

DNW & JE

Newton basis

Adaptive deflation

Results

A Parallel Augmented GMRES algorithm Application to design optimization in CFD

Jocelyne Erhel and Désiré NUENTSA WAKAM

SAGE team, Inria Rennes, France

3rd Dolomites Workshop on Constructive Approximation and Applications (DWCAA12), September 9-14, 2012

$$Ax = b$$
, $A \in \mathbb{R}^{n \times n}$ $x, b \in \mathbb{R}^{n}$ $B \equiv AM^{-1}$

GMRES(m): a Krylov subspace method

- Saad and Schultz 1986, Meurant's book 1999, Saad's book 2003, Simoncini and Szyld 2007, Erhel 2011, ...]
- Fix x_0 , then $r_0 = b Ax_0$
- $\mathcal{K}_m(B, r_0) = span\{r_0, Br_0, \dots, B^{m-1}r_0\}$
- Find $x_m \in x_0 + \mathcal{K}_m(B, r_0)$ such that $||r_m||_2 = ||b Bx_m||_2 = \min_{u \in x_0 + \mathcal{K}_m(B, r_0)} ||b Bu||_2$

Building blocks of GMRES

- Initial step: choose x₀, compute r₀
- First step: generation of an orthonormal basis $V_{m+1} = [v_0, \ldots, v_m]$ of $\mathcal{K}_{m+1}(B, r_0)$ such that

$$v_0 = r_0/\beta, \quad \beta = ||r_0||, \quad BV_m = V_{m+1}\bar{H}_m$$

• Second step: approximate solution $x_m = x_0 + M^{-1}V_m y_m$

$$\Rightarrow r_m = r_0 - BV_m y_m = V_{m+1}(\beta e_1 - \bar{H}_m y_m) \quad \text{with } \beta = ||r_0||_2$$
$$\Rightarrow y_m = \min_{y \in \mathbb{R}^m} ||\beta e_1 - \bar{H}_m y||_2$$

AGMRES

DNW & JE

Newton basis

Adaptive deflation

DNW & JE

Newton basis

Adaptive deflation

Results

Granularity issues in parallel algorithms

- \Rightarrow Communication-avoiding strategies
 - Generate the basis vectors [Reichel 1990, Bai et al 1994]
 - Orthogonalize the basis [De Sturler 1994, Erhel 1995, Sidje 1997]
 - Improve the strategy [Hoemmen 2010, Demmel et al 2011]

omplexity issues with restarted GMRES(*m*)

- ⇒ Use deflation to recover possible loss of information
 - Deflation by preconditioning [Erhel et al 1996, Burrage et al 1998, Baglama et al 1998, ...]
 - Deflation by augmented basis [Morgan 1995, Morgan 2002,...]

Preconditioning issues

- \Rightarrow use multilevel methods to deal with large systems
 - Schwarz preconditioning [Atenekeng Kahou et al 2007, Dufaud+Tromeur-Dervout 2010, Giraud+Haidar 2009, Smith et al's book 1996,...]
 - Filtering and Schur complement [Li et al 2003, Grigori et al 2011]
 - Multilevel parallelism [Nuentsa Wakam et al 2011, Giraud et al 2010, ...]

Proposal of this work

Arnoldi process

3:

5:

6:

7:

8:

9:

10: end for

 $BV_m = V_{m+1}\bar{H}_m$

1: $v_0 = r_0 / ||r_0||_2$ 2: for $k = 0, \dots$ do

> $p = Bv_k$ for $i = 1 \cdot k$ do

end for

 $h_{ik} = v^T p$

 $h_{k+1,k} = ||p||_2$

11

 $v_{k+1} = p/h_{k+1,k}$

 $p = p - h_{ik}v_i$

Combine 'communication-avoiding' GMRES ... and Deflation ... and domain decomposition preconditioners

DNW & JE

Newton basis

Adaptive deflation

Results

Arnoldi process

 $BV_m = V_{m+1}\bar{H}_m$

Granularity issues in parallel algorithms

- \Rightarrow Communication-avoiding strategies
 - Generate the basis vectors [Reichel 1990, Bai et al 1994]
 - Orthogonalize the basis [De Sturler 1994, Erhel 1995, Sidje 1997]
 - Improve the strategy [Hoemmen 2010, Demmel et al 2011]

Complexity issues with restarted GMRES(m)

- \Rightarrow Use deflation to recover possible loss of information
 - Deflation by preconditioning [Erhel et al 1996, Burrage et al 1998, Baglama et al 1998, ...]
 - Deflation by augmented basis [Morgan 1995, Morgan 2002,...]

