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Abstract

The efficient design of safety-critical cyber-physical systems (CPS) involves, at least, the three mod-
eling aspects: functionalities, physicality and architectures. Existing modeling formalisms cannot
provide strong support to take all of these three dimensions into account uniformly, e.g., AADL is a
precise formalism for modeling architecture and prototyping hardware platforms, but it is weak for
modeling physical and software behaviours and their interaction. By contrast, Simulink/Stateflow
(S/S) is strong for modeling physical and software behaviour and their interaction, but weak for
modeling architecture and hardware platforms. To address this issue, in this paper, we consider
how to combine AADL and S/S, and specifically, how to analyze and verify models given by their
combination. In detail, we first present a combination of AADL and S/S, called AADL⊕ S/S, that
provide a unified graphical co-modeling for CPS. Then, we propose a solution how to simulate
AADL⊕ S/S models through code generation to C. Afterwards, we present a formal semantics for
AADL ⊕ S/S by translating it to Hybrid Communicating Sequential Processes (HCSP), that pro-
vides a deductive verification approach for AADL⊕ S/S models using Hybrid Hoare Logic (HHL).
We also prove the correctness of the translation to HCSP. Finally, the effectiveness of our approach
is illustrated by a realistically-scaled case study of an automatic cruise control system.
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1. Introduction

Cyber-physical systems (CPS) tightly couple hardware and software to sense and actuate on
a physical environment. To correctly model them, it is paramount to take the three perspectives
of software functionality, physical environment and hardware platform, and system architecture
into account uniformly. Unfortunately, according to the commonly accepted design paradigm of
“separation of concerns”, most of the existing design methodologies and workflows do not sup-
port all three aspects well uniformly. For example, the Architecture Analysis & Design Language
(AADL) [1] features strong capabilities for describing the architecture of a system due to the prag-
matic (and practice-inspired) effectiveness of combining software and hardware component models.
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However, the core of AADL only supports modeling of embedded system hardware and abstraction
of its relevant discrete behavior, and does not support the description of the continuous physical
processes to be controlled and its combination with software. By contrast, Simulink/Stateflow
(S/S) [2, 3], developed by Mathworks, is the de-facto industry standard for model-based analysis
and design of embedded systems. It is best-suited for modeling and analyzing continuous physical
processes, discrete computations and their combination. However, S/S cannot naturally model
system architecture and hardware platforms.
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Figure 1: An overview of AADL⊕ S/S (from [4])

To address the above issue, in this paper, we first present a combination of S/S and AADL,
named AADL⊕S/S, in order to provide a unified graphical modeling formalism to support all three
perspectives of CPS design. An overview of AADL⊕ S/S is given in Figure 1. Using AADL⊕ S/S,
a cyber-physical system is modeled with the following three layers:

• Architecture layer: the system architecture and its hardware platform are described by
AADL components that define the structure, type and characteristics of composed hardware
and software components.

• Software layer: the software behavior can be modeled as either behavior annexes in AADL
or S/S diagrams.

• Physical layer: the physics of the cyber-physical system and its interaction with the hard-
ware/software platform are modeled by S/S diagrams.

In order to simulate AADL⊕ S/S models, we also present a way to translate AADL⊕ S/S into
C code, allowing simulation of the combined model. It relies on the Real Time Workshop (RTW)
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toolbox in Matlab, which permits code generation from S/S diagrams. The translation of the
combined model then amounts to coordinating code generated from AADL and S/S through port
communications specified in the architecture layer. The result of the simulation is then displayed
visually for analysis.

But how to guarantee reliability of a safety-critical CPS developed with AADL ⊕ S/S remains
challenging rigidly, as simulation based techniques is inherently incomplete, and therefore cannot
ensure reliability of safety-critical CPS. To attack this problem, we further develop a HCSP-based
deductive verification approach for AADL⊕ S/S, including

• First, we present a formal semantics of AADL based on transition systems, including thread
dispatch, scheduling, execution, and bus connections with latency.

• Second, we present a translation from graphical AADL ⊕ S/S models to Hybrid Communi-
cating Sequential Processes (HCSP) [5, 6]. Compared with other formalisms such as hybrid
automata [7] and hybrid programs [8], HCSP provides a compositional way to model com-
plicated CPS due to its rich set of algebraic operators. The correctness of the translation
is proved by comparison with the transition systems semantics. Thus, the translated HCSP
model can be formally verified using HHL [9, 10, 11].

• Additionally, we also develop a simulator for HCSP, so that the translated HCSP model can
also be simulated after translation, and the correctness of the translation can also be tested
by comparing the simulation results before and after translating. What’s more, even one can
design a CPS starting with HCSP as it provides supports of simulation and verification.

In summary, the mains contribution of this paper include

1. A combination of AADL and S/S,

2. A simulation tool for AADL⊕ S/S,

3. An HCSP-based analysis and verification approach for AADL⊕ S/S,

4. An application of the whole approach to the modeling and analysis of a realistically-scaled
case study of an automatic cruise control system.

This delivers a framework for designing complex safety-critical CPS using AADL⊕ S/S, then sim-
ulating the resulting model and revising it until the desired and formally specified properties are
satisfied. Afterwards, the whole model, or at least the safety-critical part, can be formally verified
using HHL. Finally, correct SystemC code can be automatically generated from the HCSP model
based on the work of [12].

Some preliminary results of contributions 1 and 2 were reported in [4].

Paper Organization. Sect. 2 provides an overview of AADL, S/S, and HCSP. Sect. 3 depicts the
combined framework composed of AADL and S/S. Sect. 4 describes the simulation of AADL⊕ S/S
models by translation to C. Sect. 5 defines a formal semantics for AADL and AADL ⊕ S/S using
timed transition systems. Sect. 6 presents the translation of AADL and AADL ⊕ S/S to HCSP.
The correctness of translation is proved in Sect. 7. A simulation tool for HCSP is introduced in
Sect. 8. A case study of a fully-functional automatic cruise control system is presented in Sect. 9.
Finally, we review related work in Sect. 10 and conclude in Sect. 11.
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2. Preliminaries

In this section, we first provide an overview of the AADL standard and Simulink/Stateflow
(S/S). Then, we briefly introduce Hybrid CSP (HCSP), a formal modeling language for embedded
and hybrid systems.

2.1. AADL

AADL is an architecture description language used to model embedded real-time systems as
assembly of software components mapped onto execution platforms [1, 13, 14]. An AADL specifi-
cation is composed of software, hardware, and composite systems.

The software side consists of data, subprogram, threads, and processes. A data component
represents a data type. A subprogram component represents executable code that can be called,
with parameters provided by threads and other subprograms. A thread component represents the
foundational unit for executing a sequential flow of control behavior. A process component, which
is closely affiliated to a processor component, refers to a software instance responsible for executing
threads. It usually contains multiple thread components, the execution of which is managed by a
scheduler.

The hardware side represents computation and communication resources including processor,
memory, bus and device components. A processor component represents the hardware and software
responsible for scheduling and executing task threads. A memory component is used to represent
storage entities for data and code. A device component models a component interacting with
the environment, such as sensor or actuator. A bus component represents a physical connection
among execution platform components. Finally, a system is a top-level component consisting of a
hierarchy of software and hardware components.

Communication among different components is realized through connections via ports, param-
eters and access to shared data.

In this paper, we focus on modeling thread scheduling and execution, devices, and bus connec-
tions with latency. In Sect. 5, we will describe these aspects of AADL in more detail and define a
formal semantics.

2.2. Simulink/Stateflow

Simulink [2] is an environment for model-based design of dynamical systems, and has become
a de facto standard in the embedded systems industry. A Simulink model contains a set of blocks,
subsystems, and wires, where blocks and subsystems cooperate by dataflow through the connecting
wires. Simulink provides an extensive library of pre-defined blocks for building and managing such
block diagrams, and also a rich set of fixed-step and variable-step ODE solvers for simulating
dynamical systems. Stateflow [3] is a toolbox adding facilities for modeling and simulating reactive
systems by means of hierarchical statecharts. It can be defined as Simulink blocks, fed with
Simulink inputs and producing Simulink outputs. It extends Simulink’s scope to event-driven and
hybrid forms of embedded control.

2.3. Hybrid CSP

Hybrid CSP (HCSP) is a formal language for describing hybrid systems, which extends CSP by
introducing differential equations for modeling continuous evolution and interrupts for modeling
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the interaction between continuous evolution and discrete computation. The standard syntax of
HCSP is as follows [11, 15]:

P ::= skip | x := e | ch?x | ch!e | P ;Q | B → P | P uQ | P ∗ | 8i∈I(ioi −→ Qi) |
〈F (ṡ, s) = 0&B〉 | 〈F (ṡ, s) = 0&B〉D 8i∈I(ioi −→ Qi)

S ::= P1‖P2‖ . . . ‖Pn for some n ≥ 1

where x (resp. s) stands for variables (resp. vectors of variables), B and e are boolean and
arithmetic expressions, ch is a channel name, ioi stands for a communication event (i.e., either
chi?x or chi!e), P,Q,Qi, Pi are sequential process terms, and S stands for an HCSP process term.
The informal meanings of the individual constructors are as follows:

• skip, assignment x := e, input ch?x, output ch!e sequential composition P ;Q and internal
choice P uQ can be understood as usual.

• External choice 8i∈I(ioi → Qi) means waiting for any of the communications in ioi to take
place. Once some ioi takes place, the execution of Qi follows.

• B → P behaves as P if B is true, and otherwise terminates. We can then define the
conditional statement if B then P else Q as f := 0;B → (f := 1;P ); (f = 0 ∧ ¬B) → Q,
where f is a fresh variable indicating whether the branch corresponding to B being true is
taken.

• Repetition P ∗ means executing P for an arbitrary finite number of times.

• 〈F (ṡ, s) = 0&B〉 is the continuous evolution statement. It forces the vector s of real variables
to obey the differential equation F as long as the domain B holds, and terminates when B
turns false. For instance, wait d is a special case defined as t := 0; 〈ṫ = 1&t < d〉. The
communication interrupt 〈F (ṡ, s) = 0&B〉 D 8i∈I(ioi −→ Qi) behaves like 〈F (ṡ, s) = 0&B〉,
except that the continuous evolution is preempted as soon as one of the communications ioi
takes place, and the execution of the respective Qi follows. These two statements are the
main extensions of HCSP for describing continuous behavior.

