Temporal Mixing Behavior of a Conservative Solute through Self-affine Fractures: Investigation and prediction

Zhi Dou, Hohai University,
Brent Sleep, University of Toronto,
Zhifang Zhou, Hohai University,
Jinguo Wang, Hohai University

Key words: Mixing, Self-affine fracture, and Conservative solute

Introduction
Mixing is the fundamental process for solute transport in geological formations. Detailed characterizations and temporal scaling properties of the mixing behavior of a conservative solute in self-affine fractures are critical for predicting the fate of solutes. In this work, the influence of the Hurst exponent and Peclet number (Pe) on the temporal mixing behavior of a conservative solute through the self-affine fractures with and without the shear displacement (i.e. the constant-aperture fracture (see Figure 1 (a)) and the variable-aperture fracture (see Figure 1 (b))) were investigated. We quantified the mixing by the scalar dissipation rate (SDR) in self-affine fractures. Our investigation shows that the variable-aperture distribution leads to local fluctuation of the temporal evolution of the SDR, whereas the temporal evolution of the SDR in the constant-aperture fractures is smoothly decreasing as a power-law function of time (see Figure 2). The Pe plays a dominant role in the temporal evolution of mixing in both variable-aperture and constant-aperture fractures. The exponent of the best-fitting SDR scaling decreases significantly as the Pe increases, indicating that the relatively large Pe enhances the mixing process. In the constant-aperture fracture, the influence of Hurst exponent on the temporal evolution of the SDR becomes negligible when the Pe is relatively small. The longitudinal SDR can be related to the global SDR in the constant-aperture fracture when the Pe is relatively small. As the Pe increases the longitudinal SDR overpredicts the global SDR. In the variable-aperture fractures, predicting the global SDR from the longitudinal SDR is inappropriate due to the non-monotonic decrease of the longitudinal concentration second moment, which results in a physically meaningless SDR (i.e. the negative SDR).

Figure 1: Reconstruction of aperture field in the self-affine rough fracture with H=0.7. (a) Reconstruction of constant-aperture rough fracture. (b) Reconstruction of variable-aperture rough fracture.
Figure 2: Scalar dissipation rate estimated in the constant-aperture fracture and variable-aperture fracture with $H = 0.6, 0.7,$ and 0.8 for $Pe = 10, 100, \text{ and } 1000$, respectively.