
Femto-Containers: Lightweight Virtualization
and Fault Isolation For Small Software Functions

on Low-Power IoT Microcontrollers
Koen Zandberg

Inria
France

Emmanuel Baccelli
Inria
France

Freie Universität Berlin
Germany

Shenghao Yuan
Inria
France

Frédéric Besson
Inria
France

Jean-Pierre Talpin
Inria
France

ABSTRACT
Low-power operating system runtimes used on IoT microcontrol-
lers typically provide rudimentary APIs, basic connectivity and,
sometimes, a (secure) firmware update mechanism. In contrast,
on less constrained hardware, networked software has entered
the age of serverless, microservices and agility. With a view to
bridge this gap, in the paper we design Femto-Containers, a new
middleware runtime which can be embedded on heterogeneous
low-power IoT devices. Femto-Containers enable the secure deploy-
ment, execution and isolation of small virtual software functions
on low-power IoT devices, over the network. We implement Femto-
Containers, and provide integration in RIOT, a popular open source
IoT operating system. We then evaluate the performance of our
implementation, which was formally verified for fault-isolation,
guaranteeing that RIOT is shielded from logic loaded and executed
in a Femto-Container. Our experiments on various popular micro-
controller architectures (Arm Cortex-M, ESP32 and RISC-V) show
that Femto-Containers offer an attractive trade-off in terms of mem-
ory footprint overhead, energy consumption, and security.

CCS CONCEPTS
• Computer systems organization→ Embedded systems.

KEYWORDS
IoT, Low-Power, Microcontroller, Middleware, Container, Virtual
Machine, Function-as-a-Service, Security

ACM Reference Format:
Koen Zandberg, Emmanuel Baccelli, Shenghao Yuan, Frédéric Besson, and Jean-
Pierre Talpin. 2022. Femto-Containers: Lightweight Virtualization and Fault
Isolation For Small Software Functions on Low-Power IoT Microcontrollers.
In 23rd ACM/IFIP International Middleware Conference (Middleware ’22), No-
vember 7–11, 2022, Quebec, QC, Canada. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3528535.3565242

1 INTRODUCTION
An estimated 250 billion microcontrollers are in use today [22]. An
increasing percentage of these microcontrollers are networked and
take part in distributed cyber-physical systems and the Internet of
Things (IoT) we increasingly depend upon. For example, such low-
power microcontrollers are at the core of hundreds of millions of

connected machines such as sensors and actuators relied upon not
only in smart homes, but also in other networked areas of the IoT
and industrial contexts (Industry 4.0). On such hardware, the total
memory available (for the whole system) is in the order of tens or
hundreds of kBytes, without virtual memory management (MMU),
often also without hardware memory protection (MPU). Neither
Linux (or derivatives/equivalents) nor traditional hypervisor can
be used as software platform on such hardware, and in effect the
challenge of deploying and maintaining distributed low-power IoT
software is exacerbated.

Recently, with the wider availability of low-power operating
systems alternatives [19] and adequate network stacks, low-power
IoT software has made giant leaps forward; but fundamental gaps
remain compared to current practices for networked software. In
fact, current state-of-the-art for managing, programming, and main-
taining fleets of low-power IoT devices resembles more PC system
software workflow from the 1990s than today’s common software
practices. Simplistic application programming interfaces (APIs) of-
fer basic performance and connectivity, but no additional comfort.

However, since the 1990s, networked software was revolution-
ized many times over. Networked software has entered the age of
server-less, micro-services and agility. In the field, softwaremodules
that are deployed and running are expected to be quickly updat-
able in terms of functionalities, and in terms of bug fixes. Addi-
tional layers and primitives providing cybersecurity, flexibility and
scalability became crucial: virtual machines, script programming
(e.g. Python, Javascript), lightweight software containerization (e.g.
Docker, Function-as-a-Service [16] etc.). DevOps [8] workflow dras-
tically shortened software development/deployment life cycles to
provide continuous delivery of higher software quality.

In such a context, low-power IoT devices based on microcontrol-
lers are the new ‘weakest link’ within distributed cyber-physical
systems. Indeed, state-of-the-art primitives for ’serverless’, includ-
ing lightweight virtual machine (VM) runtimes [30] and container
runtimes (e.g. Docker) are not applicable on low-power devices:
they typically depend on operating systems and larger resources
which don’t fit microcontrollers. In particular, VMs are either too
prohibitive in terms of hosting engine memory resource require-
ments (e.g. standard Java virtual machines), or restricted to very

https://doi.org/10.1145/3528535.3565242


Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Koen Zandberg, Emmanuel Baccelli, Shenghao Yuan, Frédéric Besson, and Jean-Pierre Talpin

specific use cases (e.g. JavaCard). This lackluster creates bottle-
necks that severely impact both flexibility and cybersecurity in the
low-power IoT space.

Goals of this paper – We aim to design a middleware func-
tion runtime adequate for heterogeneous microcontrollers. Mainly
enabling the secure deployment, execution and isolation of small
virtual software functions on low-power IoT devices. What we aim
for in priority is small start-up time for deployed functions, and
negligible overhead w.r.t. memory footprint on the microcontroller
when adding a hosted function runtime to the OS, compared to the
same functionality implemented natively (in the OS).

Contributions – In this paper, the work we present mainly
consists in the following:

• We propose Femto-Containers, a novel middleware for the
abstraction, secure deployment, execution and isolation of
(multiple, concurrent) software functions on heterogeneous
microcontroller-based IoT devices.We design Femto-Containers
as an extension of rBPF virtual machines;

• We benchmark ultra-lightweight virtualization techniques
based on Python, WebAssembly, JavaScript and eBPF. We
show that, comparatively, a Femto-Container runtime based
on eBPF virtualization requires 10x less memory footprint;

• Weprovide an open source implementation of Femto-Containers,
whichwe integrate in practice on a common, general-purpose
operating system for low-power networked microcontrollers
(RIOT);

• We formally verify key components of our Femto-Container
implementation, guaranteeing fault-isolation amongst con-
current Femto-Containers, and the underlying OS;

• We evaluate the performance of Femto-Containers in a vari-
ety of use cases, on the most popular 32-bit microcontroller
architectures: Arm Cortex-M, ESP32 and RISC-V.

2 MULTI-TENANT SOFTWARE SCENARIOS
ON MICROCONTROLLERS

Software on low-power IoT devices is growing complexity, driven
by cybersecurity, interoperability, and device management require-
ments. In practice, the development of embedded software com-
ponents is therefore often delegated to distinct entities. For secu-
rity and privacy reasons these distinct entities have limited mu-
tual trust [37]. For example, in this context, prior work such as
Amulet [20] aim to isolate multiple applications from each other
on a microcontroller, and to protect the underlying OS from ap-
plication code. Furthermore, maintenance of these low-power IoT
devices typically requires on-the-fly instrumentation. Safety re-
quires that hot insertion of instrumentation code cannot break
running software (already deployed). For example, prior work such
as TockOS [27] aims to enable safe multiprogramming of low-power
microcontrollers.

In this context, we identify the following categories of use-cases,
depicted in Figure 1:

(1) Use-case 1: Hosting and isolation of a high-level business
function. This function can be updated securely, on-demand,
remotely over the low-power network. The execution of this
type of logic is typically periodic in nature, and has loose
(non-real-time) timing requirements.

Figure 1: Container runtime use on IoT microcontrollers.

(2) Use-case 2: Hosting and isolation of debug and monitoring
code functions at low-level. These are inserted and removed
on-demand over the network. The functions must not inter-
fere with existing code on the device. Comparatively, this
type of function is short-lived and exhibits stricter timing
requirements.

(3) Use-case 3: Hosting and isolation of several functions, man-
aged by several different tenants.

