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Freshwater : 2.5% of total water
Surface water : 0.4% of freshwater
Groundwater : 30% of freshwater

Surface water and groundwater



sustainable use of groundwater



 Understand physical phenomena
 Manage water resources
 Prevent risks of pollution 
 Help in remediation

Groundwater numerical models



Groundwater cycle



scale

microscopic

mesoscopic

macroscopic

Variable pores

Variable layers

Variable geology

Heterogeneity at all scales

Observations

(Freeze et al., 1979; Koltermann et al., 1996)



Heterogeneous porous media

permeability (md)

Sand and gravel deposits in Switzerland, Gelhar [1993]



J.-R. de Dreuzy, Rabat 2006, Modeling transport 
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The real world of hydrogeology



Numerical models of porous media

Lack of observationsSpatial heterogeneity

Stochastic models of flow and solute transport

-random velocity field
-random solute transfer time and dispersivity

Porous geological media



 Saturated medium: one water phase
 Constant density: no saltwater
 Constant porosity and constant viscosity
 Linear equations
 Steady-state flow or transient flow
 Inert transport: no coupling with chemistry
 No coupling between flow and transport
 No coupling with heat equations
 No coupling with mechanical equations
 Classical boundary conditions
 Classical initial conditions

Physical equations
Physical assumptions



Flow and transport equations
in porous media

Fi
xe

d 
he

ad
 a

nd
 C

=
0

Fi
xe

d 
he

ad
 a

nd
 ∂

C
/∂

n=
0

Nul flux and ∂ C/∂ n = 0

Nul flux and ∂ C/∂ n=0

in
je

ct
io

n

• Advection-dispersion equations
Boundary conditions
Initial condition

• Flow equations



Macro-dispersion

Total mass M(t)=s c(x,t)dx

Center of mass X(t)=1/M(t) s c(x,t)xdx

Spread of mass around center of mass S(t)= 1/M(t) s c(x,t)(x-X)(x-X)Tdx

Dispersion D(t)=dS/dt

Study of asymptotic behaviour
Need for large scale computations  in space and time



Stochastic equations

Random permeability field K(ω;x)
Example: log-normal correlated field

Y=log(K), C(r)=σ2 exp(-|r|/λ)

Random hydraulic head h(ω;x) and velocity field V(ω;x)
Random concentration c(ω;x,t)

Study of statistics of results
Need for uncertainty quantification methods



Monte-Carlo simulations
For j=1,…,Ns

Compute V(ωj,x) using 
a finite volume method

generate permeability field 
K(ωj,x) using a regular mesh

End For

Compute D(ωj,t) using 
a random walker method
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Longitudinal dispersion Transversal dispersion

Each curve represents 100 simulations 
on domains with 67.1 millions of unknowns

high performance computing is required

Results with 2D domains



Numerical methods

Physical models

Porous 
Media

Solvers

PDE solvers
ODE solvers
Linear solvers
Particle tracker

Utilitaries

Input / Output
Visualization
Results structures
Parameters structures
Parallel and grid tools
Geometry

PARALLEL-BASED SCIENTIFIC PLATFORM H2OLAB

Open source libraries

Boost, FFTW, CGal, MPI, Hypre, Sundials, OpenGL, Xerces-C

UQ methods

Monte-Carlo

Fracture
Networks

Fractured-
Porous 
Media

Object-oriented and modular with C++
Parallel algorithms with MPI
Efficient numerical libraries



Discrete flow numerical model

Linear system 
A(ω;∆ x) H(ω;∆ x)=b(ω;∆ x)

b: boundary conditions and source term
A is a sparse matrix : NZ coefficients
Matrix-Vector product : O(NZ) opérations

Regular 2D mesh : N=n2 and NZ=5N
Regular 3D mesh : N= n3 and NZ=7N

Need for parallel sparse linear solvers

Finite volume method 
with a regular orthogonal mesh



Accuracy: condition number and variance

Estimation with Matlab without scaling and with scaling
Scaled condition number in O(exp(σ)) as expected



Accuracy: condition number and system size

Estimation with MUMPS for σ=1
Cond(A) in O(N) as expected



Sparse direct linear solver

UMFPACK multifrontal solver
Robust to variance σ but CPU time in O(N1.5)

As expected



Preconditioned Conjugate Gradient

PCG with IC(0) slightly sensitive to variance σ
But very sensitive to size N

Need for a multilevel preconditioner



Geometric multigrid

HYPRE Solver SMG
Linear CPU time in O(N) but sensitivity to variance

As expected



Algebraic multigrid

HYPRE Solver AMG
Robust to variance and linear CPU time in O(N)

As expected Less efficient than SMG for small variance



Algebraic multigrid with 3D domains

Robust to variance and CPU time in O(N)
Same properties as in 2D



Parallel performances with 2D domains

Parallel CPU time in O(N)
SMG more efficient than AMG for small σ

AMG much more efficient than SMG for large σ



injection

Solute transport : random walker

Particle-in-cell approach: 
Bilinear interpolation for V to ensure local mass balance

Independent particles Xk , k=1,… Np

Homogeneous molecular diffusion 
Stochastic differential equation
First-order explicit scheme

d=dm I, U=mean(V), Pe=λ U / dm

Particle tracker does not induce artificial diffusion
But random walker expensive for diffusion approximation



Not very sensitive to heterogeneity 
More efficient in pure advective case
Linear complexity with the number of cells in each direction

Random walker :
impact of diffusion and heterogeneity



Parallel performances of solute transport

Good speed-up and good scalability



Estimation of macro dispersion

Total mass M(t)=s c(x,t)dx = M

Center of mass X(t)=1/M s c(x,t)xdx ' 1/Np ∑k Xk

Spread of mass S(!, t)= 1/M s c(x,t)(x-X)(x-X)Tdx ' 1/Np ∑k (Xk-X) (Xk-X)T

Dispersion D(!, t)=dS/dt ' (S(t+∆ t)-S(t)) / ∆ t

Mean spread of mass E[S(!,t)] ' 1/Ns ∑l S(!l, t)

Mean dispersion E[D(!, t)] ' 1/Ns ∑l D(!l, t)



Error estimation

Several assumptions of regularity

Error E = E[S(!,t)]  - 1/Ns 1/Np  ∑l ∑k (Xk-X) (Xk-X)T

|| E ||  ≤ C (1/√Ns + 1/ √Np + ∆t + ∆x |ln(∆x)|)



Random walker : convergence analysis

Np = 2000 is a good trade-off between efficiency and convergence

Longitudinal 
dispersion

Transversal 
dispersion

Pure advection Advection-diffusion with Pe=100
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Monte carlo simulations: convergence analysis

Pure advection Pe=1000



Monte-Carlo simulations: convergence analysis
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Conclusion
Summary
• Efficient and accurate algebraic multigrid solver 
for groundwater flow in heterogeneous porous media
• Efficient random walker solver for solute transport
• Macro-dispersion analysis in 2D domains 

Current and Future work
• 3D heterogeneous porous media
• Grid computing and parametric simulations 
• Dispersion due to velocity
• Mathematical and numerical analysis
• Tuning of numerical parameters 
• Other non intrusive UQ methods
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