• For n ≥ 2, P1‖P2‖ . . . ‖Pn represents the parallel composition of P1, P2, . . . , Pn, which run
independently except all communications along the common channels are synchronized.

Compared to the standard HCSP syntax, we make use of an extended language including
data structures such as lists and operations on lists, arrays of channels, while loops, and module
definitions. A simulator for the extended HCSP language is implemented and will be used in the
case study. Detailed explanations of the extensions and the simulator are out of the scope of this
paper.

3. General Framework of AADL ⊕ S/S

We proposed a co-modeling framework for cyber-physical systems combining AADL and S/S [4],
called AADL ⊕ S/S, in which a cyber-physical system can be characterized from the software,
hardware, and physics perspectives uniformly, as shown in Figure 1. In this framework, AADL is
used to define the overall architecture of the system, including connections between the software,
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hardware, and physical components. The software components define the discrete behavior of the
system, either as behavior annex within AADL, or S/S diagrams. The physical components define
the continuous plants of the system as S/S diagrams.

The architecture layer, described as AADL system composite components, specifies the types
of components, and (part of) their implementation (an abstraction of their actual implementation),
as well as their composition. It usually consists of a central processor unit classifier with several
subcomponent devices (like sensor, controller, and actuator etc.). Each of these classifiers has its
own type and implementation. For software functionality and physical processes, the architecture
layer usually needs their abstractions, i.e., the type classifiers of these software and physical com-
ponents. The type classifier of a component declares the set of input and output ports, specifies
the contract of its behavior, that are accessible from outside. By contrast, the implementation
classifier of a component binds its type classifier with a concrete implementation in the software
and physical layers.

Computing Type Classifier for S/S Diagrams. When combining S/S with AADL, we need to pro-
vide an abstraction for each S/S diagram, i.e., its type classifier, so that it can be assembled with
other components to form the whole system at the architecture layer, while the diagram itself
will be used as the implementation classifier of the component. Normally, the type classifier of a
component consists of two parts: port declaration and constraints.

The port declaration declares a set of ports used to input and output data between the compo-
nent and other ones. However, S/S diagrams can be hierarchical, and hence its external ports can
sometimes not be extracted directly. For example, consider the triggered subsystems in a Simulink
diagram, they do not have any input and output ports, but are triggered by events. Therefore, we
need to analyze the whole system in detail in order to obtain all external ports, particular, event
ports. Moreover, this often gets worse when Stateflow models are additionally considered.

To address this problem, we exploit the tool ss2hcsp, a component in our toolkit MARS1 [15,
16], which can translate a S/S diagram into a formal HCSP process. By applying ss2hcsp, all
external ports of a S/S diagram can now be translated, and exposed, by a set of channels in the
corresponding HCSP model, which is stored in a separate file.

The reminder of the specification defines the properties of the component. We can adopt two
approaches to generate the constraints for a given S/S diagram. The first one uses Daikon [17].
The basic idea is to simulate the given S/S diagram, and then run Daikon to generate a candidate
invariant which is satisfied by all simulation runs. The efficiency of this approach is much higher,
but the generated invariant (approximation) can only be linear. Moreover, it may not become an
actual invariant, even by conducting enough runs to refine it.

Alternatively, we can generate invariants directly from the S/S diagram, or the translated HCSP
process, by using techniques for invariant generation for hybrid systems [18]. This approach can
generate more expressive and semantically correct invariants, but the efficiency is normally low.

4. Co-simulation of AADL ⊕ S/S

In this section, we describe the co-simulation of AADL⊕ S/S models by generating simulation
code in C, denoted by AADL⊕S/S2C, as an extension of our previous work [4]. The C code generation
is divided into two parts:

1https://gitee.com/bhzhan/mars.git
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(1) for the S/S part, we use the existing code generation facility in Matlab, to produce C code
that can simulate this part of the model step-by-step;

(2) for the AADL part, we use AADL2C Translator to generate C code following the execution
semantics of AADL.

To realize co-simulation, the two parts are integrated together to form an executable C code that
simulates the combined model.

4.1. Translating AADL to C

For each thread in the AADL model, we create a corresponding Thread object containing its
component properties. We use the thread emerg.imp from the Cruise Control System (CCS) case
study to clarify the mapping rules. emerg.imp serves as an emergency control computing the
acceleration of a self-driving car in real time. The full case study is described in Sect. 9. The
description of emerg.imp in AADL is as follows.

thread implementation emerg.impl

properties

Dispatch_Protocol => Periodic;

Priority => 2; // highest

Deadline => 5ms;

Period => 5ms;

Execution_Time => 1ms...1ms;

annex Simulink {** ./ Examples/AADL/CCS/Simulink/emerg_imp.slx **};

end emerg.impl;

The implementation block consists of two parts: properties and Simulink annex. Properties of
a thread that are relevant to the simulation include: dispatch protocol, priority, deadline, period,
and minimum/maximum execution times. After translation to C, the corresponding Thread object
emerg imp is given as follows.

Thread *emerg_imp = (Thread *) malloc(sizeof(Thread));

emerg_imp ->tid = 2;

emerg_imp ->threadName = "emerg_imp";

emerg_imp ->period = 5;

emerg_imp ->priority = 2;

emerg_imp ->deadline = 5;

emerg_imp ->state = "INITIAL";

emerg_imp ->dispatch_protocol = "Periodic";

emerg_imp ->maxExecutionTime = 1;

emerg_imp ->minExecutionTime = 1;

Here, the state field stores the status of the thread during simulation, and takes one of five
values as defined in the AADL standard: Initial, Ready, Running, Complete and Finish.

4.2. Translating S/S to C

Matlab provides an automatic code generation tool to translate S/S diagrams into C code that
can simulate the model step-by-step. To apply the code generation tool, we need to set some
configuration parameters, such as the step size, the ODE solver, format of the generated code,
etc. The C code generated from a S/S diagram by the tool can be roughly divided into three
parts: Initialization (input), Computation (for one step), and Finalization (output). Thus,
the behavior of the Thread object emerg imp can be defined by the three function pointers:
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emerg_imp ->initialize = emerg_imp_initialize;

emerg_imp ->compute = emerg_imp_step;

emerg_imp ->finalize = emerg_imp_finalize;

where emerg imp initialize, emerg imp step and emerg imp finalize are all functions included
in the C file emerg imp.c generated by the tool of Matlab.

4.3. Co-simulation

The above C code is combined together through a function implementing the thread scheduling
protocol. In particular, the HPF protocol is implemented in our case study. The communication
between components is implemented by shared variables in the context of C code. We set the
step size of the Matlab simulation to agree with that of AADL simulation, in this case 1ms. At
each step of the overall simulation, first, the C code denoting the physical environment (such as
vehicle imp step() describing the dynamics of the vehicle) executes one step, updating some
shared variables; then, determining a thread to be executed according to HPF and executing the
behavior of the thread (such as emerg imp->compute()), which takes into account the period,
deadline, and execution time of each thread. The output of the model can then be visualized (in
our case using Python’s plotting library), serving as a visual check that properties of the model
are satisfied for the given initial state.

5. An Operational Semantics of AADL ⊕ S/S

In this section, we describe a formal semantics for AADL and for AADL⊕ S/S based on timed
transition systems that communicate with each other. The main purpose is to describe the seman-
tics, including its many subtleties, in a more familiar language, before presenting the translation to
HCSP in Sect. 6. The transition rule has the form (s, σ)

c,e−→ (s′, σ′), where s, s′ are AADL states
and σ, σ′ are valuations that map variables to values, c condition and e communication event. It
means that, starting from s and σ, if c holds, then taking event e leads to s′ and σ′.

For AADL, we focus on thread dispatch and execution, scheduling, and bus connections. We
first describe each of these aspects in turn, and final consider the combination AADL⊕ S/S.

5.1. Thread

A thread includes a set of ports, properties and its behavior. Ports are used to transfer event
and data between threads, processors and devices. Event (resp. event data) ports send events
(resp. events with data) that may be queued when the receiver is not ready. The arrival of events
can trigger a dispatch of a thread. Data ports send data, where only the latest value is kept on the
receiving side. In the semantics, we define each data port as a variable, and each event or event
data port as a queue of unprocessed events. They are shared by threads which are their input and
output sides respectively.

The properties of a thread include: dispatch protocol, which can be periodic, aperiodic, sporadic,
timed and hybrid (we only consider periodic and aperiodic cases); period for a periodic thread;
priority that determines the execution order during scheduling; deadline for the length of the life
cycle of a thread; and execution time for the range of the accumulative time that a thread requires
the processor during each dispatch. Usually a minimum and a maximum execution time are
specified. For simplicity we will only consider the maximum execution time.

