0
, J. Erhel , G.
Pichot, B. o
Poirriez : A i A,-, Ne+1

N¢
A=A
i=1
T (i)
Ai,Nf+1 ANr+1,N,e+1

@ Network geometry is relevant for a Schur complement approach

@ With too many fractures, one subdomain contains several fractures

Schur
complement
matrix
Preconditioned
Conjugate
gradient
Results




Schur complement and fractures

Flow
simulations in

3D Discrete Local block matrix : For a block k, k=1,...Nj :
Fracture
0

Networks

J-R. de Dreuzy
, J. Erhel , G. o
Pichot, B. 5 By k B, vy +1
Poirriez B# —
k

T k
Bk,Nk-H co BNk+1,Nk+1

Initial matrix :

Ny

Schur
complement
matrix
Preconditioned
Conjugate
gradient
Results




Conjugate gradient

Flow
simulations in
&y Pl Initialisation :
Fracture
Networks @ Choose As
J-R. de Dreuzy ~
, J. Erhel , G. o = =
Pichot, B. fo bB SB AX,O
Poirriez @ po=ro
Iterations : Do
o q; = Sgp; < Computation of matrix/vector product
I'JTI'J'
@ o = T
P; 4j
Schur
complement
matrix
Preconditioned
Conjugate
gradient

Results




Computation of matrix/vector product :
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J-R. de Dreuzy
, J. Erhel , G. Ny
Pichot, B.
Poirriez SBpj = Z Skpj
k=1
N
—_ (k) ; T =1 ;
= Z (BNk+1,Nk+1pj — B v +1Br kBie,ni+1Pj
k=1
Ny
_ (k) . T =1 .
= Y (BY 1 myraPi — BL w1 Brives
Schur
complement
matrix
Preconditioned
Conjugate
gradient

Results




PCG with Neumann-Neumann Preconditioning

Flow

e Initialisation :
simulations in
3D Discrete
e @ Choose Ay g
Networks ~
@ rp =bg —Sg A
J-R. de Dreuzy 0 B B A%,0
, J. Erhel , G. =il
Pichot, B. 9 20=M "o
Poirriez
@ po =2
Iterations : Do
Ni
® q; = Sgp; - _ 1 e
/ J Preconditioner : M—1 = — Z S, L
rlz; Ni =
Jj
9 aj = T
P; 9 @ If floating subdomain = subdomain with no
Schur
complement
matrix
Preconditioned
Conjugate
gradient

Results



Computation of z;;1 = M_lrj+1

Flow
simulations in
3D Discrete
Fracture
Networks

@ M~ not given explicitly

J-R. de Dreuzy
, J. Erhel , G. . &1 .
Pichot, B. @ Solving zx ; = S, r; can be done by solving

xk \_ [0 . _ Bk
Bk( 2k ) _< g > ieh Bi = < Bl w1

Nk
9 z; = sz,j
k=1

Poirriez

Schur
complement
matrix
Preconditioned
Conjugate
gradient
Results

g

By v, +1
K

Ni+1,Nj+1

)




Results

Flow
simulations in
3D Discrete
Fracture
Networks
J-R. de Dreuzy number of Number of iterations and execution time
DAL subdomains [ Without NN With NN
Poirriez 2 153 it / 10.8 s 37 it / 4.4 s
4 164 it / 12.5 s 75it /9.3 s
8 166 it / 13.7 s 96 it / 12.4 s
16 165 it / 14.4 s 149it / 20.2 s
TABLE: Iteration number and execution time for a network with 128 fractures for a
varying number of subdomains
Schur

complement
matrix
Preconditioned
Conjugate
gradient
Results




On-going work
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S OBy Non conforming mesh and Mortar method
Pichot, B. . L .. .
e @ Build a posteriori estimators to optimize mesh generation

@ Perform more large scale Monte-Carlo simulations to check convergence

@ Run large scale DFNs simulations to derive upscaling rules

Solving the linear system

@ compare subdomain decompositions with other methods

@ Apply PCG to the matrix obtained with a non conforming mesh

On-going work
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