Users in the above scenarios are provided with an event-driven
programming model and fine-grained computational space, hosted
on-demand on fleets of designated low-power IoT devices. Further-
more, the API available for a function fundamentally abstracts away
most of the hardware and the OS. Conceptually, these scenarios
thus partly mimic a Function-as-a-Service (FaaS) programming
model [16].

As with FaaS, multiple functions provided by distinct stakehold-
ers must run on a single device. For example OEM firmware may
have to be completed/customised by separate components, e.g. dif-
ferent developers/tenants may provide drivers separately, which
should be fault-isolated and restricted to using only driver-relevant
resources. Meanwhile, OS maintainers can deploy/run debug snip-
pets inserted elsewhere in the embedded code.

However, as a stable high-throughput network connection can-
not be assumed, storage capability is restricted to device-local stor-
age. Furthermore, scalability aspects of FaaS and container tech-
niques (e.g. running thousands of containers on a single machine)
do not play a significant role here. Instead, the scenarios we identify
above require running just a handful of isolated functions on top of
the embedded OS. However, considering potentially large fleets of
IoT devices, the scenario may nevertheless involve a large number
of containers (but across a large number of devices).

In this paper, we focus primarily on the middleware embed-
ded in the devices: the runtime permitting to host, run and isolate
functions, on-demand, on heterogeneous low-power IoT devices
deployed in the field, based on popular 32-bit microcontroller ar-
chitectures (such as the ARM Cortex-M class, RISC-V or ESP32).

3 THREAT MODEL
When a client deploys functions on a device operational in the
field, the embedded environment has to ensure these functions are
sandboxed. In our threat model, we consider both malicious tenants
which can deploy malicious code and malicious clients which can
maliciously interact with deployed code [35].



Femto-Containers Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

Malicious Tenant: The malicious tenant seeks to gain elevated
permissions on the device it has already a set of permissions on. This
tenant is already allowed to run code in the sandboxed environment,
and the tenant might want to break free from the sandbox to either
the host system or a different sandbox it doesn’t have permissions
for. While a tenant has to work within the permissions granted by
the host service, it can make free use of the granted resources.

Malicious Client: The malicious client doesn’t have any per-
missions for running sandboxed code on the device. The only access
the malicious client has is access to networked endpoints exposed
by the device, e.g. CoAP endpoints exposed by existing sandboxed
environments. The malicious client seeks to gain any permission
on the device to influence it or gain access to confidential data
on the device. The malicious client could make use of an already
vulnerable tenant function.

A number of attack vectors are considered in this work:

• Install and update time attacks: These attacks focus on modi-
fying the application during the transport to the sandbox en-
vironment. This includes man-in-the-middle modifications
to the applications.

• Privilege escalation to a different sandbox: This class of at-
tacks focus on escaping the sandbox of the application to
a different sandbox. The new sandbox could have different
permissions.

• Privilege escalation to the operating system: This attack class
attempts to escape the sandboxed environment altogether
to the operating system.

• Resource exhaustion attacks: The devices considered here
have very limited resources, both computational power and
battery energy are limited. A denial of service vector can be
to exhaust these resources.

Within the Femto-Container design we consider network attacks
to exhaust resources on the system to be out of scope, this type
of attack should be guarded against by the embedded operating
system.

4 RELATEDWORK
Typically, the fundamental building block formiddleware embedded
on devices allowing for generic function deployment and execution
is a virtual machine runtime.

The vast majority of prior work on lightweight virtualization
runtimes [30] does not target microcontrollers, but microprocessor-
class computers. Recent examples include for instance AWS Fire-
cracker [3] for serverless computing, WebAssembly [18] for process
isolation inWeb browsers, or eBPF [28, 15] for debug and inspection
code inserted in the Linux kernel at run-time.

However, some ultra-lightweight virtualization approaches have
been proposed for microcontrollers. For example, minimized Web-
Assembly runtimes adapted to run on 32-bit microcontrollers were
proposed, such as WAMR [11] and WASM3 [36]. RapidPatch [21]
uses an eBPF runtime to provide a hotpatching framework for RTOS
firmwares.

VM runtimes for microcontrollers include also earlier examples
such as Mate [26] or Darjeeling [10], a subset of the Java VM,

modified to use a 16 bit architecture, designed for 8- and 16-bit mi-
crocontrollers. JavaCard [32] also uses a small Java virtual machine
tailored for cryptographic purposes, running on smart cards.

Recently, tiny scripted logic interpreters and runtimes have also
been proposed to provide a basic virtualization environment. For
instance, MicroPython [29] is a very popular scripted logic inter-
preter used on microcontrollers. Small Python runtimes are used on
ESP8266 microcontrollers in prior work such as NanoLambda [17].
Small Javascript runtimes are used on Cortex-M microcontrollers
in prior work such as RIOTjs [6]. However, complementary mecha-
nisms should however be used to guarantee mutual isolation be-
tween scripts (such as SecureJS [24]).

The most closely related work was published in [39] and in [38].
In [39], authors provide rBPF, a port of the eBPF instruction set in
order to host a (single) VM on a microcontroller. In contrast, we
extend rBPF’s instruction set architecture and VM core with an ade-
quate embedded loading and execution environment, which caters
for well-defined, event-driven, short lived and isolated (concurrent)
execution of (multiple) functions to be deployed on-the-fly on a
networked microcontroller. On the other hand, while [38], concerns
formal verification of the sole rBPF instruction interpreter, here
we also verify the pre-flight instruction checker and we integrate
both in our femto-container implementation – the performance of
which we thoroughly evaluate on various microcontrollers. Our
design and implementation are so small (a few hundreds lines of
code) that formal verification was indeed realistic. Comparatively,
software alternatives (WASM, MicroPython...) would require hun-
dreds of thousands of lines of code, and magnitudes more lines of
proof, all but voiding concrete perspectives of formal verification.
Hardware alternatives (e.g. TrustZone [33]) are, to the best of our
knowledge, not formally verified, and may require a software API
to avoid unspecified hardware behaviours, hence faults.

To the best of our knowledge, our work provides the first for-
mally verified middleware based on eBPF virtualization able to host
multiple tiny runtime containers on awide variety of heterogeneous
low-power microcontrollers.

5 EMBEDDED RUNTIME ARCHITECTURE
DESIGN

In this section, we introduce Femto-Containers, a new embedded
runtime architecture tailored for constrained IoT devices, as de-
scribed in the following.

Similarly to a FaaS runtime, Femto-Containers allow for the we
deployment and execution of small logic modules. These modules,
or functions, are hosted on top of a middleware offering isolation,
abstraction and tight isolation with respect to the underlying OS
and hardware. By combining isolation and hardware/OS abstraction,
we retain the crucial properties of FaaS runtimes: code mobility and
cyber-security. Differently from typical FaaS runtimes, however,
Femto-Containers must be able to interact with specific hardware
(e.g. sensor/actuators), and must drastically reduce the scope and
the cost of virtualization to make do with IoT hardware constraints.

The Femto-Container architecture therefore relies on ultra-light-
weight virtualization, as well as on a set of assumptions and features
regarding an underlying RTOS, defined below.



Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Koen Zandberg, Emmanuel Baccelli, Shenghao Yuan, Frédéric Besson, and Jean-Pierre Talpin

Use of anRTOSwithMulti-Threading. It is assumed that the
RTOS supports real-time multi-threading with a scheduler. Each
Femto-Container runs in a separate thread. Well-known operating
systems in this space can provide for that, such as RIOT [5] or FreeR-
TOS [7] and others [19]. These can run on the bulk of commodity
microcontroller hardware available. Note that RTOS facilities for
scheduling enable simple controlling of how Femto-Containers
interfere with other tasks in the embedded system.

No Assumptions on Microcontroller Hardware. To retain
generality, we aim for a purely software-based isolation, which
can also run on the least capable microcontrollers, without any
assumptions on hardware architecture enhancements or security
peripherals. If present, hardware-based isolation features could
nevertheless be used to add layers of protection in-depth. For in-
stance TrustZone software module isolation relies on enhanced
Arm Cortex-M microcontroller architectures [33]. Other examples
using hardware based protection mechanisms are TockOS [27] or
Amulet [20], which rely on a hardware Memory Protection Unit
(MPU) to isolate software modules.