The behavior of a thread can be described by two processes: thread dispatch and execution.
The semantics is presented in Figure 2.
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(D1) (waitDi, σ)
dti+d≤di−−−−−−→ (waitDi, σ[dti 7→ dti + d]) (D2) (waitDi, σ)

dti=di,disi!−−−−−−−→ (dispi, σ)

(D3) (waitDi, σ)
∀t∈[0,d).cnki(σ(gc)+t)=∅−−−−−−−−−−−−−−−−→ (waitDi, σ[gc 7→ gc+ t])

(D4) (waitDi, σ)
cnki(σ(gc)) 6=∅,disi!(top(cnki))−−−−−−−−−−−−−−−−−−−→ (dispi, σ[cnki 7→ pop(cnki)])

(D5) (dispi, σ) −→ (waitDi, σ[dti 7→ 0])

(E1) (waiti, σ)
disi?−−−→ (readyi, σ[ini 7→ cnki, ti 7→ 0, eni 7→ 0, sri 7→ 0])

(E1′) (waiti, σ)
disi?−−−→ (readyi, σ[ini 7→ top(cnki), cnki 7→ pop(cnki), ti 7→ 0, eni 7→ 0, sri 7→ 0])

(E2) (waiti, σ)
disi?e−−−−→ (readyi, σ[ini 7→ e, ti 7→ 0, eni 7→ 0, sri 7→ 0])

(E3) (readyi, σ)
sri=0,reqProcessori!−−−−−−−−−−−−−→ (readyi, σ[sri 7→ 1])

(E4) (readyi, σ)
sri=1∧ti+d<DLi−−−−−−−−−−−→ (readyi, σ[ti 7→ ti + d]) (E5) (readyi, σ)

ti≥DLi,exiti!−−−−−−−−−→ (waiti, σ)

(E6) (readyi, σ)
ti≤DLi,runi?−−−−−−−−−→ (runningi, σ)

(E7) (runningi, σ)
ti<DLi∧eni=0−−−−−−−−−−→ (runningi, σ[ci 7→ 0])

(E8) (runningi, σ)
eni=1∧ci+d<Maxi∧ti+d<DLi−−−−−−−−−−−−−−−−−−−−→ (runningi, σ[ci 7→ ci + d, ti 7→ ti + d])

(E9) (runningi, σ)
eni=1∧ti<DLi∧ci<Maxi,preempti?−−−−−−−−−−−−−−−−−−−−−−−−→ (readyi, σ)

(E10) (runningi, σ)
ti=DLi∧ci<Maxi−−−−−−−−−−−−→ (errori, σ) (E11) (errori, σ)

e−→ (waiti, σ) e ∈ {freei!, preempti?}
(E12) (runningi, σ)

eni=1∧ci<Maxi∧ti<DLi−−−−−−−−−−−−−−−−→ (runningi, σ[ci 7→Maxi, ti 7→ ti + (Maxi − ci)])
(E13) (runningi, σ)

eni=1∧ci=Maxi,reqResourcei!−−−−−−−−−−−−−−−−−−−−→ (completei, σ[cnik 7→ push(cnik, outi)])

(E14) (completei, σ)
e−→ (waiti, σ) e ∈ {freei!, preempti?}

(E15) (runningi, σ)
eni=1∧ci=Maxi,reqResourcei!−−−−−−−−−−−−−−−−−−−−→ (completei, σ[cnik 7→ outi])

(E16) (runningi, σ)
eni=1∧ci=Maxi,blocki?−−−−−−−−−−−−−−−−→ (blocki, σ)

(E17) (blocki, σ)
e−→ (awaiti, σ) e ∈ {freei!, preempti?}

(E18) (awaiti, σ)
ti+d<DLi−−−−−−−→ (awaiti, σ[ti 7→ ti + d]) (E19) (awaiti, σ)

ti<DLi,unblocki?−−−−−−−−−−−→ (readyi, σ)

(E20) (awaiti, σ)
ti=DLi−−−−−→ (waiti, σ)

Figure 2: Semantics of thread dispatch and execution

Thread dispatch. After a thread is initialized, it enters the awaiting dispatch (waitD) state. De-
pending on its dispatch protocol, it can be dispatched periodically or aperiodically (by the arrival
of events). Given a thread i, if the thread is periodic with period di, it can stay at waitDi state
for less than di time (rule D1), and at time di, sends a dispatch signal to thread i (rule D2). The
variable dti is introduced to record the elapsed time, with initial value 0. For an aperiodic thread,
it is triggered by an incoming event. We use gc to represent a global clock. Let cnki denote the
queue of events arriving at thread i from thread k. We consider cnki as a variable shared by threads
i and k, and write cnki(t) to denote the queue stored by cnki at time t. If it is empty, then the
thread needs to wait (rule D3); as soon as it turns not empty, it triggers a dispatch and at the
same time sends the triggering event to the thread (rule D4), meanwhile the event is removed from
the queue. For both cases, at the dispi state, it goes to waitDi state directly, waiting for the next
dispatch (rule D5).

Thread execution. After a thread is dispatched, it goes to the execution process. In the following
semantics, we assume the input and output time of ports of threads are by default the dispatch
time and the completion time respectively. Assume the input port of thread i is ini, and the output
port is outi. The cases for multiple ports can be considered similarly.
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The thread stays at wait state initially. When the thread is dispatched, it goes to ready state
(rules E1, E1’, E2). The input value is assigned, the elapsed time of thread i from dispatching,
recorded by ti, is initialized to 0; and the variable eni, which denotes whether the computation
of the thread is done or not, is set to 0 for the first entrance; and the variable sri, indicating
whether it has sent a request for execution to the scheduler or not, is set to 0. If the thread is
periodic, and if ini is a data port, the input value is obtained from the connection cnki (rule E1).
The case for input event or event/data port can be defined similarly (rule E1’). If the thread is
aperiodic, the thread is dispatched with the corresponding triggering event received (rule E2). At
the first moment after entering the ready state, the thread sends a request to the scheduler (rule
E3). After the thread sends the request, if the processor is not available, it will stay in ready state
for some time (rule E4), where DLi denotes the deadline of thread i. If the elapsed time exceeds
the deadline at ready state, the thread notifies the scheduler by sending exit signal and goes back
to wait state (rule E5).

If the thread is scheduled to execute within the deadline, it enters the running state (rule E6).
When it is the first time to enter the running state from the ready state in this dispatch (implied
by en = 0), the execution time ci is set to 0 (rule E7). At the running state, the thread will execute
the behavior defined by S/S diagram. We assume the discrete computation will be finished in zero
time as soon as entering the running state and will not be preempted. We leave this question to
the combined semantics of AADL and S/S, where variable eni is set to 1 after the computation is
done.

According to the AADL standard, the thread completes execution at any time between the
minimal and maximal execution time. In order to fix a deterministic behavior, we force the thread
complete at the maximal execution time. After the computation is done, the thread can stay at
running state for some d time (rule E8). During this process, the thread may be preempted by
another ready thread (rule E9). If the elapsed time reaches the deadline first before the maximum
execution time is met, the thread goes to the error state (rule E10), then it gives up the processor,
by notifying the scheduler or gets preempted just at this time, and goes to awaiting dispatch state
directly (rule E11). If the thread reaches the maximum execution time before the deadline, it
executes successfully (rule E12).

It only remains to output the result. If the receiver is a thread in another processor, or a
device, the communication is realised by a shared bus. Thus the thread has to apply for the bus
resource. If the resource application is successful, it goes to complete state, and outputs to the bus
by adding to the corresponding queue (rule E13) or updating the variable (rule E15). At complete
state, it gives up the processor and goes to the awaiting dispatch state (rule E14). Otherwise, if
the resource is being used by other thread, it will be blocked (rule E16), and then gives up the
processor and goes to the await state (rule E17). At the await state, it waits to be unblocked, and
as soon as it is unblocked before the deadline, it goes to the ready state again (rule E18, E19).
Otherwise, the resource application fails and it goes to the awaiting dispatch state (rule E20).

5.2. Processes, Processor and Scheduler

A process includes a set of ports, port connections, properties and threads. One important
property defined in processor is schedu protocol, according to which the execution of all threads on
a processor is coordinated by the scheduler. There are various scheduling protocols, including First
In First Out (FIFO), Rate Monotonic Scheduling (RMS), Deadline Monotonic Scheduling (DMS),
Highest Priority First (HPF), and so on.
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(S1) (waitS, σ)
reqProcessori?−−−−−−−−−→ (preempt, σ[rdy 7→ i])

(S2) (preempt, σ)
idle=1,runi!−−−−−−−−→ (waitS, σ[run now 7→ i, idle 7→ 0]) i = σ(rdy)

(S3) (preempt, σ)
idle=0,canPreempt(i, run now),preemptrun now!,runi!−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (waitS, σ[run now 7→ i])

(S4) (preempt, σ)
idle=0,¬canPreempt(i, run now)−−−−−−−−−−−−−−−−−−−−−→ (waitS, σ[Pool 7→ Pool ∪ {i}])

(S5) (waitS, σ)
freei?−−−→ (sche, σ) (S6) (sche, σ)

Pool 6=∅,runj !−−−−−−−−→ (waitS, σ[run now 7→ j,Pool 7→ Pool\{r}])
(S7) (sche, σ)

Pool=∅−−−−−→ (waitS, σ[idle 7→ 1]) (S8) (waitS, σ)
Pool 6=∅,exiti?−−−−−−−−−→ (waitS, σ[Pool 7→ Pool\{i}])

Figure 3: Semantics of scheduler

Scheduler. There are three states of scheduler : waitS, preempt, and sche, responsible for waiting
for ready threads, trying to preempt current running thread, and scheduling threads respectively.
The semantics is given in Figure 3. Initially, the scheduler stays at waitS state, and the processor
is idle, represented by idle = 1.

When the scheduler receives a request from thread i, it goes to preempt state, where rdy records
the new ready thread (rule S1). If the processor is idle, the new ready thread is scheduled to execute
directly (rule S2), where run now denotes the current running thread. If the processor is busy, but
if the incoming ready thread i has higher priority than the running thread, i becomes the new
running thread, and the previous running thread is preempted (rule S3). Otherwise, it is added
to the waiting ready set, represented by Pool (rule S4), where function canPreempt(i, run now)
represents that i will preempt r according to the scheduling protocol.

When the current running thread completes, then the scheduler will receive a free signal from
the thread, and go to sche state (rule S5). At sche state, it will choose one thread from the ready
set to execute if the current ready set is not empty (rule S6), where j is defined by choose(Pool),
choosing the next running thread according to the scheduling protocol. Otherwise, it goes to waitS
state and the processor becomes idle (rule S7). If the thread fails to be scheduled before the
deadline, the scheduler will be notified and the thread will be deleted from the ready set (rule S8).

5.3. Connections

Port connections. For the sampled port connection, we model them as a variable or a queue,
depending on the type of the destination port. For instance, given a port connection cn: port
th1.a → th2.b, if th2.b is a data port, then we model cn as a variable cn12; otherwise, we model cn
as a queue cn12, indicating that thread 1 is the outgoing side and thread 2 is the incoming side.

Bus connections. Bus connection represents communication between processors, memory and de-
vices by accessing a shared bus. The exact semantics of bus behavior when there are multiple users
is not specified by the AADL standard. Indeed there are many variations, for example the differ-
ence between serial and parallel bus. We choose a basic semantics based on a simplified version of
the Carrier Sense Multiple Access with Collision Detection (CSMA/CD) protocol [19, 20], where
the bus blocks all other users during a transmission, and each transmission takes time specified
by the latency property in AADL. At the beginning, the bus stays at wait state. If it receives a
resource application, it goes to res state, obtains the input from the input connection, and records
the time that the thread occupies the bus (rule B1, B1’). Assume a predefined latency, denoted by
Lb, needed for the thread occupying the resource, then the bus will stay at res state for less than Lb
time (rule B2). During this time, it will block other thread who attempts to apply for the resource
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(rule B3). When the latency time is passed, the bus goes back to the wait state and transfers the
output through the corresponding output connection (rule B4, B4’). At the wait state, the bus
may also unblock some thread that was previously blocked (rule B5).