Preconditioning issues

- \Rightarrow use multilevel methods to deal with large systems
 - Schwarz preconditioning [Atenekeng Kahou et al 2007, Dufaud+Tromeur-Dervout 2010, Giraud+Haidar 2009, Smith et al's book 1996,...]
 - Filtering and Schur complement [Li et al 2003, Grigori et al 2011]
 - Multilevel parallelism [Nuentsa Wakam et al 2011, Giraud et al 2010, ...]

Proposal of this work

Combine 'communication-avoiding' GMRES ... and Deflation ... and domain decomposition preconditioners

DNW & JE

Newton basis

Adaptive deflation

Results

Granularity issues in parallel algorithms

- \Rightarrow Communication-avoiding strategies
 - Generate the basis vectors [Reichel 1990, Bai et al 1994]
 - Orthogonalize the basis [De Sturler 1994, Erhel 1995, Sidje 1997]
 - Improve the strategy [Hoemmen 2010, Demmel et al 2011]

Complexity issues with restarted GMRES(m)

- \Rightarrow Use deflation to recover possible loss of information
 - Deflation by preconditioning [Erhel et al 1996, Burrage et al 1998, Baglama et al 1998, ...]
 - Deflation by augmented basis [Morgan 1995, Morgan 2002,...]

Preconditioning issues

- \Rightarrow use multilevel methods to deal with large systems
 - Schwarz preconditioning [Atenekeng Kahou et al 2007, Dufaud+Tromeur-Dervout 2010, Giraud+Haidar 2009, Smith et al's book 1996,...]
 - Filtering and Schur complement [Li et al 2003, Grigori et al 2011]
 - Multilevel parallelism [Nuentsa Wakam et al 2011, Giraud et al 2010, ...]

Proposal of this work

Combine 'communication-avoiding' GMRES ... and Deflation ... and domain decomposition preconditioners

Arnoldi process

 $BV_m = V_{m+1}\bar{H}_m$

DNW & JE

Newton basis

Adaptive deflation

Results

Granularity issues in parallel algorithms

- \Rightarrow Communication-avoiding strategies
 - Generate the basis vectors [Reichel 1990, Bai et al 1994]
 - Orthogonalize the basis [De Sturler 1994, Erhel 1995, Sidje 1997]
 - Improve the strategy [Hoemmen 2010, Demmel et al 2011]

Complexity issues with restarted GMRES(m)

- \Rightarrow Use deflation to recover possible loss of information
 - Deflation by preconditioning [Erhel et al 1996, Burrage et al 1998, Baglama et al 1998, ...]
 - Deflation by augmented basis [Morgan 1995, Morgan 2002,...]

Preconditioning issues

- \Rightarrow use multilevel methods to deal with large systems
 - Schwarz preconditioning [Atenekeng Kahou et al 2007, Dufaud+Tromeur-Dervout 2010, Giraud+Haidar 2009, Smith et al's book 1996,...]
 - Filtering and Schur complement [Li et al 2003, Grigori et al 2011]
 - Multilevel parallelism [Nuentsa Wakam et al 2011, Giraud et al 2010, ...]

Proposal of this work

Combine 'communication-avoiding' GMRES ... and Deflation ... and domain decomposition preconditioners

Arnoldi process

 $BV_m = V_{m+1}\bar{H}_m$

Illustration : Domain decomposition and Restarting

- 2D Helmholtz problem on a 164×164 grid
- GMRES(16) + RAS or MSM (4 or 8 domains), LU as subdomain solver

AGMRES

DNW & JE

Newton basis

Adaptive deflation

Outline

AGMRES

DNW & JE

Newton basis

Adaptive deflation

Results

3 Numerical experiments

- Software package
- CFD application
- Numerical convergence
- CPU Time

DNW & JE

building blocks

- Initial step: run one cycle of GMRES(m) and compute shifts for the Newton basis
- First step: build a basis $K_{m+1} = [k_0, k_1, \dots, k_m]$ of the Krylov subspace $\mathcal{K}_{m+1}(B, r_0)$ such that

$$BK_m = K_{m+1}\bar{T}_m$$

• Second step: compute an orthonormal basis of $\mathcal{K}_{m+1}(B, r_0)$ Compute the QR factorization $\mathcal{K}_{m+1} = V_{m+1}R_{m+1}$ RODDEC [Sidje 1997, Erhel 1995] or TSQR [Demmel et al 2011]

$$\Rightarrow BK_m = V_{m+1}R_{m+1}\overline{T}_m \Rightarrow BV_m = V_{m+1}\underbrace{R_{m+1}\overline{T}_mR_m^{-1}}_{\overline{H}_m}$$