Use ofUltra-LightweightVirtualization. The virtualmachine
provides hardware agnosticism, and should therefore not rely on
any specific hardware features or peripherals. This allows for run-
ning identical application code on heterogeneous hardware plat-
forms. The virtual machine instances must have a low memory
footprint, both in Flash and in RAM. This allows to run multiple
VMs in parallel on the device. Note that, since we aim to virtualize
less functionalities, the VM can in fact implement a reduced fea-
ture set. For instance, virtualized peripherals such as an interrupt
controller are not required, and we give up the possibility of virtual-
izing a full OS. As exact virtualized hardware and peripherals is not
a requirement, solutions around the interpretation of a scripting
language are also suitable as target for Femto-Containers.

Use of OS Interfaces. A slim environment around the virtual ma-
chine (VM) exposes RTOS facilities to the VM. The container sand-
boxing a VM allows this VM to be independent of the underlying
operating system, and provides the facilities as a generic interface
to the VM. Simple contracts between container and RTOS can be
used to define and limit the privileges of a container regarding its
access to OS facilities. Note that such limitations must be enforced
at run-time to safely allow 3rd party module reprogramming.

Isolation&Sandboxing throughVirtualization. TheOS and
Femto-Containers must be mutually protected from malicious code,
as described in section 3. This implies in particular that code run-
ning in the VM must not be able to access memory regions outside
of what is granted via permissions. Here again, simple contracts
can be used to define and limit memory and peripheral access of
the code running in the Femto-Container. The strong isolation
and security of the sandbox must prevent tenant escalation to the
operating system and other tenants.

SlimEvent-based LaunchpadExecutionModel. Femto-Containers
are executed on-demand, when an event in the RTOS context calls
for it. Femto-Container applications are rather short-lived and have
a finite execution constraint. This execution model fits well with
the characteristics of most low-power IoT software. To simplify

containerization and enforce security-by-design, we mandate that
Femto-Containers can only be attached and launch from prede-
termined launch pads, which are sprinkled throughout the RTOS
firmware. Where applicable however, the result from the Femto-
Container execution can modify the control flow in the firmware
as defined in the launch pad.

Low-power Secure Runtime Update Primitives. Launching
a new Femto-Container or modifying an existing Femto-Container
can be done without modifying the RTOS firmware. However, up-
dating the hooks themselves requires a firmware update. In our
implementation, both types of updates use CoAP network trans-
fer and software update metadata defined by SUIT [31] (CBOR,
COSE) to secure updates end-to-end over network paths includ-
ing low-power wireless segments [40]. Leveraging SUIT for these
update payloads provides authentication, integrity checks and roll-
back options. Updating a Femto-Container application attached to
a hook is done via a SUIT manifest. The exact hook to attach the
new Femto-Container to is done by specifying the hook as a unique
identifier (UUID) as a storage location in the SUIT manifest. A rapid
develop-and-deploy cycle only requires a new SUIT manifest with
the storage location specified every update. Sending this manifest
to the device triggers the update of the hook after the new Femto-
Container application is downloaded to the device and stored in
the RAM. Using a secure update mechanism such as SUIT prevents
a malicious client from intervening in the update and installation
process of a Femto-Container application.

6 ULTRA-LIGHTWEIGHT VM
MICRO-BENCHMARKS

In this section, we compare the performance of a proof of con-
cept using RIOT [5] to extend with Femto-Container functionality,
based on different ultra-lightweight isolation techniques: Python
(MicroPython runtime), WebAssembly (WASM3 runtime), eBPF
(rBPF runtime) and Javascript (RIOTjs runtime).

We run experiments using each virtualization candidate on an off-
the-shelf IoT hardware platform representative of the landscape of
modern 32-bit microcontroller architectures available: Arm Cortex-
M4. Details of the benchmark setup are in Appendix A.

In the benchmarks we report on below, each implementation is
loaded with a VM hosting logic performing a Fletcher32 checksum
on a 360 B input string. We reason that this computing load roughly
mimics the instruction complexity of intensive sensor data (pre-
)processing on-board.

Runtime ROM size RAM size
WASM3 64 KiB 85 KiB
rBPF 4.4 KiB 0.6 KiB
RIOTjs 121 KiB 18 KiB
MicroPython 101 KiB 8.2 KiB
Host OS (without VM) 52.5 KiB 16.3 KiB

Table 1: Memory requirements for Femto-Container run-
times.



Femto-Containers Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

Runtime code size cold start overhead run time
Native C 74 B – 27 µs
WASM3 322 B 17 096 µs 980 µs
rBPF 456 B 1 µs 2133 µs
RIOTjs 593 B 5589 µs 14 726 µs
MicroPython 497 B 21 907 µs 16 325 µs

Table 2: Size and performance of fletcher32 logic hosted in
different Femto-Container runtimes on Cortex-M4.

Our benchmarks results are shown in Table 1 and Table 2. The
startup time measures the time it takes for the runtime to load the
application. This contains setup processing to parse the application
or JIT compilation steps.

Looking at size. While the size of applications are roughly com-
parable accross virtualization techniques (see Table 2), the memory
required on the IoT device differs wildly. In particular, techniques
based on script interpreters (RIOTjs and MicroPython) require the
biggest dedicated ROM memory budget, above 100 KiB.

For comparison, the biggest ROM budget we measured requires
27 times more memory than the smallest budget. Similarly, RAM
requirements vary a lot. Note that we could not determine with ab-
solute precision the lower bound for script interpreters techniques,
due to some flexibility given at compile time to set heap size in
RAM. Nevertheless, our experiments show that the biggest RAM
budget requires 140 times more RAM than the smallest budget. We
remark that, as noted in prior work [39] the minimum required
page size of 64 KiB to comply with the WebAssembly specification
explains why WASM3 performs poorly in terms of RAM. One can
envision enhancements where this requirement is relaxed. However
the RAM budget would still be well above an order of magnitude
more than the RAM budget we measured with rBPF.

Last but not least, let’s give some perspective by comparison
with a typical memory budget for the whole software embedded on
the IoT device. As a reminder, in the class of devices we consider,
a microcontroller memory capacity of 64kB in RAM and 256kB
in Flash (ROM) is not uncommon. A typical OS footprint for this
type of device is shown in the last row of Table 1. For such targets,
according to our measurements, adding a VM can either incur a
tremendous increase in total memory requirements (200% more
ROMwith MicroPython) or a negligible impact (8% more ROMwith
rBPF) as visualized in Figure 2.

Looking at speed. To no surprise, beyond size overhead, vir-
tualization also has a cost in terms of execution speed. But here
again, performance varies wildly depending on the virtualization
technique. On one hand, solutions such as MicroPython and RIOTjs
directly interpret the code snippet and execute it. On the other
hand, solutions such as rBPF and WASM3 require a compilation
step in between to convert from human readable code to machine
readable.

Our measurements show that script interpreters incur an enor-
mous penalty in execution speed. Compared to native code execu-
tion, script interpreters are a whooping 600 times slower. Compared
to the same base (native execution) WASM is only 37 times slower,
and rBPF 77 times slower.

One last aspect to consider is the startup time dedicated to pre-
liminary pre-processing when loading new VM logic, before it can
be executed (including steps such as code parsing and intermedi-
ate translation, various pre-flight checks etc.). Depending on the
virtualization technique, this startup time varies almost 1000 fold –
from a few microseconds compared to a few milliseconds.

Considering VM architecture & security. WASM, MicroPy-
thon and RIOTjs each require some form of heap on which to allo-
cate application variables. On the other hand, rBPF does not require
a heap. With a view to accommodating several VMs concurrently,
a heap-based architecture presents on the one hand some potential
advantages in terms of memory (pooling) efficiency, but on the
other hand some potential drawbacks in terms of security with
mututal isolation of the VMs’ memory between different tenants.