(B1) (waitB, σ)
reqResourcei?−−−−−−−−−→ (res, σ[tb 7→ 0, in 7→ top(cni), cni 7→ pop(cni)])

(B1′) (waitB, σ)
reqResourcei?−−−−−−−−−→ (res, σ[tb 7→ 0, in 7→ cni])

(B2) (res, σ)
tb+d≤Lb−−−−−−→ (res, σ[tb 7→ tb + d]) (B3) (res, σ)

blockj?−−−−→ (res, σ)

(B4) (res, σ)
tb=Lb−−−−→ (waitB, σ[cnj 7→ push(cnj , out)])

(B4′) (res, σ)
tb=Lb−−−−→ (waitB, σ[cnj 7→ out]) (B5) (waitB, σ)

unblocki!−−−−−−→ (waitB, σ)

Figure 4: Semantics of Bus

5.4. Combination of AADL and S/S

In our framework, there are two ways by which S/S diagrams are integrated with AADL.

Abstract type classifier. AADL allows defining the abstract type classifier for physical components,
which acts as an interface for integrating continuous models described in S/S. Such component
cannot be scheduled, but rather executes continuously. The type classifier for physical components
has the following form:

abstract phy

features

a: in data port;

b: out data port;

end phy

The implementation of phy will be defined as a continuous S/S diagram with the same name phy,
with input a and output b. Assume the connections to a and b are cna and cnb respectively. We
define them as the corresponding channels cna and cnb. According to the semantics of S/S diagram,
the semantics of phy implementation in S/S is composed of the following rules.

At any time, the continuous evolution is ready to output the value or receive the input value:

(s1, σ)
cnb!σ(b)−−−−−→ (s1, σ) (s1, σ)

cna?c−−−→ (s1, σ[a 7→ c])

Suppose the solution of the continuous evolution of phy with initial value σ is p defined over the

time interval [0,∞), then for any d > 0, we have (s1, σ)
d−→ (s1, σ[b 7→ p(d)]).

On the AADL side, the connections to a and b are defined by the corresponding communications.
Both communications can occur immediately whenever needed on the AADL side.

Thread behavior implementation. In this paper, we focus exclusively on using S/S diagrams to
define computational behavior of threads (and so omitting the case of behavioral annexes). For
this case, we need to introduce new channels to transfer the values between AADL thread and S/S
diagram. Assume thread i has an input port a and an output port b, then define channels as and
bs for transmission of input and output respectively:

(s1, σ)
as?c−−→ (s2, σ[a 7→ c]) (s2, σ) −→ (s3, σ

′) (s3, σ)
bs!σ(b)−−−−→ (s1, σ)
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Especially, the second transition corresponds to the discrete computation of the S/S diagram. On
the AADL side, the rule (E7) is changed to:

(runningi, σ)
t<DLi∧eni=0,as!a,bs?f−−−−−−−−−−−−−−−→ (runningi, σ[c 7→ 0, b 7→ f, eni 7→ 1])

where eni is changed to 1, representing that the computation is finished.
Finally, we define the semantics of the combined AADL and S/S by the parallel composition of

respective transition systems in both cases, in which the communication events are synchronized.

6. An HCSP-based Denotional Semantics of AADL ⊕ S/S

In this section, we present a translation of AADL⊕ S/S to HCSP, which defines a denotational
semantics of AADL ⊕ S/S. First, we review the existing translation from S/S diagrams and give
some examples. Next, we consider translation of threads, scheduler, and connections in turn.
Finally, we describe the translation of combined AADL⊕ S/S models.

6.1. From S/S to HCSP

Existing work by Zou et al. [21, 22] define how to translate S/S components into HCSP pro-
cesses. Inputs and outputs of S/S diagrams are translated into HCSP communication channels to
support interaction with the other translated components. To give a specific example from our case
study, consider the Simulink diagram modeling the physical behavior of the vehicle (vehicle.imp)
in Figure 10. The diagram is given in Figure 5(a), and the following is the translated HCSP
process.

vehicle_imp ::=

v := 0; s := 0; sent_laser := 0; sent_wheel := 0; sent_GPS := 0;

while sent_laser == 0 || sent_wheel == 0 || sent_GPS == 0 do

ch_laser!v --> sent_laser := 1

$ ch_wheel!v --> sent_wheel := 1

$ ch_GPS!s --> sent_GPS := 1

endwhile;

ch_actuator?a;

(<s_dot = v, v_dot = a & true > |> [](

ch_laser!v --> skip , ch_wheel!v --> skip ,

ch_GPS!s --> skip ,ch_actuator?a --> skip)

)**

The velocity v and the position s of the vehicle are initialized to 0. The process first outputs
all initialized values and then receives an acceleration a which can start the evolution of the ODE.
During the continuous evolution, it is always ready to receive a new acceleration and output
the current velocity or position of the vehicle. Observe that the input (acceleration) and the
three outputs (one for position and the other two for velocity) are translated into communication
channels ch actuator, ch GPS, ch laser and ch wheel, respectively.

Next, consider the user panel control thread (pan ctr th.imp) of the system in Figure 10,
which is modeled using a Stateflow diagram. The diagram is given in Figure 5(b) and the translated
HCSP is as follows. It first initializes the desired velocity des v to 0 and then monitors events via
input channels. If any event arrives, the corresponding discrete computation is performed and the
execution result is delivered.

panel_ctr_th_imp ::=

des_v := 0; # Initialization

(inputs?event;
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Figure 5: Examples of S/S diagrams

event == "inc" -> des_v := des_v + 1; # Discrete Computation

event == "dec" -> des_v := des_v - 1;

outputs!des_v

)**

From the above example, we can see that the translation of an S/S diagram defining the
behavior of an AADL thread is divided into four parts: initialization of variables, input, discrete
computation, and output. These will be spliced into the code for the thread as will be described
in Sect. 6.3.

6.2. Translation of the Scheduler

We now examine the translation of the HPF scheduler, shown in Figure 6(a), which will be
used in the case study. Similar translation principles apply to most, if not all, scheduling policies
specified in the AADL standard. The translation of HPF provides three pieces of information:
the list of threads that are currently ready (Pool), the ID (run now) and priority (run prior) of
the thread that is currently running (−1 if no thread is running). When the scheduler receives
a request from a thread, it compares the priority of the thread with the priority of the running
thread. If the running thread has higher priority, then the new thread is inserted into the ready
pool. Otherwise, the running thread is preempted, and the new thread starts running. When a
thread releases the processor, the scheduler chooses the thread with the highest priority in the
ready pool to run. When a non-running thread signals that it is no longer ready, the scheduler
simply removes it from Pool.

6.3. Translation of Threads

In this section, we introduce translation of threads with periodic and aperiodic dispatch proto-
cols. Each thread is translated into two HCSP processes. One process, with name prefixed by DIS,
is used to dispatch the thread, while the second, with name prefixed by EXE, models execution of
the thread.

6.3.1. Thread Dispatch

The translation of dispatching an aperiodic thread is shown in Figure 6(b). It describes the
behavior that the source thread (send) sends events via the port out port to the port in port

on the target thread (recv). Once recv receives an event, it can be dispatched. Inside the
dispatching process, queue contains the list of events to be processed. If the event queue is
empty, then the process monitors channel outputs[send][out port], and pushes any received
event onto the queue. If there are events in the queue, the process either gets a new event through
outputs[send][out port] as in the previous case, or dispatch the thread by sending the head
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1 module SCHEDULE_HPF(sid) ::=

2 Pool := [];

3 run_now := -1; run_prior := -1;

4 (

5 reqProcessor[sid][_tid]? prior -->

6 if run_prior > prior then

7 Pool := put(Pool , [prior , _tid])

8 else

9 run_now != -1 ->

10 preempt[sid][ run_now ]!;

11 run_now := _tid;

12 run_prior := prior;

13 run[sid][ run_now ]!

14 endif

15 $ free[sid][_tid]? -->

16 assert(_tid == run_now);

17 if len(Pool) > 0 then

18 (run_prior , run_now) :=

19 get_highest(Pool);

20 Pool := delete(Pool , run_now);

21 run[sid][ run_now ]!

22 else

23 run_prior := -1; run_now := -1

24 endif

25 $ exit[sid][_tid]? -->

26 Pool := delete(Pool , _tid)

27 )**

(a) Translation of the HPF scheduler

1 module DIS_aperiodic(

2 send , out_port , recv , in_port) ::=

3 queue := [];

4 (if len(queue) == 0 then

5 outputs[send][ out_port ]? event;

6 queue := push(queue , event)

7 else # len(queue) > 0

8 outputs[send][ out_port ]? event -->

9 queue := push(queue , event)

10 $ dis[recs][ in_port ]!head(queue) -->

11 queue := tail(queue)

12 endif)**

(b) Dispatch for aperiodic threads

1 module DIS_periodic(tid , period) ::=

2 (wait(period);

3 dis[tid]!)**

(c) Dispatch for periodic threads

Figure 6: Translation of scheduler and dispatching threads

event of the queue along dis[recv][in port]. The dispatch for periodic threads is much simpler,
shown in Figure 6(c).

6.3.2. Thread Body

Next, we consider translation of thread body. The body of a thread consists of discrete computa-
tion followed optionally by outputting the result along a shared resource. The discrete computation
is described by an S/S model, so the translation comes from Section 6.1. We will represent this
code as {Discrete Computation} in the following.

Next, we consider translation of output. If no resource is required, the translation is given
in Figure 7(a). Otherwise, it is given in Figure 7(b). We will represent this code as {Output}
in the following. For the first case, the thread simply outputs using the given channel, and then
gives up the processor, by sending a free signal, or exactly at this moment, receiving the preempt

signal. For the second case, the thread requests the resource by either successfully sending the
reqResource signal or receiving a block signal. These two channels are implemented by the
translation of bus component (see Sect. 6.4), which guarantees that at any time one of these two
channels is ready for communication. If the thread is able to send the reqResource signal, it
obtained access to the bus, so it can proceed to send the outputs, and gives up the processor at
the end as before. Otherwise, it gives up the processor and transitions to the await state (to be
explained below).

