Effect of streamline distribution and mixing on reactive processes at the hillslope scale
Charlotte Le Traon, Géosciences Rennes, UMR CNRS 6118, Univ. Rennes 1, Rennes, France,
Aditya Bandopadhyay, Indian Institute of Technology, Kharagpur, India,
Jérôme Gaillardet, Laboratoire de Géochimie et Cosmochimie, UMR CNRS 7579, Institut de
Physique du Globe, Université de Paris 7, Paris, France
Lin Ma, Department of Geological Sciences, University of Texas at El Paso, El Paso, TX 79968
USA
Philippe Davy, Géosciences Rennes, UMR CNRS 6118, Univ. Rennes 1, Rennes, France,
Tanguy Le Borgne, Géosciences Rennes, UMR CNRS 6118, Univ. Rennes 1, Rennes, France,

Key words: Reactive transport, modelling, mixing, solute fluxes, streamline spatial patterns

Abstract
Subsurface flow patterns exert a significant influence on solute transport and biogeochemical processes at scales ranging from the hyporheic zones to catchments. Consequences on solute turnover and chemical weathering have been often addressed by residence time distribution approaches as different streamlines correspond to broadly distributed residence times. However, understanding the impact of the streamline spatial patterns and the effect of mixing across streamlines on reaction kinetics remains an outstanding challenge. Here we investigate the impact of surface topography on subsurface streamline patterns and analyse their influence on mixing and reaction processes for different biogeochemical reactions including fluid-fluid and fluid-mineral reactions. We develop both analytical and numerical models that quantify the spatial distribution of streamlines, the distribution of travel times, the rate of mixing across streamlines and the resulting reaction rates. We present a case study at the Guadeloupe Quiock creek observatory, where strontium isotope data are used to quantify the chemical erosion of basalt.