Furthermore, security guarantees call for a formally verified
implementation of the hosting engine down the road. A typical
approximation is: less lines of code (LoC) means much less effort
to produce a verified implementation. For instance, the rBPF imple-
mentation is 1,5k LoC, while the WASM3 implementation is 10k
LoC. The other implementations we considered in our pre-selection,
RIOTjs and MicroPython, encompass significantly more LoC.

6.1 Choice of Virtualization
Our benchmarks indicate that in terms of memory overhead, startup
time and LoC, Femto-Containers using eBPF virtualization is the
most attractive, by far.We note that execution time withWebAssem-
bly is 2x faster than with rBPF. However, we expect that a 2x factor
in execution time will have no significant impact in practice for the
use cases we target, such as small processing workloads. Since our
priority is on memory footprint (recall our aim of ≈10% memory
overhead for functionality containerization) we thus choose rBPF
to flesh out our concept further.

7 FEMTO-CONTAINER RUNTIME
IMPLEMENTATION

As proof of concept, we implemented the Femto-Container archi-
tecture, with functions hosted in the operating system RIOT and
virtualization using an instruction set compatible with the eBPF
instruction set. This implementation is open source (published in
[13]). We detail below its main characteristics.

Simple Containerization. Simplified interfaces provide a uniform
environment around the VM, independent of the RIOT operating
system. Access from the Femto-Container to the required OS facili-
ties is allowed through system calls to services provided by RIOT.
These system calls can be used by the loaded applications via the
eBPF native call instruction. Furthermore, the OS can share spe-
cific memory regions with the container.
Key-value store. In lieu of a file system, applications hosted in
Femto-Containers can load and store simple values, by a numerical
key reference, in a key-value store. This provides a mechanism
for persistent storage, between application invocations. Interaction
with this key-value store is implemented via a set of system calls,
keeping it independent of the instruction set. By default, two key-
value stores are provided by the OS. The first key-value store is



Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Koen Zandberg, Emmanuel Baccelli, Shenghao Yuan, Frédéric Besson, and Jean-Pierre Talpin

5%

13%
11%5%

66%

fig1: RIOT with MicroPython Femto-Container (154kBytes).

13%
35%

30%
14%

8%

Crypto
Network stack
Kernel
OTA module
Femto-Container runtime

fig2: RIOT with rBPF Femto-Container (57kBytes).

Figure 2: Flash memory distribution with different Femto-Containers. RIOT is configured with 6LoWPAN, CoAP, SUIT-
compliant OTA (totalling 53kBytes in Flash memory).

local to the application, for values that are private to the VM ac-
commodated in the container. The second key-value store is global,
and can be accessed by all applications, used to communicate val-
ues between applications. An optional third intermediate-level of
key-value store is possible to facilitate sharing data across a set of
VMs from the same tenant, while isolating this set of VMs from
other tenants’ VMs.

Use of RIOT Multi-Threading. Each Femto-Container appli-
cation instance running is scheduled as a regular thread in RIOT.
The native OS thread scheduling mechanism can simply execute
concurrently and share resources amongstmultiple Femto-Containers
and other tasks, spread over different threads. A Femto-Containers
instance requires minimal RAM: a small stack and the register set,
but no heap. The host RTOS bears thus a very small overhead per
Femto-Containers instance.

Figure 3 shows how Femto-Containers integrate into the oper-
ating system.An overview of how Femto-Containers integrate in
the operating system is shown in Figure 3. It shows the flow within
the operating system, with the Femto-Container triggered by an
event in the operating system. The Femto-Container is started if
it is present and gains access to it’s own store and any bindings
allowed by the operating system.

As the Femto-Container Instance does not virtualize its own set
of peripherals, no interrupts or pseudo-hardware is available to
the Femto-Container application. This also removes the option to
interrupt the application flow inside a Femto-Container.

The hardware and peripherals available on the device are not
accessible by the Femto-Containers instances. All interaction with
hardware peripherals passes through the host RTOS via the system
call interface.

Ultra-Lightweight Virtualisation using eBPF. Application
code is virtualized using Femto-Containers, our enhancement of
the rBPF virtual machine implementation. rBPF is again based on
the Linux eBPF. The architectures of these virtual machines are
similar enough that they all use the LLVM compiler with the eBPF
target for compilation.
Register-based VM. The virtual machine operates on eleven reg-
isters of 64 bits wide. The last register (r10) is a read-only pointer
to the beginning of a 512 B stack provided by the femto-container

RIOT Operating System

Hosting engine

Femto-Container
(Ephemeral)

Start Container 

Virtual
Machine Store

Result

OS Bindings 

OS Flow

Hook

Result
usage 

Event

Bypass
with 

Default
Result 

Figure 3: Femto-Container RTOS integration.

hosting engine. Interaction with the stack happens via load and
store instructions. Instructions are divided into an 8 bit opcode, two
4 bit registers: source and destination, an 16 bit offset field and an
32 bit immediate value. Position-independent code is achieved by
using the reference in r10 and the offset field in the instructions.

Jumptable & Interpreter. The interpreter parses instructions
and executes them operating on the registers and stack. The ma-
chine itself is implemented as a computed jumptable, with the
instruction opcodes as keys. During execution, the hosting engine
iterates over the instruction opcodes in the application, and jumps
directly to the instruction-specific code. This design keeps the in-
terpreter itself small and fast.

Isolation & Sandboxing
To control the capabilities of Femto-Containers, and to protect the
OS from memory access by malicious applications, a simple but
effective memory protection system is used. By default each virtual



Femto-Containers Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

Read/Write
Acces Lists

Instruction
Decode

Other
Instruction

Instruction Continue

Memory
Access Abort

Figure 4: Interaction between memory instructions and the
access lists.

machine instance only has access to its VM-specific registers and
its stack.

Memory access checks at runtime. Allow lists can be con-
figured (attached in the hosting engine) to explicitly allow a VM
instance access to other memory regions. These memory regions
can have individual flags for allowing read/write access. For ex-
ample, a firewall-type trigger can grant read-only access to the
network packet, allowing the virtual machine to inspect the packet,
but not to modify it. As the memory instructions allow for cal-
culated addresses based on register values, memory accesses are
checked at runtime with the access lists against the resulting ad-
dress, as show in Figure 4. Illegal access aborts execution. While
this relies on properly configured allow lists, it prevents access to
memory outside the sandbox by a malicious tenant.

Pre-flight instruction checks. A Femto-Container verifies the
application before it is executed for the first time. These checks
include checks on the individual instruction fields. For example,
as there are only 11 registers, but space in the instruction for 16
registers, the register fields must be checked for out-of-bounds
values. A special case here is register r10 which is read-only, and
thus is not allowed in the destination field of the instructions.

The jump instructions are also checked to ensure that the desti-
nation of the jump is within the address space of the application
code. As calculated jump destinations are not supported in the in-
struction set, the jump targets are known before executions and are
checked during the pre-flight checks. During the execution of the
application, the jump destinations no longer have to be verified and
can be accepted as valid destinations. This prevents a tenant from
jumping execution to the application code outside of the sandbox
such as code from a different tenant or vulnerable code planted
otherwise.

Finite execution is also enforced, by limiting both the total num-
ber of instructions 𝑁𝑖 , and the number of branch instructions 𝑁𝑏

that are allowed. In practice, this limits the total number of instruc-
tions executed to: 𝑁𝑖 × 𝑁𝑏 . This puts a limit on the computational
resource exhausted by a single execution by putting a hard limit
on the total number of instructions executed.

Hooks & Event-based Execution
The Femto-Container hosting engine instantiates and runs contain-
ers as triggered by events within the RTOS. Such events can be a
network packet reception, sensor reading input or an operating
system scheduling events for instance. Business logic applications
can be implemented either by directly responding to sensor input
or by attaching to a timer-based hook to fire periodically.