6.3.3. Thread Execution

The translation for thread execution is shown in Figure 7(c). It is expressed as the HCSP
process EXE, which is structured as a state machine. Variable state represents the current state of
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1 outputs[tid][ out_port1 ]!out1;

2 outputs[tid][ out_port2 ]!out2;

3 ...

4 (free[tid]! --> state := "wait"

5 $ preempt[tid]? --> state := "wait")

(a) Output: no resource required

1 reqResource[tid]! -->

2 outputs[tid][ out_port1 ]!out1;

3 outputs[tid][ out_port2 ]!out2;

4 ...

5 (free[tid]! --> state := "wait"

6 $ preempt[tid]? --> state := "wait")

7 $ block[tid]? -->

8 # Resource request failed

9 (free[tid]! --> state := "await"

10 $ preempt[tid]? --> state := "await")

(b) Output: resource required

1 module EXE(tid , prior , Max , DL) ::=

2 {Initialization}

3 state := "wait";

4 (if state == "wait" then

5 dis[tid]?;

6 {Input}

7 t := 0; en := 0; state := "ready"

8 elif state == "ready" then

9 reqProcessor[tid]!prior;

10 <t_dot = 1 & t < DL> |> []

11 (run[tid]? --> state := "running");

12 t == DL && state == "ready" ->

13 (exit[tid]! --> state := "wait"

14 $ run[tid]? --> state := "running")

15 elif state == "running" then

16 en == 0 ->

17 (c := 0;

18 {Discrete Computation };

19 en := 1);

20 en == 1 -> (

21 <t_dot = 1, c_dot = 1 & c < Max

22 && t < DL> |> [] (

23 preempt[tid]? --> state := "ready")

24 state == "running" ->

25 # c == Max or t == DL

26 if c == Max then

27 # t <= DL

28 {Output}

29 else

30 # c < Max && t == DL

31 preempt[tid]? --> state := "wait"

32 $ free[tid]! --> state := "wait"

33 endif

34 );

35 else # state == "await"

36 <t_dot = 1 & t < DL> |> []

37 (unblock[tid]? --> state :=

"ready");

38 t == DL -> state := "wait"

39 endif

40 )**

(c) Translation of thread execution

Figure 7: Translation of thread execution

the thread (one of wait, ready, running and await). Variables t, c and en are introduced, with
the same meaning as in Sect. 5.

The thread is initially at wait state, waiting for dispatching. First we consider the case of
periodic dispatching. Once it receives the dispatching signal from DIS periodic, it takes inputs
from the input ports, resets t and entered, and then enters the ready state. The {Input} can be
modeled by a sequence of input channel operations that get data and events from all input ports:

inputs[tid][ in_port1 ]?in1; inputs[tid][ in_port2 ]?in2 ;...

In the ready state, the thread first sends its request to run to the scheduler (line 9). Then it
waits for the permission from the scheduler inside an interrupt construct for at most DL (deadline)
time units (line 10-11). If the scheduler sends the run signal within the deadline, the thread enters
the running state. If the deadline has passed with the thread still in ready state, the thread sends
the exit signal and returns to the wait state. The external choice on line 14 ensures that if the
scheduler sends the run signal exactly when t reaches the deadline, the thread will still enter the
running state.

In the running state, the implementation is divided into whether it is entered into for the first
time during the current dispatch. For the first entry, the computation time c is set to 0. Then, the
thread performs discrete computation and set variable en to 1. As explained in Sect. 5, we choose
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to model the thread as completing the discrete computation immediately.
After the discrete computation, the thread begins to wait for a duration of its maximum execu-

tion time, inside the interrupt construct on line 21-23. The waiting stops either when the maximum
execution time is reached (c == Max), when the deadline is reached (t == DL), or preempted by
the scheduler. If the interrupt construct finishes with the thread still in running state, then it
must be the case that one of the two boundary conditions is reached. If the maximum execution
time has reached, the thread proceeds to produce output (Sect. 6.3.2). Otherwise, the deadline is
reached and the thread goes to wait state.

In the await state, the thread uses an interrupt construct to wait for the resource to unblock,
until the deadline is reached (line 36-37).

The above defines the execution model for periodic threads. For aperiodic threads, the only
modification is replacing the dispatching statement dis[tid]? with an external non-deterministic
choice, such as

dis[tid][ in_event_port1 ]?event --> skip $ dis[tid][ in_event_port2 ]?event --> skip $ ...

because an aperiodic thread is dispatched by event, and there may be several different kinds of
such events. In addition, the {Input} of an aperiodic thread can be depicted by the following
sequence of input channel operations that get data from the input data ports:

inputs[tid][ in_data_port ]?in1; inputs[tid][ in_data_port2 ]?in2 ;...

6.4. Translation of Ports and Connections

Each port connection can be formalized as a pair of HCSP communications in which the flow
of data or control is directional. In this way, the interfaces and connections defined in the AADL
file can be realized through connections between ports.

send1

send2

bus

recv1

recv2

out_port1
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(a) Buffers between ports
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(b) Two sender threads share one bus

Figure 8: Connections are translated into buffers (with and without buses)

First, we consider the case that connections are not bound to buses. If two threads are bound
to the same processor, then they can communicate with each other without buses. In this case,
connections can be translated into a buffer on the receiver port to store temporarily data or event,
see Figure 8(a). Consider a connection from the data port out port on the thread send to the
data port in port on the thread recv. The translation is shown in Figure 9(a). According to
the EXE defined above, out port and in port can be translated into the respective channel oper-
ations outputs[send][out port]! and inputs[recv][in port]?. According to [13], data ports
are interfaces for data transmission among components without queuing and the transmission is
asynchronous. So, there should be a buffer on the receiver port to coordinate the asynchronous
transmission, which can be modeled by an ODE with communication interrupt, as shown in Fig-
ure 9(a).
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In contrast to data ports, event ports are interfaces for the communication of events that may
be queued [13]. For the event ports out port2 on send2 and in port2 on recv2 in Figure 8(a), if
the receiver thread is aperiodic, then the connection can be represented by a dispatching process
DIS aperiodic(send2, out port2, recv2, in port2) introduced in Sect. 6.3.1. If the receiver
thread is periodic, then connection can be translated into a simplified DIS aperiodic, i.e., an
EventBuffer, shown in Figure 9(b).

1 module DataBuffer(send , out_port ,

2 recv , in_port , init_value) ::=

3 data := init_value; (

4 <data_dot = 0 & true > |> []

5 (outputs[send][ out_port ]?data --> skip ,

6 inputs[recv][ in_port ]!data --> skip)

7 )**

(a) Translation of connections between data
ports (not bound to buses)

1 module EventBuffer(

2 send , out_port , recv , in_port) ::=

3 queue := [];

4 (if len(queue) == 0 then

5 outputs[send][ out_port ]? event;

6 queue := push(queue , event)

7 else # len(queue) > 0

8 outputs[send][ out_port ]? event -->

9 queue := push(queue , event)

10 $ inputs[recv][ in_port ]!head(queue) -->

11 queue := tail(queue)

12 endif

13 )**

(b) Translation of connections between event
ports (not bound to buses). The receiver

thread is periodic.

1 module BUS(bus_id , send1 , out_port1 ,

send2 , out_port2) ::= (

2 reqBus[send1]? -->

3 outputs[send1 ][ out_port1 ]?data;

4 BLOCK2;

5 outputs[bus_id ][ out_port1 ]!data

6 $ unblock[send1 ]! --> skip

7 $ reqBus[send2]? -->

8 outputs[send2 ][ out_port2 ]?event;

9 BLOCK1;

10 outputs[bus_id ][ out_port2 ]!event

11 $ unblock[send2 ]! --> skip

12 )**

(c) Translation of connections between ports
(bound to buses).

1 BLOCK1 ::=

2 t := 0;

3 while t < latency do

4 <t_dot = 1 & t < latency > |> []

5 (block[send1]! --> skip)

6 endwhile

(d) Implementation of BLOCK1

1 BLOCK2 ::=

2 t := 0;

3 while t < latency do

4 <t_dot = 1 & t < latency > |> []

5 (block[send2]! --> skip)

6 endwhile

(e) Implementation of BLOCK2

Figure 9: Translation of connections

Then, we consider the case that connections are bound to one or more buses., i.e., buses can be
shared among different components. In order to illustrate the translation intuitively, we introduce
an example of two send threads sharing one bus, showed in Figure 8(b), where the out port1

on send1 is a data port while the out port2 on send2 is an event port. The bus process is
shown in Figure 9(c). Before sending an output, the senders try to request the permission for
using the bus via channels reqBus[send1] and reqBus[send2]. If one gets the permission, it
sends the data to the bus via channel outputs[sendi][out porti] immediately. Therefore, the
DataBuffer on in port1 of recv1 and the EventBuffer on in port2 of recv2 should be instan-
tiated as DataBuffer(bus, out port1, recv1, in port1) and EventBuffer(bus, out port2,

recv2, in port2), respectively, where out port1 and out port2 are corresponding output ports
on the bus. The transmission may generate latency. During the transmission period, any other
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thread requesting the bus permission will be blocked (BLOCK). The blocking code is shown in Fig-
ure 9(d) and 9(e). When the bus becomes idle, it can unblock the blocked threads by sending the
signal unblock[send] to the corresponding thread.

6.5. Translation of the combined model to HCSP

With the aid of Simulink, the continuous dynamics of the physical world can be described.
The physical environment, such as the temperature, evolves forever following some ODEs and
communicates passively with control programs, i.e., it can be observed by sensors and affected by
actuators but it will never send or require data/event actively. Due to these special characteristics,
as far as we know, there is no component of AADL that can model physical environments in a
natural manner. Therefore, we choose abstract components specified by continuous Simulink
diagrams to represent physical environments, which can be translated into HCSP processes using
existing work [21, 22].