• Third step: approximate solution $x_m = x_0 + M^{-1}V_m y_m$

$$\Rightarrow r_m = r_0 - BK_m y_m = V_{m+1}(\beta e_1 - \bar{H}_m y_m) \quad \text{with } \beta = ||r_0||_2$$

$$\Rightarrow y_m = \min_{y \in \mathbb{R}^m} \|\beta e_1 - H_m y\|_2$$

Newton basis

Adaptive deflation

building blocks

AGMRES

DNW & JE

- Initial step: run one cycle of GMRES(m) and compute shifts for the Newton basis
- First step: build a basis $K_{m+1} = [k_0, k_1, \dots, k_m]$ of the Krylov subspace $\mathcal{K}_{m+1}(B, r_0)$ such that

$$BK_m = K_{m+1}\overline{T}_m$$

• Second step: compute an orthonormal basis of $\mathcal{K}_{m+1}(B, r_0)$ Compute the QR factorization $\mathcal{K}_{m+1} = V_{m+1}R_{m+1}$ RODDEC [Sidje 1997, Erhel 1995] or TSQR [Demmel et al 2011]

$$\Rightarrow BK_m = V_{m+1}R_{m+1}\overline{T}_m \Rightarrow BV_m = V_{m+1}\underbrace{R_{m+1}\overline{T}_mR_m^{-1}}_{\overline{H}_m}$$

• Third step: approximate solution $x_m = x_0 + M^{-1}V_m y_m$

$$\Rightarrow r_m = r_0 - BK_m y_m = V_{m+1}(\beta e_1 - \bar{H}_m y_m) \quad \text{with } \beta = ||r_0||_2$$

$$\Rightarrow y_m = \min_{y \in \mathbb{R}^m} \|\beta e_1 - \bar{H}_m y\|_2$$

Newton basis

Adaptive deflation

DNW & JE

building blocks

- Initial step: run one cycle of GMRES(m) and compute shifts for the Newton basis
- First step: build a basis $K_{m+1} = [k_0, k_1, \dots, k_m]$ of the Krylov subspace $\mathcal{K}_{m+1}(B, r_0)$ such that

$$BK_m = K_{m+1}\overline{T}_m$$

Second step: compute an orthonormal basis of K_{m+1}(B, r₀) Compute the QR factorization K_{m+1} = V_{m+1}R_{m+1} RODDEC [Sidje 1997, Erhel 1995] or TSQR [Demmel et al 2011]

$$\Rightarrow BK_m = V_{m+1}R_{m+1}\overline{T}_m \Rightarrow BV_m = V_{m+1}\underbrace{R_{m+1}\overline{T}_mR_m^{-1}}_{\overline{H}_m}$$

• Third step: approximate solution $x_m = x_0 + M^{-1}V_m y_m$

$$\Rightarrow r_m = r_0 - BK_m y_m = V_{m+1}(\beta e_1 - \bar{H}_m y_m) \quad \text{with } \beta = \|r_0\|_2$$

$$\Rightarrow y_m = \min_{y \in \mathbb{R}^m} \|\beta e_1 - H_m y\|_2$$

Newton basis

Adaptive deflation

DNW & JE

building blocks

- Initial step: run one cycle of GMRES(m) and compute shifts for the Newton basis
- First step: build a basis $K_{m+1} = [k_0, k_1, \dots, k_m]$ of the Krylov subspace $\mathcal{K}_{m+1}(B, r_0)$ such that

$$BK_m = K_{m+1}\overline{T}_m$$

Second step: compute an orthonormal basis of K_{m+1}(B, r₀) Compute the QR factorization K_{m+1} = V_{m+1}R_{m+1} RODDEC [Sidje 1997, Erhel 1995] or TSQR [Demmel et al 2011]

$$\Rightarrow BK_m = V_{m+1}R_{m+1}\overline{T}_m \Rightarrow BV_m = V_{m+1}\underbrace{R_{m+1}\overline{T}_mR_m^{-1}}_{\overline{H}_m}$$