Simple hooks are pre-compiled into the RTOS firmware, provid-
ing a pre-determined set of pads from which Femto-Containers can
be attached and launched.

Listing 1: Example hook implementation.
sched_ctx_t context = {

.previous = active_thread ,

.next = next_thread ,
};

int64_t result;

f12r_hook_execute(FC_HOOK_SCHED , &context ,
sizeof(context), &result);

An example of a hook integrated in the firmware is shown in
Listing 1. The firmware has to set up the context struct for the
Femto-Containers after which it can call the hosting engine to
execute the Femto-Container instances associated with the hook.

8 USE-CASE PROTOTYPINGWITH
FEMTO-CONTAINERS

In this section, we describe and demonstrate the programming
model exposed by Femto-Containers. We use Femto-Containers
to prototype the implementation of several use cases involving
one or more functions (applications). Where multiple functions are
involved, these are hosted concurrently on a single microcontroller.
The goal of these functions is to match the scenarios we targeted
initially in section 2.

In the prototype implementation we show below, we used C to
code the applications hosted on Femto-Containers engine. However,
any other target language supported by LLVM could be used instead
such as C++ and Rust, for instance.

8.1 Programming Model
Femto-Containers follow an event-driven programming model. Ap-
plications hosted are only executed when triggered by events in
the operating system. The applications specify the entry point and
to which hooks they are to be attached inside the operating system.

The logic that can be deployed in Femto-Containers is limited
following the eBPF architecture. For instance, asynchronous oper-
ation is not supported: there is no option to interrupt the control
flow inside a Femto-Container application from outside the virtual
machine. This is mainly caused by the simple nature of the archi-
tecture: neither interrupts nor indirect jumps are available. This
trade-off reduces flexibility but increases the security for the host
operating system.

Our current implementation is also limited by the fixed, small
size of the stack (512 Bytes) dictated by the eBPF specification. More
memory-consuming tasks would need special handling to provide
additional memory. An enhanced implementation could however
allow the application to request more stack from the RTOS, for
example via the contracts, which would alleviate this issue. More
computation- and memory-intensive tasks could also make use of
additional system calls provided by the RTOS, which could execute
generic primitives at native speed.

The Femto-Container hosting engine is designed to be fast enough
to start applications on a hot code path without affecting signifi-
cantly normal operating system execution times. Small applications



Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Koen Zandberg, Emmanuel Baccelli, Shenghao Yuan, Frédéric Besson, and Jean-Pierre Talpin

can thus be inserted and execute without substantial overhead or
slowdown for the RTOS. This way small debug or inspection appli-
cations can be inserted into the RTOS at any point as long as the
application does not cause a deadline to be exceeded in the RTOS.

8.2 Kernel Debug Code Example
The first prototype we display consists in a single application, which
intervenes on a hot code path: it is invoked by the scheduler of
the OS. It keeps an updated count of each threads’ activations.
The logic hosted in the Femto-Container is shown in Listing 2. A
small C struct is passed as context, which contains the previous
running thread ID and the next running thread ID. The application
maintains a value for every thread, incremented every time the
thread is scheduled. External code can request these counters and
provide debug feedback to the developer.

Listing 2: Thread counter code.
#include <stdint.h>
#include "bpf/bpfapi/helpers.h"

#define THREAD_START_KEY 0x0

typedef struct {
uint64_t previous; /* previous thread */
uint64_t next; /* next thread */

} sched_ctx_t;

int pid_log(sched_ctx_t *ctx)
{
/* Zero pid means no next thread */

if (ctx ->next != 0) {
uint32_t counter;

uint32_t thread_key = THREAD_START_KEY +
ctx ->next;

bpf_fetch_global(thread_key ,
&counter);

counter ++;
bpf_store_global(thread_key ,

counter);
}
return 0;

}

8.3 Networked Sensor Code Example
The second prototype we display adds two Femto-Containers from
another tenant to the setup of the first prototype. Interaction be-
tween these two additional containers is achieved via a separate
key-value store, as depicted in Figure 5. The logic hosted in the
first Femto-Container, periodically triggered by the timer event,
reads, processes and stores a sensor value. The code for this logic
is shown in [14]. The second container’s logic is triggered upon
receiving a network packet (CoAP request), and returns the stored
sensor value back to the requestor. The code for this logic is shown
in [12].

In this toy example, the sensor value processing is a simple mov-
ing average, but more complex post-processing is possible instead,
such as differential privacy or some federated learning logic, for
instance. This example sketches both how multiple tenants can be
accommodated, and how separating the concerns between different
containers is achieved (between sensor value reading/processing on
the one hand, and on the other hand the communication between
the device and a remote requester).

Tenant B

Tenant A 

RIOT Operating System

CoAP
Stack 

Hosting Engine

Timer 
Hook

Timer
event

CoAP
Hook
Reply 

CoAP
Event 

Store
 A

CoAP Response
Formatter

Femto-Container 2 

Kernel

Thread
Switch 

Switch 
event

Store
B 

Thread counter

Femto-Container 3 

Sensor
Read 

Femto-Container 1

Figure 5: Event and value flow when hosting multiple con-
tainers from different tenants.

9 FEMTO-CONTAINER FORMAL
VERIFICATION

The critical components of Femto-Containers in terms of cyber-
security are the rBPF interpreter and the pre-flight instruction
checker. Since the implementation is conveniently small (500 lines
of C code for the interpreter and the checker), we aimed at produc-
ing a formally verified implementation of these components. We
will refer to CertFC (for Certified Femto-Container) as the runtime
which uses the formally verified interpreter and checker.

Targeted requirements formalization. The security guarantees we
wish to provide Femto-Containers with are essentially memory and
fault isolation. More precisely, we want to prove it impossible for
CertFC to access a memory location out of its app’s register memory
or to execute an instruction leading to an undefined behavior, and
consequently heading the VM and/or its host to crash. Providing
these guarantees further strengthens the security needed with the
threat model to prevent access to memory outside of the sandbox,
in turn preventing unprivileged access to the operating system or
other virtual machines.

Formal verification approach. We have used the Coq proof assis-
tant to mechanically and exhaustively verify these requirements
by employing the design workflow depicted in Figure 6:

1) First, we provide a proof model and a C-ready implemen-
tation that formalize (resp. optimize) the native, vanilla, C
implementations of the rBPF verifier and virtual machine in
RIOT. Proof and "C-ready" models are proved semantically
equivalent in Coq.

2) The verification of expected safety and isolation properties
is performed by the Coq proof assistant on the VM’s proof
model. It relies on the formalized isolation guarantees pro-
vided by a) the CompCert C memory model [25] ii) the pre-
flight runtime checks of the verifier, and iii) the defensive
runtime checks of the virtual machine itself (for numerical
and memory operations).



Femto-Containers Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

Figure 6: CertFC Formal verification workflow.

3) The verified C implementation is automatically extracted
from the C-ready Coq model using the 𝜕𝑥 tool [23]. Based
on a set of formalized translation rule from Coq to C, 𝜕𝑥
allows to craft a both reviewable and optimized C code from
a functional Coq definition.

4) To ensure that the extracted C code refines the proof model,
and hence satisfies the safety and isolation properties, the
final simulation proof proceeds in two steps. First, a Com-
pCert Clight model is extracted from the generated C code,
using the VST-clightgen tool [4]. Second, proving that Clight
model to simulate the C-ready model using translation vali-
dation [34].

Formal verification details. The Coq models and proofs used to
obtain CertFC are presented in [38] and available from [1].

10 PERFORMANCE EVALUATION
In this section we evaluate and compare the performance of Femto-
Containers with rBPF and CertFC runtimes. The comparison is done
on a number of low-power IoT hardware platforms: Cortex-M4,
RISC-V and ESP32 based microcontrollers.