The behaviour of a thread in AADL can also be modelled by an open S/S diagram which
gets data and events from input ports and outputs the computation results to output ports. The
input and output ports of the S/S diagram should be linked to the corresponding data and event
ports on the thread. Thus, every thread can be translated into an individual HCSP process.
The connections between threads can be translated into buffer and bus processes for coordinating
asynchronous communication between components (see Sect. 6.4). Processors are translated into
scheduler processes managing the execution of threads according to the specified scheduling policies.
In addition, devices can be modelled directly by HCSP processes for producing simulated signals,
or modelled as Simulink blocks like signalBuilder and then translated into HCSP processes.
Finally, these separated HCSP processes can be integrated in parallel to form the whole model of
the system.

7. Correctness of Translation

We now consider the correctness of translation from AADL and AADL ⊕ S/S to HCSP. The
correctness of translation from S/S to HCSP that we rely on is proved in existing work [15]. Hence
we only examine the AADL part. The correctness of translation of AADL ⊕ S/S follows from the
weak bisimulation relation between the two sides. We first introduce the related notions.

Let 〈S, A,→〉 be a labelled transition system, where S is a set of configurations, A a set of
actions (including communication action, time progress, and the silent action τ),→⊆ (S×A×S) is
the transition relation. We write s

a−→ t to represent a transition, s⇒ t a transition path consisting
of an arbitrary number of τ transitions, and s

a⇒ t a path s ⇒ s1
a−→ t1 ⇒ t for a ∈ A\{τ}. The

semantics of AADL defined in Sect. 5 is a transition system, where each configuration has the
form (s, σ), with s an AADL execution state and σ a variable valuation, and A a set of timed and
communication events. The semantics of HCSP can also be defined as a transition system, see [15]
for details, where a configuration has the form (P, σ), with P a HCSP process to be executed and σ
a valuation. With the semantics of both AADL and HCSP defined in terms of transition systems,
we can compare them using weak bisimulation. For each configuration co, we introduce co.val to
return the corresponding valuation. The notion of weak bisimulation is given below.

Definition 1 (Weak bisimulation). Let Ti = 〈Si, Ai,→i〉 be two transition systems for i = 1, 2. A
relation R ⊆ S1 × S2 is a weak bisimulation, iff it is symmetric, and moreover, for all (s, t) ∈ R,
s.val =m t.val, i.e. they are equivalent under a projection m from variables of T1 to T2, and if
s

a⇒1 s
′ holds, then there exists a path t

a⇒2 t
′ such that (s′, t′) ∈ R.
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We can then prove the following result indicating the equivalence between AADL and its
translated HCSP model.

Theorem 1 (Correctness of translation). Let M be a given AADL model and H its translated
HCSP process. Assume σ is an initial valuation, then there exists a weak bisimulation relation R
such that ((M,σ), (H,σ)) ∈ R.

Proof. We prove the theorem according to the type of AADL construct M . If M is a thread i, then
its transition semantics consists of two parts: thread dispatch and execution. We list the proof
respectively for them below.

Thread dispatch. The HCSP processes of thread dispatch are given in Fig. 6(b,c) respectively.
Let σ be an initial state, then M starts at (waitDi, σ), next we prove that it satisfies the weak
bisimulation relation with the corresponding HCSP process (DIS, σ), depending on whether thread
i is dispatched periodically or aperiodically. If thread i is periodic,

• Transition D1 corresponds to the execution of wait(period) of DIS periodic, where period↔
di.

• Transition D2 corresponds to the execution of dis[tid]!, then AADL side goes to (dispi, σ[dti 7→
di]), and meanwhile, the HCSP side goes to the end of the first repetition, i.e. (ε; DIS periodic, σ′),
satisfying that σ′ and σ[dti 7→ di]) are equivalent except for local variables of each side (e.g.
dti for AADL). Notice that both the communications can occur immediately from transition
E1 of AADL side and HCSP process EXE.

• Transition D4 corresponds to the start of the next repetition, i.e. (DIS periodic, σ′). All
the above relations are symmetric.

If thread i is aperiodic,

• Transition D3 defines the waiting for incoming event, when the corresponding input event
queue cnki is empty, and goes to (waitDi, σ[gc 7→ gc + d]). The projection is queue ↔ cnki,
with initial value [] in DIS aperiodic. We denote the repetition part by body∗. Corre-
spondingly, body∗ has an execution when queue is empty (it will wait till some incom-
ing event is received, decided by thread k which outputs event to queue), resulting in
(body; body∗, σ[gc 7→ gc+ d]).

• When transition D4 occurs, the queue cnki is not empty, correspondingly, queue is not empty
in body, and for both sides, the output disi! is ready to occur, resulting in (dispi, σ[cnki 7→
pop(cnki)]) and (ε; body∗, σ[queue 7→ tail(queue)]) respectively.

• When transition D5 occurs, it goes to (waitDi), σσ[cnki 7→ pop(cnki)]), and meanwhile, the
HCSP side goes to next repetition, i.e. (body∗, σ[queue 7→ tail(queue)]) again.

For most of the above relations, they are symmetric. There is one exception that, for DIS aperiodic,
at the beginning of execution of body, there exists a transition corresponding to the receiving of
event when queue is empty, i.e. (body; body∗, σ) goes to (ε, body∗;σ[queue 7→ push(queue, ev)]).
This occurs when thread k sends ev to thread i, i.e. thread k executes output (line 28 of HCSP
process EXE). At the AADL side, there exists a transition E13 for thread k that writes the output
event outk to the shared queue cnki. Notice that HCSP uses synchronized communication while
AADL uses shared variable to manage the event queue.
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Thread execution. The HCSP process of thread execution, i.e. EXE, is given in Fig. 7(c). We use
EXEi to represent the execution of thread i. The AADL side starts at (waiti, σe), and the HCSP
side starts at (EXEi, σ

′
e), where σe and σ′e are resulting from the thread dispatch and they are

equivalent under a projection from the proof for thread dispatch.

• When E1 executes, disi? occurs, resulting in readyi state and the assignment of some lo-
cal variables. This transition corresponds to the execution of lines 3-7 in EXE, where the
projection between variables is

disi?↔ dis[i]?, ti ↔ t, eni ↔ en, ini ↔ data

where data corresponds to the value resulting from the communication between EXE and
DataBuffer in Fig. 9(a). sri for AADL side is local and not present in HCSP side.

• When E1’ executes, the assignments of ini and cnki correspond to the communication between
EXE and lines 10-11 of EventBuffer, with ini ↔ head(queue), and the other mapping is the
same as E1.

• When E2 executes, disi?e occurs by receiving a triggering event, corresponding to line 5 of
EXE, and the other mapping is the same.

• Transition E3 corresponds to the execution of line 8-9 of EXE.

• Transition E4 corresponds to the continuous evolution within the domain defined at line 10
of EXE, with the mapping d↔ t,DLi ↔ DL.

• Transition E5 corresponds to lines 12-13, with mapping exiti!↔ exit[i]!.

• Transition E6 corresponds to the continuous interrupt by communication at line 11, and the
external choice at line 14, of EXE, with mapping runi?↔ run[i]?.

• Transition E7 corresponds to lines 15-17, with mapping ci 7→ c.

• Transition E8 corresponds to lines 20-22, which executes the continuous evolution for time d
by preserving the domain, and the variable mapping is obvious.

• Transition E9 corresponds to the interrupt at line 23, before the continuous evolution termi-
nates.

• Transition E10 is an internal action, and together with E11, they correspond to the external
choice at lines 31-32.

• Transition E12 corresponds to line 21-22, when ci reaches Maxi.

• Transitions E13,E15 correspond to the cases when resource is needed for output, which is
defined at line 1-2 of Fig. 7(a), together with the lines 2-3 of Fig. 9(c) if the resource is bus.

• Transition E14 corresponds to lines 4-5 and lines 5-6 of Fig.7(a, b) depending on whether the
resource is needed or not.

• Transition E16 corresponds to line 7 of Fig. 7(b) , and followed by this, E17 corresponds to
the external choice of lines 9-10.
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• Transition E18 corresponds to the continuous evolution of line 36 of EXE, and E19, E20
correspond to line 37-38 respectively.

All the above relations are symmetric, except for one case: in EXE line 18-19, the discrete
computation is taken and the variable en is set to 1. This transition corresponds to the execution
of S/S diagram, which are defined as a sequence of transitions at the bottom of Sect.5.4.

Scheduler. The HCSP process of scheduler is given by SCHEDULE HPF in Fig. 6(a). The initial
state waitS of scheduler corresponds to the start of the external choice on lines 5, 15, and 25,
after executing the initialization at lines 2-3 of SCHEDULE HPF. The variables Pool and run now
are common at both sides, while the others are local. In particular, idle = 1 is implied by
run now = −1 and run prior = −1; rdy corresponds to tid, etc.

• Transition S1 corresponds to line 5, the execution of communication action, with the mapping
rdy ↔ prior.

• Transition S2 corresponds to lines 11-13, where idle is local to the AADL side. idle is set to
0, corresponds to that run prior is set to the priority of the requesting thread. Transition
S3 corresponds to lines 9-13.

• Transition S4 corresponds to line 7, where thread i is pushed into the waiting Pool.

• Transition S5 corresponds to line 15, and transitions S6 and S7 correspond to lines 18-21 and
23 respectively.

• Transition S8 correspond to the communication action at lines 25-26.

When the above transition goes back to waitS state, it corresponds to another repetition of the
body at lines 5-26. All the above relations are symmetric.

Connections. The HCSP process for the bus connection is given by process BUS in Fig. 9(c). The
initial state waitB corresponds to the starting of BUS.

• Transitions B1, B1’ correspond to the prefix events and receiving data/events of lines 7-8
and 2-3, where data↔ in and event↔ in respectively.

• State res corresponds to the BLOCK process on lines 4 and 9. The variable mapping is {tb ↔
t, Lb ↔ latency}. Starting from this state, transitions B2 and B3 correspond to the interrupt
process on lines 4-5 of BLOCK1 and BLOCK2 processes respectively.

• Transitions B4 and B4’ correspond to the output data and event on lines 5, 10 respectively.

• Transition B5 corresponds to lines 6 and 11.

All the above relations are symmetric.
By now, all the types of AADL constructs are proved, and Theorem 1 holds.
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8. A Simulation Tool for HCSP

In order to test the correctness of the translation from AADL ⊕ S/S into HCSP given in the
previous section, in this section, we describe a new simulator for HCSP with a graphical user
interface. Additionally, this allows us to quickly obtain the result of running an HCSP process, in
order to check that its behavior is as expected.