• Third step: approximate solution $x_m = x_0 + M^{-1}V_m y_m$

$$\Rightarrow r_m = r_0 - BK_m y_m = V_{m+1}(\beta e_1 - \bar{H}_m y_m) \quad \text{with } \beta = ||r_0||_2$$

$$\Rightarrow y_m = min_{y \in \mathbb{R}}m \|\beta e_1 - \overline{H}_m y\|_2$$

Newton basis

Adaptive deflation

Shifts and matrix-vector products

• Initial step: Compute *m* Ritz values λ_j j = 0, ..., m - 1 and get their Leja ordering Alternative [Philippe+Reichel, 2011]

```
At each cycle:
```

• Arnolidi-like relation $BK_m = K_{m+1}\overline{T}_m$

AGMRES

DNW & JE

Newton basis

Adaptive deflation

Shifts and matrix-vector products

- Initial step: Compute *m* Ritz values λ_j $j = 0, \dots m 1$ and get their Leja ordering Alternative [Philippe+Reichel, 2011]
- At each cycle:
 - 1: $tmp = r_0$ 2: $\sigma_0 = \|tmp\|_2$ 3: $k_0 = tmp / \sigma_0$ 4: j = 05: while $j \leq m - 1$ do 6: if $Im(\lambda_{i+1}) = 0$ then 7: $tmp = (B - \lambda_{j+1}I)k_j$ 8: $\sigma_{i+1} = \|tmp\|_2$ 9: $k_{j+1} = tmp/\sigma_{j+1}$ 10: i = i + 111: else if $Im(\lambda_{i+1} > 0)$ then 12: $tmp = (B - Re(\lambda_{i+1})I)k_i$ 13: $\sigma_{i+1} = \|tmp\|_2$ 14: $k_{i+1} = tmp/\sigma_{i+1}$ $tmp = (B - Re(\lambda_{j+1})I)tmp + Im(\lambda_{j+1})^2k_j$ 15: 16: $\sigma_{j+2} = \|tmp\|_2$ 17: $k_{i+2} = tmp/\sigma_{i+2}$ 18: i = i + 219: end if 20: end while
- Arnolidi-like relation $BK_m = K_{m+1}\bar{T}_m$

AGMRES

DNW & JE

Newton basis

Adaptive deflation

Shifts and matrix-vector products

- Initial step: Compute *m* Ritz values λ_j j = 0, ..., m 1 and get their Leja ordering Alternative [Philippe+Reichel, 2011]
- At each cycle:
 - 1: $tmp = r_0$ 2: $\sigma_0 = \|tmp\|_2$ 3: $k_0 = tmp / \sigma_0$ 4: j = 05: while $j \leq m - 1$ do 6: if $Im(\lambda_{i+1}) = 0$ then 7: $tmp = (B - \lambda_{j+1}I)k_j$ 8: $\sigma_{i+1} = \|tmp\|_2$ 9: $k_{j+1} = tmp/\sigma_{j+1}$ 10: i = i + 111: else if $Im(\lambda_{i+1} > 0)$ then 12: $tmp = (B - Re(\lambda_{i+1})I)k_i$ 13: $\sigma_{j+1} = \|tmp\|_2$ 14: $k_{i+1} = tmp/\sigma_{i+1}$ 15: $tmp = (B - Re(\lambda_{i+1})I)tmp + Im(\lambda_{i+1})^2k_i$ 16: $\sigma_{j+2} = \|tmp\|_2$ 17: $k_{i+2} = tmp/\sigma_{i+2}$ 18: i = i + 219: end if 20: end while
- Arnolidi-like relation BK_m = K_{m+1} T_m

AGMRES

DNW & JE

Newton basis

Adaptive deflation

AGMRES

DNW & JE

Newton basis

Adaptive deflation

Results

- Initial step: run one cycle of GMRES(m) and compute shifts for the Newton basis Compute U_r = [u₀, u₁, ..., u_{r-1}] a basis of a coarse subspace
- First step: build a basis $K_{m+1} = [k_0, k_1, \dots, k_m]$ of the Krylov subspace $\mathcal{K}_{m+1}(B, r_0)$ such that

$$BK_m = K_{m+1}\overline{T}_m$$

Define the augmented subspace $C_s = \mathcal{K}_m(B, r_0) + span\{U_r\}$ with s = m + r with the basis

K_m U_r

compute

Building blocks

 $BU_r = \hat{K}_r D_r$

Define the augmented subspace $\hat{\mathcal{C}}_{s+1} = \mathcal{K}_{m+1}(B, r_0) + span\{BU_r\}$ with the basis