10.1 Hosting Engine Analysis
We benchmark the Femto-Container implementation on a number
of aspects. First, we compare the footprint of the hosting engine
on the embedded device. This shows the impact of adding Femto-
Containers to the applications Second, we compare the execution
time of a number of individual instructions.

To compare the impact of adding the Femto-Containers to an
existing firmware, we compare the memory footprint of the im-
plementations. In general, each Femto-Container needs memory
to

• store the application bytecode;
• handle the virtual machine state and stack.

The impact on the required flash on the firmware is shown in
Figure 7 and Table 3. In terms of required RAM for execution,

Co
rte
x-M

4
ES
P3
2

RIS
C-V

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

By
te
s

rBPF
Femto-Containers

CertFC

Figure 7: Flash requirement for the different implementa-
tions and platforms

both rBPF and Femto-Containers show comparable flash and RAM
memory usage. In terms of Flash memory size, our measurements
show that CertFC actually reduces the footprint by 55 % on Cortex-
M4. The CertFC implementation requires slightly more memory,
an increase of around 50 B per instance. This is caused by CertFC
storing extra state of the virtual machine in the context struct and
not on the thread stack.

ROM size RAM size
Femto-Containers 2992 B 624 B
rBPF 3032 B 620 B
CertFC 1378 B 672 B

Table 3: Memory footprint of a Femto-Container hosting
minimal logic on Arm Cortex-M4.

The different implementations of Femto-Containers are com-
pared in Figure 8 against a set of eBPF instructions, showing that
the rBPF extensions incur minimal overhead on the virtual machine
and provide similar throughputs. Now, the performance of the for-
mally verified CertFC is lagging behind the other implementations,
revealing the trade off between the formally verified code and a
natively optimized implementation.



Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Koen Zandberg, Emmanuel Baccelli, Shenghao Yuan, Frédéric Besson, and Jean-Pierre Talpin

AL
U n

ega
te

AL
U A

dd

AL
U A

dd
im
m

AL
U m

ult
ipl
y i
mm

AL
U r
igh
t sh

ift
im
m

AL
U d

ivi
de
im
m

ME
M
loa
d d
ou
ble

ME
M
sto
re
do
ub
le i
mm

ME
M
sto
re
do
ub
le

Bra
nch

alw
ays

Bra
nch

equ
al (
jum

p)

Bra
nch

equ
al (
con

tin
ue
)

0
0.25
0.5
0.75

1

1.25
1.5
1.75

2

2.25
2.5
2.75

µs
pe
ri
ns
tru

ct
io
n

rBPF
Femto-Containers

CertFC

Figure 8: Time per instructions on the Cortex-M4 platform

10.2 Experiments with a Single Container
In this section we show the execution times of a number of Femto-
Container applications. This shows the applicability of Femto-
Containers in the different scenarios. we show the execution times
in Figure 9.

The first example executes a Fletcher32 checksum over a data
string of 360 B. It shows the time it takes for relative heavy process-
ing within the Femto-Containers VM. Depending on the platform
and the speed of the microcontroller it takes between 1.3ms and
2.2ms. For Femto-Containers the duration of this application is
long.

The second example shown is the thread counter example pre-
viously shown in Listing 2. In normal operation it is inserted in
the thread switch hook provided by the operating system, a hot
path in the OS. As shown in the figure, adding this would increase
the duration of a thread switch in the operating system by 10 µs to
27 µs. The impact on the operating system would not be negligible,
but also not problematic during normal operation.

The last example shows the duration of the second stage of the
networked sensor code example[12]. It depends heavily on system
calls for formatting of the CoAP response, but still contains some
processing inside the VM. It can be considered a representative ex-
ample for business logic on the device. This example takes between
23 µs and 72 µs. For business logic programmed outside of the hot
code path of the operating system itself, the overhead caused here
by the VM is rather acceptable and doesn’t impact the performance
of the overall system.

10.3 Femto-Containers with Multiple Instances
Femto-Containers are optimized to run multiple containers on a
single system in parallel. All state of an instance is kept local to
the instance. Each new instance added takes 624 B of RAM to run,
including the virtual machine stack. The other requirement is that
the microcontroller must have a large enough storage for the all
the application images.

We now measure the memory required to concurrently host
multiple containers from multiple tenants on the same microcon-
troller, from the examples we described in section 8. As shown
previously in Table 3, the minimal default memory footprint used
by a Femto-Container amounts to 624 B, which is for storing the
VM stack, housekeeping structs and information about memory
regions. Furthermore, the key-value stores are also in RAM. In this

case the total RAM used by the key value stores (and houskeeping)
for different tenants was 340 B. Hence, the required RAM mem-
ory we measured so as to run the example with 3 containers and
2 tenants is 3.2 KiB. Beyond these examples, if we consider more
containers hosting larger applications (e.g. ≈2000 B) an Arm Cortex-
M4 microcontroller with 256 KiB RAM, the density of containers
achievable would be of ≈100 instances, next to running the OS.

Different instances do not have access to each others resources
by default. They are fully isolated and do not have access to each
others memory, isolated by the memory protection mechanism.
One way provided to communicate between the instances is the
shared key-value store.

Multiple containers can be attached to the same launchpad hook
inside the operating system. It depends on the hook how the re-
turn value from each instance is processed further. This allows for
multiple tenants attaching to the same hook and process similar
events.

10.4 Overhead Added by Hooks
One key question is howperformance is affected by pre-provisioning
launchpads (hooks) in the RTOS firmware. We measure in Table 4
the overhead caused by adding a hook to the RTOS workflow. This
overhead amounts to ≈100 clock ticks on all the hardware we tested.
Compared to the number of cycles needed for an average task in
the operating system, this impact is low. Furthermore, this over-
head is less than 10% of the number of cycles needed to execute
the logic hosted in a Femto-Container. From this observation, we
can conclude that, even if this hook is on a very hot code path (as
for the Thread Counter example) the performance loss is tolerable.
Conversely, the perspective of adding many hooks sprinkled in
many places in the RTOS firmware is realistic without incurring
significant performance loss.

Empty Hook Hook with Application
Cortex-M4 109 1750
ESP32 83 1163
RISC-V 106 754

Table 4: Hook overhead in clock ticks for the thread switch
example

11 DISCUSSION
Virtualization vs Power-Efficiency. Inherently, virtualization causes

some execution overhead, due to interpretation of the code. Thus
Femto-Containers increase power consumption for functionality
executed within the VM, compared to native code execution. How-
ever, this drawback is mitigated by several other factors. First, the
absolute power consumption overhead may be neglible, e.g. if the
hosted logic is not performing long-lasting, heavy-duty tasks. Sec-
ond, network transfer costs, power consumption and downtime are
saved if software updates modify a Femto-Container instead of the
full firmware.

Controlling Tenant Priviledges. Controlling and granting access
to specific RTOS resources to different containers or tenants is a
complex challenge. Our design includes a basic permission system



Femto-Containers Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

Co
rte

x-
M
4

ES
P3

2

RI
SC

-V
0

500

1,000

1,500

2,000

µs
pe
re

xe
cu
tio

n

fig1: Fletcher32 checksumming algorithm
application.

Co
rte

x-
M
4

ES
P3

2

RI
SC

-V

0

5

10

15

20

25

µs
pe
re

xe
cu
tio

n
fig2: Thread log example application.

Co
rte

x-
M
4

ES
P3

2

RI
SC

-V

0
10
20
30
40
50
60
70

µs
pe
re

xe
cu
tio

n

fig3: CoAP response formatter application.

Figure 9: Execution duration of different examples running on Femto-Containers.

based on preprovisionned hooks, system calls, and simple contracts
between the hosting engine (on behalf of the OS) and a given con-
tainer. Basically: the OS restricts the set of priviledges that can be
granted, the container specifies the set of priviledges it requires,
and the hosting engine grants the intersection of these sets. One
limitation of our current simplified design is that there is only one
fixed set of priviledges possible per hook. In case 2 tenants have
different priviledges, a second hook must be made available. Addi-
tional mechanisms would be required to overcome this limiation
and/or to enable dynamic priviledge levels.