While there are non-deterministic elements in HCSP, they are not used often. In particular, the
result of translation described in this paper is essentially deterministic. Our aim in the simulator
is to compute an execution path of the process and visualize it in a graphical interface. The
computation follows closely the small-step operational semantics of HCSP.

The configuration of a single process is given by a triple (P, pos, st), where P is the process
itself, and is unchanged during the simulation, pos is a program point in P , and st is the state of
the process, as a mapping from variable names to values (which can be numbers, strings, or lists).
Note that according to the semantics of HCSP, the states of processes in parallel are independent
from each other.

A program point is a tuple of integers specifying the current location of execution, in the
abstract syntax tree of the process. We use this concept rather than modifying the process (as in
small-step semantics) for easier visualization. For each construct in HCSP, there is a corresponding
definition of moving to the next program point in the construct. Their derivation from small-step
semantics is routine, and we omit the details here (the reader can refer to [15]).

8.1. Abstract Procedure

The abstract procedure for simulating a parallel of n processes is given in Algorithm 1 and 2.

Algorithm 1 Perform internal steps of a process

procedure exec process(pos)
Require: pos is the starting position
Ensure: pos is at a position where no more internal steps can be performed, comm and delay specify

expected communications and delay.
while true do

if pos at 〈ϕ&B〉 then
comm ← [], delay ← time ϕ stay in B

else if pos at 〈ϕ&B〉(c1 → P1, · · · , cn → Pn) then
comm ← {c1, . . . , cn}, delay ← time ϕ stay in B

else if pos at c1 → P1 $ · · · $ cn → Pn then
comm ← {c1, . . . , cn}, delay ← ∞

else if pos at c then
comm ← c, delay ← ∞

else
pos ← perform internal step

end if
end while

end procedure

At each iteration, perform exec process on each process, until no more internal steps can be
performed. Then exec process returns a list comm of communications the process can perform,
and a delay recording the number of time units the process can wait (which may be infinite). The
cases are:
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• If the next step is a communication, then comm contains the communication, and delay is
infinite.

• If the next step is an ODE, compute the amount of time before the ODE reaches the boundary
(which may be infinite), and set that to delay. The comm list is empty.

• If the next step is an ODE with communication interrupt, the delay is computed as in the
previous case. In addition, comm is the list of possible interrupts.

• If the next step is an external choice, then delay is infinite, and comm is the list of commu-
nications.

Algorithm 2 Simulate a parallel of processes

procedure exec parallel(hps)
Require: hps is a list of processes in parallel.

step ← 0
while step < number of steps do

for hp in hps do
hp.comm, hp.delay ← exec process(hp)

end for
if ∃hp1 hp2 c. c! ∈ hp1.comm ∧ c? ∈ hp2.comm then

perform communication c
else if min(hp.delay) 6=∞ then

perform delay min(hp.delay)
else

break . deadlock
end if

end while
end procedure

After all available internal steps are performed, we first check whether there is a matching
communication. If there is, perform the communication. If no matching communication is available,
we next find the minimum of the delay among all processes. If the minimum is finite (meaning at
least one process has a non-infinite delay), then that amount of delay is performed. Here an ODE
solver is used to compute numerical solutions to ODEs. If all delays are infinite, we declare that
the process has reached a deadlock.

8.2. Implementation

The above procedure is implemented in Python. In addition to real numbers, the state of the
system may contain strings and lists. Operations on lists as stack, queue, or priority queue are
supported. Solving of ODEs is done using Python’s scipy package (function solve ivp), which is
also able to accurately calculate the time at which the boundary of the domain is reached using
a root-finding algorithm. Finally, the simulator is linked to a web interface which is able to show
the HCSP process in pretty-printed form, the steps of execution, and a plot of the variables in the
process against time. This allows us to not only view the result of running an HCSP process, but
also find out what went wrong if the process does not execute as expected.
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9. Case Study

In this section, we model an automatic cruise control system using AADL⊕ S/S. Then, we use
the above framework to translate the model and its several variants into HCSP processes. The
resulting HCSP model and its variants are analyzed by simulation and verification.

9.1. A Cruise Control System

The case study is adapted from the self-driving car system in [14], where it is modeled by AADL
only. We extend the model by adding environment and control components modeled by S/S. The
architecture is divided into three levels, shown in Figure 10. The top level is the continuous plant,
i.e., the physical vehicle, of the system described by a Simulink diagram. The vehicle receives
an acceleration command from the actuator and then evolves following an ODE. It outputs the
current position to GPS whenever required. There are two speed sensors, one is located on the wheel
and the other uses laser technology. If one of them fails, the other can still work to guarantee
that the control system gets the real-time speed of the vehicle.

The middle level defines the control of the system. First, data is obtained from sensors,
then computation is performed and finally control command is sent to actuators. The process
obs det.imp for obstacle detection contains two threads: img acq.imp and comp obs pos.imp.
The thread img acq.imp acquires from a camera raw images of the road ahead and then sends
the processed images to the thread comp obs pos.imp which also receives obstacle information
detected by a radar. comp obs pos.imp then outputs the final position of the obstacle. The image
processing of img acq.imp may cause some delay, so its behavior is abstracted as a unit delay
(Figure 11(a)) because the details of the image processing is not a concern in this case study. The
behavior of comp obs pos.imp is also described by a discrete Simulink diagram (Figure 11(b))
which combines the two inputs in a conservative way.

The process vel ctr.imp for velocity control consists of three threads. vel voter.imp is a
velocity voter receiving and combining speed information from wheel and laser. Its behavior is
modeled by a discrete Simulink diagram (Figure 11(e)). PI ctr.imp receives the vehicle speed
produced by vel voter.imp and a desired speed from the user panel and then computes a de-
sired acceleration. Its behavior is modeled by a discrete PI controller with a wind-up method
(back-calculation) (Figure 11(f)). emerg.imp is modeled by a Stateflow diagram (Figure 11(c))
which receives obstacle position from obs det.imp, vehicle position from GPS, vehicle speed from
vel voter.imp and the desired acceleration from PI ctr.imp, and computes a command to the
actuator based on all these inputs. It checks whether the acceleration output by PI ctr.imp is
safe with respect to obstacle position. If so this is allowed as the final command. Otherwise, it
overrides the command with a safe deceleration. emerg.imp is the key of the CCS and the details
of its control strategy is specified and verified in Sect. 9.4.

Process pan ctr.imp includes only one thread pan ctr th.imp. It receives events from device
user panel. The driver can control user panel by triggering an event inc or dec to increase or
decrease the desired speed. The behavior of pan ctr th.imp is modeled by a Stateflow diagram
(Figure 11(d)).

The bottom level of the architecture is the platform consisting of a bus and a processor. All
threads are bound to the processor. The scheduling policy of the processor is HPF as introduced
in Sect. 6.2. The bus has a latency which is set to 1ms or 3ms in the following experiments.
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9.2. Translation to HCSP

We now describe the exact settings of parameters used for translation in the experiments.
The parameters setting for threads and devices are shown in Table 1. Here MaxET is short for
“Maximum Execution Time”.

Table 1: Parameters of threads and devices in Figure 10

thread priority period MaxET deadline device period
img acq.imp 1 45ms 10ms 45ms camera 200ms
comp obs pos.imp 1 97ms 20ms 97ms radar 10ms
emerg.imp 2 5ms 1ms 5ms actuator 2ms
PI ctr.imp 1 7ms 1ms 7ms GPS 6ms
vel voter.imp 1 8ms 1ms 8ms wheel 10ms
pan ctr th.imp 0 – 10ms 100ms laser 10ms

user panel –

For the devices like camera, radar and user panel, we use HCSP directly to describe their
behaviors for testing. For the following experiments, we vary the number of buses and bus latency.
The length of HCSP code in all variants is roughly similar, at about 970 lines.

9.3. Simulation

We set up a scenario where there is a mobile obstacle in front of the vehicle and where the
driver also sets a desired speed for the vehicle. In this scenario, camera fails to work and thus only
radar can detect the obstacle. We assume that the obstacle appears at time 10s and position 35m,
then moves ahead with velocity 2m/s, before finally moving away at time 20s and position 55m.
This information is represented by simulated signals received by the radar. At the beginning of the
simulation, the vehicle is at rest at position 0m and the driver pushes the inc button three times
with time interval 0.5s in between to set a desired speed to 3m/s. After 30s, the driver pushes the
dec button twice in 0.5s time intervals to decrease the desired speed. We simulate this scenario
for 40s. The results are presented below.

9.3.1. Comparison with AADL⊕S/S2C
First, we test a simplified scenario without bus latency, in order to compare the results with

simulation using our tool AADL⊕S/S2C (which does not handle bus latency) introduced in Sect. 4.
The left of Figure 12 shows the simulation results of the vehicle speed, where the black line denotes
the desire velocity set by the driver, and the red and blue lines denote simulation results from
translation to HCSP and translation to C, respectively. We can see that the two simulation results
are very similar. The right figure shows the positions of the vehicle and of the obstacle with respect
to time. The vehicle accelerates to the desired speed (3m/s) in 10s, and the acceleration is under
the control of PI ctr.imp. When radar detects an obstacle ahead (10s), the vehicle still keeps
a stable speed for about 2s because the distance to the obstacle is safe. Then, emerg.imp takes
control of the speed in order to avoid a collision. When the obstacle moves away at 20s, PI ctr.imp

takes control back and the speed bounces back quickly. After 10s, PI ctr.imp adjusts the speed
to the new desired value, set by the driver.
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Figure 12: Comparison of simulations results from HCSP simulator and AADL⊕S/S2C

9.3.2. Analysis of Impact of Bus

In order to observe the impact on the system performance caused by bus latency, we restore
bus latency to the model, and consider different settings of number of buses and their latency.