 $\begin{bmatrix} \kappa_{m+1} & \hat{\kappa}_r \end{bmatrix}$

DNW & JE

Newton basis

Adaptive deflation

Results

Building blocks

- Initial step: run one cycle of GMRES(m) and compute shifts for the Newton basis Compute $U_r = [u_0, u_1, \dots, u_{r-1}]$ a basis of a coarse subspace
- First step: build a basis $K_{m+1} = [k_0, k_1, \dots, k_m]$ of the Krylov subspace $\mathcal{K}_{m+1}(B, r_0)$ such that

$$BK_m = K_{m+1}\overline{T}_m$$

Define the augmented subspace $C_s = \mathcal{K}_m(B, r_0) + span\{U_r\}$ with s = m + r with the basis

 $\begin{bmatrix} K_m & U_r \end{bmatrix}$

compute

 $BU_r = \hat{K}_r D_r$

Define the augmented subspace $\hat{C}_{s+1} = \mathcal{K}_{m+1}(B, r_0) + span\{BU_r\}$ with the basis

 $\begin{bmatrix} \kappa_{m+1} & \hat{\kappa}_r \end{bmatrix}$

DNW & JE

Newton basis

Adaptive deflation

Results

Building blocks

- Initial step: run one cycle of GMRES(m) and compute shifts for the Newton basis Compute U_r = [u₀, u₁, ..., u_r-1] a basis of a coarse subspace
- First step: build a basis $K_{m+1} = [k_0, k_1, \dots, k_m]$ of the Krylov subspace $\mathcal{K}_{m+1}(B, r_0)$ such that

$$BK_m = K_{m+1}\overline{T}_m$$

Define the augmented subspace $C_s = \mathcal{K}_m(B, r_0) + span\{U_r\}$ with s = m + r with the basis

 $\begin{bmatrix} K_m & U_r \end{bmatrix}$

compute

$$BU_r = \hat{K}_r D_r$$

Define the augmented subspace $\hat{\mathcal{C}}_{s+1} = \mathcal{K}_{m+1}(B, r_0) + span\{BU_r\}$ with the basis

 $\begin{bmatrix} \kappa_{m+1} & \hat{\kappa}_r \end{bmatrix}$

Building blocks

• Second step: Compute an orthonormal basis of \hat{C}_{s+1} QR factorize the augmented basis $\begin{bmatrix} K_{m+1} & \hat{K}_r \end{bmatrix} = V_{s+1}R_{s+1}$

$$\Rightarrow BK_m = V_{m+1}R_{m+1}\overline{T}_m \Rightarrow BV_m = V_{m+1}R_{m+1}\overline{T}_mR_m^{-1}$$

 $\Rightarrow BU_r = (V_{m+1}R_{m+1,r} + V_rR_r)D_r$ $J_r]$ $\Rightarrow BW_s = V_{s+1}\bar{H}_s$

Define the basis $W_s = \begin{bmatrix} V_m & U_r \end{bmatrix}$

• Third step:
$$x_s = x_0 + M^{-1}W_s y_s$$

$$\Rightarrow r_s = r_0 - BW_s y_s = V_{s+1}(\beta e_1 - \bar{H}_s y_s) \quad \text{and} \ \beta = ||r_0||_2$$
$$y_s = \min_{y \in \mathbb{R}^S} ||\beta e_1 - \bar{H}_s y||_2$$

Final step: Adaptively update r and the coarse basis Ur

AGMRES

DNW & JE

Newton basis

Adaptive deflation

Building blocks

• Second step: Compute an orthonormal basis of \hat{C}_{s+1} QR factorize the augmented basis $\begin{bmatrix} K_{m+1} & \hat{K}_r \end{bmatrix} = V_{s+1}R_{s+1}$

$$\Rightarrow BK_m = V_{m+1}R_{m+1}\bar{T}_m \Rightarrow BV_m = V_{m+1}R_{m+1}\bar{T}_mR_m^{-1}$$

 $\Rightarrow BU_r = (V_{m+1}R_{m+1,r} + V_rR_r)D_r$ $J_r]$ $\Rightarrow BW_s = V_{s+1}\bar{H}_s$

