Efficient DG-based simulation of coupled surface subsurface flow

D. Mazilkin¹, P. Bastian², D. Kempf², O. Ippisch¹

¹ TU Clausthal, Institute for Mathematics
² Heidelberg University, Interdisciplinary Center for Scientific

November 2017

Abstract

The simulation of coupled surface subsurface flow is a topic of high scientific and social relevance for flood protection, agriculture and weather prediction. Most existing numerical models use a kinematic wave approximation for the simulation of the surface runoff. We present an approach based on the diffusive wave approximation for the simulation of the surface runoff and Richards’ equation for subsurface flow. An operator splitting approach is used with a kind of Dirichlet Neumann coupling for surface and subsurface flow. Spatial discretization of both flow equations is done with a Weighted Interior Penalty Discontinuous Galerkin scheme, while for the temporal discretization a semi-implicit scheme is used for the surface runoff and a diagonally implicit Runge-Kutta scheme for the subsurface flow. We present results obtained with the parallel numerical solver based on DUNE-PDELab and advanced in computational efficiency within the scope of EXA-DUNE project.

Keywords: surface-subsurface, diffusive wave, Richards’ equation, operator splitting, Discontinuous Galerkin.