Install Time vs Execution Time. As mentioned before, one lim-
itation due to virtualization is the inherent slump in execution
speed, compared to native code exection. One way to remove this
overhead is to transpile the portable eBPF bytecode into native
instruction code. This could be done in a single pass to convert
the whole application into native instructions in an installation
step. This can result into a speed-up at the cost of extra install-time
overhead. To avoid the issues describe before on complicating the
run-time security checks, this compilation into native code has to
be done at run-time by the device deploying the code.

Fixed- vs Variable-length Instructions. Originally, eBPF scripts
are optimized for fast execution on 64-bit platforms. Compared to
other virtual machines such as Wasm, the resulting bytecode is
relative large. In fact, most of the instructions have bit fields that
are fixed at zero. A possible way to reduce the size of these scripts
is to compress the instructions into a variable size instruction set,
removing these fields from the instructions where possible. This
would create a variable length instruction set based on the eBPF
set. For example the immediate field is not used with half of the
instructions and would reduce the instructions to 32 bits in size
when removed.

12 CONCLUSION
In this paper we have introduced Femto-Containers, a new mid-
dleware runtime architecture we designed, which enables FaaS
capabilities embedded on heterogeneous low-power IoT hardware.

Using Femto-Containers, authorized (3rd party) maintainers of
IoT software can deploy and manage via the network mutually
isolated software modules embedded on a microcontroller-based
device. We provided an open source implementation of the Femto-
Container runtime, which uses the eBPF instruction set ported to
microcontrollers, as well as integration in a common low-power
IoT operating system (RIOT). We formally verified a fault-isolation
guarantee which ensures that RIOT is shielded from arbitrary logic
loaded and executed in a Femto-Container – and such, without
requiring any specific hardware-based memory isolation mecha-
nism. We then demonstrated experimentally the performance of
the Femto-Container runtime on the most common 32-bit micro-
controller architectures: Arm Cortex-M, RISC-V, ESP32. We show
that Femto-Containers significantly improve state of the art, by
providing FaaS-like capabilities with strong security guarantees on
such microcontrollers, while requiring negligible Flash and RAM
memory overhead (less than 10%) compared to native execution.

APPENDIX A: BENCHMARK CONFIGURATION
Hardware –We carry out our measurements on popular, commer-
cial, off-the-shelf IoT hardware, representative of the landscape of
the modern 32-bit microcontroller architectures that are available.
More precisely, we build and run the code on the following boards,
all configured to run at 64MHz:

• ArmCortex-M: a Nordic nRF52840 Development Kit, using
anArmCortex-M4microcontroller with 256 KiBRAM, 1MiB
Flash, and a 2.4GHz radio transceiver
(BLE/802.15.4),

• ESP32: a WROOM-32 board, using an Espressif ESP32 mod-
ule which provides two low-power Xtensa® 32-bit LX6 mi-
croprocessors with integrated Wi-Fi and Bluetooth, 520 KiB
RAM, 448 KiB ROM and 16 kB RTC SRAM.

• RISC-V: a Sipeed Longan Nano GD32VF103CBT6 Develop-
ment Board, which provides a RISC-V 32-bit microcontroller
with 32 KiB RAM and 128 KiB Flash.



Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Koen Zandberg, Emmanuel Baccelli, Shenghao Yuan, Frédéric Besson, and Jean-Pierre Talpin

Note that an open-access testbed such as IoT-Lab [2] also pro-
vides some of this hardware, for reproducibility.

Software – In all benchmarks, the embedded software platform
(OS) hosting the Femto-Containers is RIOT [5]. As base, we took
RIOT Release 2022.01, configured to be IoT-ready. More precisely,
we configured RIOT to provide standard low-power networking
connectivity, leveraging the board’s IEEE 802.15.4 radio chip and a
ressource-efficient IPv6-compliant network stack (6LoWPAN, UDP,
CoAP), as well as providing secure software update capability, en-
abling the update of Femto-Containers over the low-power network,
in compliance with SUIT [9] specifications (using CBOR, COSE,
ed25519 signatures and SHA256 hashes as primitives).

ACKNOWLEDGEMENTS
The research leading to these results partly received funding from
the RIOT-fp project, and from the TinyPART project (within the
MESRI-BMBF German-French cybersecurity program under grant
agreements no ANR-20-CYAL-0005 and 16KIS1395K). The paper re-
flects only the authors’ views. MESRI and BMBF are not responsible
for any use that may be made of the information it contains.

REFERENCES
[1] 2022. CertFC Artifact. https://github.com/future- proof- iot/CertFC/tree/

MIDDLEWARE22. (Sept. 2022).
[2] Cedric Adjih et al. 2015. FIT IoT-LAB: A Large Scale Open Experimental IoT

Testbed. In IEEE WF-IoT.
[3] Alexandru Agache, Marc Brooker, Alexandra Iordache, Anthony Liguori, Rolf

Neugebauer, Phil Piwonka, and Diana-Maria Popa. 2020. Firecracker: light-
weight virtualization for serverless applications. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20). USENIX Associ-
ation, Santa Clara, CA, (Feb. 2020), 419–434. isbn: 978-1-939133-13-7. https:
//www.usenix.org/conference/nsdi20/presentation/agache.

[4] Andrew W. Appel, Robert Dockins, Aquinas Hobor, Lennart Beringer, Josiah
Dodds, Gordon Stewart, Sandrine Blazy, and Xavier Leroy. 2014. Program logics
for certified compilers. Cambridge University Press.

[5] Emmanuel Baccelli et al. 2018. RIOT: an Open Source Operating System for
Low-end Embedded Devices in the IoT. IEEE Internet of Things Journal.

[6] Emmanuel Baccelli et al. 2018. Scripting Over-The-Air: Towards Containers on
Low-end Devices in the Internet of Things. In IEEE PerCom. (Mar. 2018).

[7] R. Barry. [n. d.] FreeRTOS, a FREE open source RTOS for small embedded real
time systems. http://www.freertos.org.

[8] Len Bass, Ingo Weber, and Liming Zhu. 2015. DevOps: A software architect’s
perspective. Addison-Wesley Professional.

[9] Henk Birkholz Brendan Moran Hannes Tschofenig and Koen Zandberg. 2021.
CBOR-based Firmware Manifest Serialisation Format for the Software Updates
for Internet of Things (SUIT) Manifest. Internet-Draft draft-ietf-suit-manifest-
16. Work in Progress. Internet Engineering Task Force. https://datatracker.ietf.
org/doc/html/draft-ietf-suit-manifest-16.

[10] Niels Brouwers et al. 2009. Darjeeling, a feature-rich vm for the resource poor.
In ACM SenSys.

[11] Bytecode Alliance. 2020. WebAssembly Micro Runtime (WAMR). (Oct. 2020).
[12] 2022. Femto-Containers CoAP sensor value handler. https://anonymous.4open.

science/r/middleware2022-femtocontainers-BB19/snippets/counter_fetch_
gcoap.c. (May 2022).

[13] 2022. Femto-Containers RIOT Implementation. https://github.com/future-
proof-iot/middleware2022-femtocontainers/tree/main/femto-containers. (May
2022).

[14] 2022. Femto-Containers sensor readout application. https://anonymous.4open.
science/r/middleware2022-femtocontainers-BB19/snippets/sensor_process.c.
(May 2022).

[15] Matt Fleming. 2017. A Thorough Introduction to eBPF. Linux Weekly News.
[16] Geoffrey C Fox, Vatche Ishakian, Vinod Muthusamy, and Aleksander Slominski.

2017. Status of serverless computing and function-as-a-service (faas) in indus-
try and research. Proceedings of the 3rd International Workshop on Serverless
Computing (WoSC 2017).