Define the basis $W_s = \begin{bmatrix} V_m & U_r \end{bmatrix}$

• Third step:
$$x_s = x_0 + M^{-1}W_s y_s$$

$$\Rightarrow r_s = r_0 - BW_s y_s = V_{s+1}(\beta e_1 - \bar{H}_s y_s) \quad \text{and} \ \beta = ||r_0||_2$$
$$y_s = \min_{y \in \mathbb{R}^s} ||\beta e_1 - \bar{H}_s y||_2$$

Final step: Adaptively update r and the coarse basis Ur

AGMRES

Newton

basis

Adaptive deflation

Building blocks

• Second step: Compute an orthonormal basis of \hat{C}_{s+1} QR factorize the augmented basis $\begin{bmatrix} K_{m+1} & \hat{K}_r \end{bmatrix} = V_{s+1}R_{s+1}$

$$\Rightarrow BK_m = V_{m+1}R_{m+1}\bar{T}_m \Rightarrow BV_m = V_{m+1}R_{m+1}\bar{T}_mR_m^{-1}$$

 $\Rightarrow BU_r = (V_{m+1}R_{m+1,r} + V_rR_r)D_r$

Define the basis $W_s = \begin{bmatrix} V_m & U_r \end{bmatrix}$

$$\Rightarrow BW_s = V_{s+1}\bar{H}_s$$

• Third step:
$$x_s = x_0 + M^{-1}W_s y_s$$

$$\Rightarrow r_s = r_0 - BW_s y_s = V_{s+1}(\beta e_1 - \bar{H}_s y_s) \text{ and } \beta = ||r_0||_2$$
$$y_s = \min_{y \in \mathbb{R}^s} ||\beta e_1 - \bar{H}_s y||_2$$

Final step: Adaptively update r and the coarse basis Ur

AGMRES

basis

Adaptive deflation

DNW & JE

Newton basis

Adaptive deflation

Results

Update r and U_r using convergence estimation

At each restart, estimate Iter, the remaining number of steps [Sosonkina et al, 1998]

$$Iter = s * log(\frac{\epsilon}{||r_s||})/log(\frac{||r_s||}{||r_0||});$$

- If (Iter $\leq smv * itmax$): fast convergence \Rightarrow keep U_r
- If (smv * itmax < Iter ≤ bgv * itmax): slow convergence ⇒ update U_r
- If (Iter > bgv * itmax): possible stagnation \Rightarrow Increase r by I until r_{max} and update U_r

Approximate invariant subspace

 Initial step: Compute m Ritz values λ_j j = 0,...m − 1 and get their Leja ordering extract r Ritz vectors u_j, j = 0,...r − 1 with u_j = V_mg_j in the subspace K_m using the Galerkin condition V^T_m(B − λ_iI)V_mg_j = 0

$$\Rightarrow H_m g_j = \lambda_j g_j$$

• At each cycle: update U_r with $u_j = W_s g_j$ in the augmented subspace C_s using the Galerkin condition $(BW_s)^T (B - \lambda_j I) W_s g_j = 0$

$$\Rightarrow \bar{H}_{s}^{T}\bar{H}_{s}g_{j} = \lambda_{j}\bar{H}_{s}^{T}V_{s+1}^{T}W_{s}g_{j}$$

with

$$V_{s+1}^{T}W_{s} = \begin{bmatrix} V_{s+1}^{T}V_{m} & V_{s+1}^{T}U_{r} \end{bmatrix}$$
$$V_{s+1}^{T}V_{m} = \begin{bmatrix} I_{m} \\ 0 \end{bmatrix}$$

AGMRES

DNW & JE

Newton basis

Adaptive deflation

Approximate invariant subspace

 Initial step: Compute m Ritz values λ_j j = 0,...m − 1 and get their Leja ordering extract r Ritz vectors u_j, j = 0,...r − 1 with u_j = V_mg_j in the subspace K_m using the Galerkin condition V^T_m(B − λ_iI)V_mg_j = 0

$$\Rightarrow H_m g_j = \lambda_j g_j$$

At each cycle: update U_r with u_j = W_sg_j in the augmented subspace C_s using the Galerkin condition (BW_s)^T(B − λ_jI)W_sg_j = 0

$$\Rightarrow \bar{H}_{s}^{T}\bar{H}_{s}g_{j} = \lambda_{j}\bar{H}_{s}^{T}V_{s+1}^{T}W_{s}g_{j}$$

with

$$V_{s+1}^{T}W_{s} = \begin{bmatrix} V_{s+1}^{T}V_{m} & V_{s+1}^{T}U_{r} \end{bmatrix}$$
$$V_{s+1}^{T}V_{m} = \begin{bmatrix} I_{m} \\ 0 \end{bmatrix}$$