From the CCS architecture (Figure 10), the connections between devices and processes are all
bound to one bus (blue), and all the threads in the processes are bound to one processor (red).
We first set the bus latency to 3ms, and the simulation results are shown in Figure 14, from which
we can see that the vehicle nearly hits the moving obstacle ahead. The reason for this dangerous
situation is the competition for bus permission. The competition is so intense that radar can
hardly transfer the obstacle position to the process obs det.imp in time. Actually, the delay of
the transferring is up to 5s in this case, which is absolutely intolerable in the real world applications.
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Figure 13: HCSP simulation results (one bus with the latency 3ms)

The above can be seen as a design error: the allocation of bus capacity is insufficient for the
given latency. To correct this problem, we set an extra bus with the same latency (3ms) for radar.
The connection between radar and obs det.imp is bound to this dedicated bus. The simulation
result of the vehicle velocity in this case is shown in Figure 14 (red line), which is similar to the
case not involving buses (blue line). The minor gap between them is due to the latency of the
buses.

Based on the setting of two buses, we further increase the bus latency to 5ms to test the
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Figure 14: Vehicle velocity under different bus settings

performance of the system. The result is that the vehicle never starts. By examining the logs of
simulation, we can find that the thread emerg.imp cannot obtain bus permission in order to transfer
the acceleration command to actuator, causing the vehicle keeping motionless. The reason is the
lack of throughput of the bus. To resolve it, we hence add another bus to the architecture and bind
the connection between emerg.imp and actuator to this bus, and the simulation result returns to
normal according to Figure 14 (green line).

9.4. Verification

One of the motivations of translating AADL⊕S/S to HCSP is to verify the informal AADL⊕S/S
graphical models. In this case study, we verify the safety property of the simplified CCS using
Hybrid Hoare Logic in Isabellel/HOL. Since the original generated HCSP code of the CCS is very
complicated (about 970 lines), we consider an abstract model of CCS with two main components:
a controller (Control) and a physical plant (Plant) as shown in Figure 15.

The process Plant models the motion of the vehicle. For initialization, it sends its initial
velocity and position and receives the initial acceleration computed by Control. It then repeatly
evolve according to an ODE which is interrupted by sending velocity and position, then receiving
the new acceleration. The process Control provides control to the vehicle acceleration based on its
velocity and position. The thread emerg.imp in the CCS (Figure 10) takes charge of the control
and its behavior is described by a Stateflow diagram of Figure 11 (c). The control is based on the
concept of Maximum Protection Curve (MPC) computed as follows:

vlim(s) =


vmax , if sobs − s ≥ v2max

−2amin√
−2amin · (sobs − s), if 0 < sobs − s < v2max

−2amin

0, otherwise

where s and sobs are the respective current positions of the vehicle and the obstacle, vmax is the
maximum velocity that the vehicle can reach and amin < 0 is the braking deceleration of the vehicle.
If the obstacle is out of the safe distance (−v2max/2amin) of the vehicle, the upper limit velocity of
the vehicle can be the maximum vmax ; if not, the velocity should not exceed

√
−2amin · (sobs − s)

in order to avoid the collision (provided sobs − s > 0); otherwise, if sobs − s ≤ 0, then a collision
has already happened, and the vehicle should stop (vlim = 0).
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1 module Plant(init_v , init_s):

2 output v, s, a;

3 begin

4 v := init_v; s := init_pos;

5 P2C!v; P2C!s; C2P?a;

6 (<s_dot = v, v_dot = s & true > |> [] (P2C!v --> (P2C!s; C2P?a)))**

7 end

8 endmodule

1 module Control(v_max , a_min , a_des , period , s_obs):

2 # Compute Maximum Protection Curve (v_lim)

3 procedure MPC begin

4 if s_obs <= 0 then

5 v_lim := v_max

6 else

7 distance := s_obs - s_next;

8 if distance > v_max * v_max / (-2 * a_min) then

9 v_lim := v_max

10 elif distance >= 0 then

11 v_lim := sqrt(-2 * a_min * distance)

12 else

13 v_lim := 0

14 endif

15 endif

16 end

17 # Main process

18 begin

19 (

20 P2C?v; P2C?s;

21 v_next := v+a_des*period;

22 s_next := s+v*period +0.5* a_des*period*period;

23 @MPC;

24 if v_next <= v_lim then a := a_des

25 else # check if it will be safe when a := 0

26 s_next := s+v*period;

27 @MPC;

28 if v <= v_lim then a := 0 else a := a_min endif

29 endif;

30 C2P!a;

31 wait(period)

32 )**

33 end

34 endmodule

Figure 15: HCSP processes of Plant and Control

At each iteration, Control predicts the position snext and velocity vnext of the vehicle at the
next period based on the desired acceleration (ades) provided by PI ctr.imp (see Figure 10).
Concretely, they can be computed by

vnext = v + ades · period
snext = s+ v · period + 1

2 · ades · period2

where period is the communication period between Control and Plant.
If, at the next period, the velocity does not exceed the upper limit computed as above, i.e.,

vnext ≤ vlim(snext), then the desired acceleration ades is safe; if not, Control continue to test if the
constant velocity (no acceleration or deceleration) is safe (v ≤ vlim(s+ v · period)); otherwise, the
emergency alerts and Control outputs the minimal deceleration (amin < 0) to brake the vehicle.
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The above control strategy can be summarized as

a(s, v) =


ades if vnext ≤ vlim(snext)

0 else if v ≤ vlim(s+ v · period)

amin otherwise

The safety property can be implied by the loop invariant loop inv: s ≤ sobs ∧ v ≤ vlim(s), and
we can prove that

loop inv(s, v)→ loop inv(s′, v′)

where v′ = v + a(s, v) · period and s′ = s+ v · period + 1
2 · a(s, v) · period2.

According to this loop invariant, the trace assertion of the system which records communications
and the system state in continuous time can be proved using Hybrid Hoare Logic, as shown below:

{v = v0 ∧ s = s0 ∧ a = a0 ∧ emp}
Plant

{∃a′ ps. plant end state(v0, s0, a
′, ps) ∧ plant block(v0, s0, a0, a

′, ps)}

The above Hoare triple means that if the plant process starts with velocity v0, position s0,
acceleration a0 and an empty trace, it will results in an end state satifying plant end state and a
total trace block satisfying plant block, which specifies the exact behaviour of Plant, including
communications and ODE evolution, when receiving the list ps of acceleration inputs from Control.

The Hoare triple below means that if the control process starts with velocity v0, position s0,
acceleration a0 and an empty trace, it will result in an end state satisfying control end state

and a total trace block satisfying control block which specifies the exact behaviour Control,
including communications and waiting intervals, on receiving the list cs of pairs of velocity and
position from Plant.

{v = v0 ∧ s = s0 ∧ a = a0 ∧ emp}
Control

{∃v′ s′ cs. control end state(v′, s′, cs) ∧ control block(v0, s0, a0, v
′, s′, cs)}

The last Hoare triple means that if the parallel process starts with a parallel state satisfying
the loop invariant, it will result in a total trace block satisfying tot block which specifies the exact
behaviour of two parallel process and declares that it satisfies loop inv(s, v) after every iteration.

{(v = v0 ∧ s = s0 ∧ a = a0 ∧ loop inv(s0, v0)) ] (v = v′0 ∧ s = s′0 ∧ a = a′0)}
Plant ‖ Control
{∃n. tot block(s0, v0, n)}

10. Related Work

Analysis and formal semantics of either AADL or S/S have been explored extensively in existing
literature. AADL Inspector is a model processing framework of AADL that encompasses various
analysis features, especially including schedulability analysis and dynamic simulation. Cheddar [23]
is an open-source real time scheduling tool integrated to AADL Inspector, which implements most
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classical scheduling simulation algorithms. For formalization of AADL, most work translate it into
other formal languages and frameworks. Chkouri et al. translated AADL to the BIP language, and
applied it to a model of a flight control system [24]. Hu et al. considered the translation of AADL
to Timed Abstract State Machines [25]. Ölveczky et al. presents a formal semantics for AADL
in rewriting logic, so the result is executable in Real-Time Maude [26]. The work by Jahier et
al. translates AADL into a non-deterministic synchronous model, so the results can be integrated
with translation of software components [27].

S/S has a built-in design verifier, which however only supports the verification of discrete
behavior. S/S has also been translated to various frameworks for formal verification [28, 29, 30,
31, 21, 22]. In contrast to the above cited work, we consider the analysis and formal semantics of
combined AADL and S/S models, and therefore able to model, simulate, and verify architecture,
functionality and physics of cyber-physical systems at the same time.

Several unified frameworks have also been proposed for modelling and analyzing cyber-physical
systems. The most popular is Ptolemy [32], an actor-based framework for the design of hetero-
geneous systems. It supports different models of computation, which integrate computing, net-
working, and physical dynamics. It provides the model transformation facility for the analysis and
verification of actor models. Functional Mock-up Interface (FMI) [33], a standard maintained by
the Modelica Association, is designed to enable the exchange and co-simulation of dynamic com-
ponent models using a combination of XML files for model description and compiled C-code for
simulation. However, Ptolemy supports very limited facilities to model continuous behaviors [34],
and both Ptolemy and Modelica are not designed for hardware architecture analysis.

11. Conclusion

This paper presented a combination of AADL and S/S, i.e., AADL ⊕ S/S, and developed a
simulation tool for AADL⊕S/S. Moreover, to verify AADL⊕S/S modals, we defined an operational
semantics and a HCSP-based denotational semantics for AADL⊕ S/S, and proved that the HCSP-
based denotational semantics is a full-abstraction of the operational semantics by showing that a
weak bisimulation is preserved between them. This makes all AADL⊕ S/S models can be verified
with HHL. In addition, we also developed a simulator for HCSP, so that on one hand the translated
HCSP model can also be simulated after translation, and the correctness of the translation can also
be tested by comparing the simulation results before and after translating, on the other hand, even
one can design a CPS starting with HCSP as it provides supports of simulation and verification.
We illustrated the framework by considering the case study of a realistically-scaled automatic cruise
control system. The system architecture and behavioral abstractions are described using AADL,
while the implementation of software and physics are defined using Simulink/Stateflow.

There are two main directions for future work. First, we would like to further expand the
subset of AADL that we consider, for example taking into account of other dispatch protocols,
more complex timing configurations for input and outputs, including immediate and delayed timing
properties, and other types of hardware components such as memory. Second, we will explore the
formal verification of the full generated HCSP process using Hybrid Hoare Logic. This requires
combining the deductive analysis of different aspects of the formal model such as the control law,
bus latency, and the scheduling protocol.
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