[17] GarethGeorge, Fatih Bakir, RichWolski, and Chandra Krintz. 2020. Nanolambda:
implementing functions as a service at all resource scales for the internet of
things. In 2020 IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 220–231.

[18] Andreas Haas et al. 2017. Bringing the web up to speed with WebAssembly. In
Proceedings of the 38th ACM SIGPLAN Conference on Programming Language
Design and Implementation, 185–200.

[19] Oliver Hahm, Emmanuel Baccelli, Hauke Petersen, and Nicolas Tsiftes. 2015.
Operating Systems for Low-end Devices in the Internet of Things: a Survey.
IEEE Internet of Things Journal, 3, 5, 720–734.

[20] Taylor Hardin, Ryan Scott, Patrick Proctor, Josiah Hester, Jacob Sorber, and
David Kotz. 2018. Application Memory Isolation on Ultra-Low-Power MCUs.
In 2018 USENIX Annual Technical Conference (USENIX ATC 18), 127–132.

[21] Yi He, Zhenhua Zou, Kun Sun, Zhuotao Liu, Ke Xu, Qian Wang, Chao Shen,
Zhi Wang, and Qi Li. 2022. Rapidpatch: firmware hotpatching for real-time
embedded devices. In 31st USENIX Security Symposium (USENIX Security 22).
USENIX Association, Boston, MA, (Aug. 2022).

[22] Huston Collins. 2020. Why TinyML is a giant opportunity. (Jan. 2020).
[23] Narjes Jomaa, Paolo Torrini, David Nowak, Gilles Grimaud, and Samuel Hym.

2018. Proof-oriented design of a separation kernel with minimal trusted com-
puting base. In 18th International Workshop on Automated Verification of Critical
Systems (AVOCS 2018). Vol. 76. Electronic Communications of the EASST Open
Access Journal, Oxford, United Kingdom, (July 2018).

[24] Yoonseok Ko, Tamara Rezk, and Manuel Serrano. 2021. Securejs compiler:
portable memory isolation in javascript. In SAC 2021-The 36th ACM/SIGAPP
Symposium On Applied Computing.

[25] Xavier Leroy. 2009. Formal verification of a realistic compiler. en. Communica-
tions of the ACM, 52, 7, (July 2009), 107–115. doi: 10.1145/1538788.1538814.

[26] Philip Alexander Levis and David E. Culler. 2002. Maté: a tiny virtual ma-
chine for sensor networks. In Proceedings of the 10th International Conference
on Architectural Support for Programming Languages and Operating Systems
(ASPLOS-X), San Jose, California, USA, October 5-9, 2002. Kourosh Gharachorloo
and David A. Wood, editors. ACM Press, 85–95.

[27] Amit Levy et al. 2017. Multiprogramming a 64kb computer safely and efficiently.
In ACM SOSP.

[28] Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A New Ar-
chitecture for User-level Packet Capture. In USENIX. Vol. 46.

[29] 2022. MicroPython. https://micropython.org/. (May 2022).
[30] Roberto Morabito, Vittorio Cozzolino, Aaron Yi Ding, Nicklas Beijar, and Jorg

Ott. 2018. Consolidate iot edge computing with lightweight virtualization. IEEE
network, 32, 1, 102–111.

[31] BrendanMoran, MiloschMeriac, Hannes Tschofenig, and David Brown. 2019. A
firmware update architecture for internet of things devices. Internet Engineering
Task Force, Internet-Draft.

[32] Oracle. 2019. Java Card 3.1.
[33] Sandro Pinto and Nuno Santos. 2019. Demystifying Arm TrustZone: A Com-

prehensive Survey. ACM Computing Surveys (CSUR), 51, 6, 1–36.
[34] A. Pnueli, M. Siegel, and E. Singerman. 1998. Translation validation. en. In

Tools and Algorithms for the Construction and Analysis of Systems. Vol. 1384.
Gerhard Goos, Juris Hartmanis, Jan van Leeuwen, and Bernhard Steffen, editors.
Series Title: Lecture Notes in Computer Science. Springer Berlin Heidelberg,
Berlin, Heidelberg, 151–166. isbn: 978-3-540-64356-2 978-3-540-69753-4. doi:
10.1007/BFb0054170.

[35] Yuxin Ren, Guyue Liu, Vlad Nitu, Wenyuan Shao, Riley Kennedy, Gabriel
Parmer, Timothy Wood, and Alain Tchana. 2020. Fine-grained isolation for
scalable, dynamic, multi-tenant edge clouds. In USENIX, 927–942.

[36] Volodymyr Shymanskyy. 2020. WASM3: A high Performance WebAssembly
Interpreter Written in C. (Oct. 2020).

[37] Ian Thomas, Shinji Kikuchi, Emmanuel Baccelli, Kaspar Schleiser, Joerg Doerr,
and Andreas Morgenstern. 2018. Design and Implementation of a Platform for
Hyperconnected Cyber Physical Systems. Internet of Things, 3, 69–81.

[38] Shenghao Yuan, Frédéric Besson, Jean-Pierre Talpin, Samuel Hym, Koen Zand-
berg, and Emmanuel Baccelli. 2022. End-to-end mechanized proof of an ebpf
virtual machine for micro-controllers. In International Conference on Computer
Aided Verification. Springer, 293–316.

[39] Koen Zandberg and Emmanuel Baccelli. 2020. Minimal virtual machines on iot
microcontrollers: the case of berkeley packet filters with rbpf. In 2020 9th IFIP
International Conference on Performance Evaluation and Modeling in Wireless
Networks (PEMWN). IEEE, 1–6.

[40] Koen Zandberg, Kaspar Schleiser, Francisco Acosta, Hannes Tschofenig, and
Emmanuel Baccelli. 2019. Secure firmware updates for constrained iot devices
using open standards: a reality check. IEEE Access, 7, 71907–71920.

https://github.com/future-proof-iot/CertFC/tree/MIDDLEWARE22
https://github.com/future-proof-iot/CertFC/tree/MIDDLEWARE22
https://www.usenix.org/conference/nsdi20/presentation/agache
https://www.usenix.org/conference/nsdi20/presentation/agache
http://www.freertos.org
https://datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-16
https://datatracker.ietf.org/doc/html/draft-ietf-suit-manifest-16
https://anonymous.4open.science/r/middleware2022-femtocontainers-BB19/snippets/counter_fetch_gcoap.c
https://anonymous.4open.science/r/middleware2022-femtocontainers-BB19/snippets/counter_fetch_gcoap.c
https://anonymous.4open.science/r/middleware2022-femtocontainers-BB19/snippets/counter_fetch_gcoap.c
https://github.com/future-proof-iot/middleware2022-femtocontainers/tree/main/femto-containers
https://github.com/future-proof-iot/middleware2022-femtocontainers/tree/main/femto-containers
https://anonymous.4open.science/r/middleware2022-femtocontainers-BB19/snippets/sensor_process.c
https://anonymous.4open.science/r/middleware2022-femtocontainers-BB19/snippets/sensor_process.c
https://doi.org/10.1145/1538788.1538814
https://micropython.org/
https://doi.org/10.1007/BFb0054170

	Abstract
	1 Introduction
	2 Multi-Tenant Software Scenarios on Microcontrollers
	3 Threat Model
	4 Related Work
	5 Embedded Runtime Architecture Design
	6 Ultra-Lightweight VM Micro-Benchmarks
	6.1 Choice of Virtualization

	7 Femto-Container Runtime Implementation
	8 Use-Case Prototyping with Femto-Containers
	8.1 Programming Model
	8.2 Kernel Debug Code Example
	8.3 Networked Sensor Code Example

	9 Femto-Container Formal Verification
	10 Performance Evaluation
	10.1 Hosting Engine Analysis
	10.2 Experiments with a Single Container
	10.3 Femto-Containers with Multiple Instances
	10.4 Overhead Added by Hooks

	11 Discussion
	12 Conclusion