AGMRES

DNW & JE

Newton basis

Adaptive deflation

AGMRES(m,itmax, r, l, rmax)

1: $B, r_0 = b/||b||_2$

- 2: Compute one cycle of Arnoldi-GMRES
- 3: Generate *m* shifts λ_i
- 4: Compute r vectors U_r
- 5: while no convergence do
- 6: Compute K_{m+1} such that $BK_m = K_{m+1}\overline{T}_m$
- 7: Compute $BU_r = \hat{K}_r D_r$

8: Orthogonolize
$$\begin{bmatrix} K_{m+1} & \hat{K}_r \end{bmatrix} = V_{s+1}R_{s+1}$$

9: Define
$$W_s = \begin{bmatrix} V_m & U_r \end{bmatrix}$$

10: Get $BW_s = V_{s+1}\overline{H}_s$

11: solve
$$y_s = \min_y J(y)$$
 with $J(y) = ||\beta e_1 - \overline{H}_s y||_2$

- 12: Compute $x_s = x_0 + W_s y_s$
- 13: Test of convergence
- 14: Adaptively udpate r and Ur
- 15: end while

Complexity issues: comparison with GMRES(m)

- memory additional requirements: 2r vectors U_r and $[v_{m+1} \dots v_{m+r}]$
- CPU additional requirements in GMRES process: BU_r and $[v_{m+1} \dots v_{m+r}]$
- CPU overhead in adaptive strategy: $V_{s+1}^T U_r$

AGMRES

DNW & JE

Newton basis

Adaptive deflation

AGMRES(m,itmax, r, l, rmax)

1: $B, r_0 = b/||b||_2$

- 2: Compute one cycle of Arnoldi-GMRES
- 3: Generate *m* shifts λ_i
- 4: Compute r vectors U_r
- 5: while no convergence do
- 6: Compute K_{m+1} such that $BK_m = K_{m+1}\overline{T}_m$
- 7: Compute $BU_r = \hat{K}_r D_r$

8: Orthogonolize
$$\begin{bmatrix} K_{m+1} & \hat{K}_r \end{bmatrix} = V_{s+1}R_{s+1}$$

- 9: Define $W_s = \begin{bmatrix} V_m & U_r \end{bmatrix}$
- 10: Get $BW_s = V_{s+1}\overline{H}_s$

11: solve
$$y_s = \min_y J(y)$$
 with $J(y) = ||\beta e_1 - H_s y||_2$

- 12: Compute $x_s = x_0 + W_s y_s$
- 13: Test of convergence
- 14: Adaptively udpate r and U_r
- 15: end while

Complexity issues: comparison with GMRES(m)

- memory additional requirements: 2r vectors U_r and $[v_{m+1} \dots v_{m+r}]$
- CPU additional requirements in GMRES process: BU_r and [v_{m+1}...v_{m+r}]
- CPU overhead in adaptive strategy: $V_{s+1}^T U_r$

AGMRES

DNW & JE

Newton basis

Adaptive deflation

Implementation using PETSc

AGMRES

New KSP type : AGMRES

Usage in Petsc

- Use AGMRES just as GMRES
- \Rightarrow KSPSetType(ksp, KSPAGMRES) or -ksp_type agmres, -pc_type asm, ...
- Options : -ksp_gmres_restart m, -ksp_agmres_eig r,
- -ksp_max_its maxits, -ksp_agmres_smv smv -ksp_agmres_bgv bgv, ...

DNW & JE

Newton basis

Adaptive deflation

Results

Software CFD application Convergence CPU Time

- Partition the weighted graph of the matrix in parallel with PARMETIS.
- Redistribute the matrix and right-hand-side according to the PARMETIS partitioning.
- Perform a parallel iterative row and column scaling on the matrix and the right-hand side vector [Amestoy et al, 2008].
- Define the overlap between the submatrices for the additive Schwarz preconditioner.

$$M_{RAS}^{-1} = \sum_{k=1}^{D} (R_k^0)^T (A_k^\delta)^{-1} R_k^\delta$$

- Setup the submatrices (ILU or LU factorization).
- Solve iteratively the preconditioned system using either AGMRES or GMRES.

DNW & JE

Newton basis

Adaptive deflation

Results

Software CFD application Convergence CPU Time Geometry

DNW & JE

Adaptive deflation

Software

CFD application Convergence

• At steady state, the solution of the stationary Navier-Stokes writes $F(q_{ref}, p_{ref}) = 0$

Mesh

• $q = \{\rho, \rho U, \rho V, \rho W, \rho E, \rho k, \rho \omega\}$ flow variables (mass, momentum, energy, turbulence)

CFD Solution

Visualization

Turb'Opty@

- p = physical and geometrical flow parameters (pressure, temperature, shape, distance, ...)
- Turb'Opty[©], FLUOREM : Find new solutions q with respect to the parameters p

About Turb'Opty [S. Aubert et al 2001] About using AGMRES for Turb'Opty matrices [Nuentsa Wakam + Pacull, Computer & Fluids 2012] Geometry

DNW & JE

Adaptive deflation

Software

CFD application Convergence

• At steady state, the solution of the stationary Navier-Stokes writes $F(q_{ref}, p_{ref}) = 0$

Mesh

• $q = \{\rho, \rho U, \rho V, \rho W, \rho E, \rho k, \rho \omega\}$ flow variables (mass, momentum, energy, turbulence)

CFD Solution

Visualization

Turb'Opty@

- p = physical and geometrical flow parameters (pressure, temperature, shape, distance, ...)
- Turb'Opty[©], FLUOREM : Find new solutions q with respect to the parameters p

About Turb'Opty [S. Aubert et al 2001] About using AGMRES for Turb'Opty matrices [Nuentsa Wakam + Pacull, Computer & Fluids 2012]

RM07R size = 381,689 nonzeros = 37,464,962

AGMRES

DNW & JE

Newton basis

Adaptive deflation

Results Software

> CFD application

Convergence

CPU Time

RM07R size = 381,689 nonzeros = 37,464,962

Influence of the augmented basis (no adaptive strategy)

AGMRES

DNW & JE

Newton basis

Adaptive deflation

Results

CFD

application

Convergence

CPU Time

RM07R size = 381,689 nonzeros = 37,464,962

AGMRES

RM07R size = 381,689 nonzeros = 37,464,962

AGMRES

DNW & JE

Newton basis

Adaptive deflation

Results

CFD

application

Convergence

IM07R and VV11R: CPU Time and communications

- IM07R Size = 261,465 entries : 26,872,530
- VV11R Size = 277,095 entries : 30,000,952

•
$$r = 2, I = 2, r_{max} = 6$$

D m	24		32		48		
	Iter. Time	MSG	Iter. Time	MSG	Iter. Time	MSG	
GMRES(<i>m</i>)							
8	92.84	2.05	68.95	1.69	77.7	1.47	
16	101.1	12.27	89.37	11.47	63.2	7.66	
32	-	-	31.2	22.5	29.7	18.54	
AGMRES(m, r)							1 =
8	52.8	1.28	38.5	1.02	40.5	1.05	2
16	51.8	7.4	34.5	4.91	28.08	3.87	
32	38.3	25.6	31.2	22.5	29.7	18.5	
GMRES(<i>m</i>)							
8	76.219	2.6	73.3	2.63	63.669	2.31	
16	111.74	20.06	96.246	18.25	83.583	15.76	
32	-	-	-	-	77.066	59.87	
AGMRES(m, r)							120
8	45.781	1.65	40.905	5.48	40.85	1.52	Σ
16	36.492	21.65	34.803	24.12	33.65	23.64	_
32	33.262	94.54	27.837	93.27	27.109	105.35	

AGMRES

DNW & JE

Newton basis

Adaptive deflation

Results

Software CFD application Convergence

CPU Time

3D Convection-Diffusion problems

- 3DCONSKY_121 : size = 1,771,561; nonzeros = 50,178,241
- 3DCOSKY_161 : size= 4,173,281; nonzeros = 118,645,121

CPU Time

AGMRES

DNW & JE

Newton basis

Adaptive deflation

Results

Software CFD application Convergence

3D convection-diffusion problems: communications

AGMRES

application

CPU Time

0 / 20

DNW & JE

Newton basis

Adaptive deflation

Results

Software CFD application Convergence

- AGMRES: augmented Newton basis in GMRES(m)
- AGMRES + Schwarz: domain decomposition preconditioning
- Robustness: reduce the restarting effects and the domain decomposition effects
- Efficiency: increase granularity and scalability
- Numerical experiments with CFD problems: AGMRES faster than GMRES

AGMRES module

Will be made available in PETSc in 2012

Paper in revision for publication in ETNA preprint at http://www.irisa.fr/sage/desire