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Abstract 

The synchronous language SIGNAL is a formal specification formalism for developing safety-critical real-time systems. It 

is a multi-clocked data-flow modeling language suitable for specifying deterministic concurrent behaviors. Its model of 

computation and communication very well matches recent trends to utilize multi-core processors for executing real-time 

systems, by taking advantage of its concurrent semantics. The SIGNAL compiler generates code from data-flow 

specifications while analyzing and verifying safety properties of the system under design: deadlock-freedom, determinism. 

However, most of recent works have focused on generating sequential code from SIGNAL. Choosing the parallel library 

OpenMP as the target, this paper proposes a methodology to generate and verify concurrent code automatically from 

SIGNAL specifications. This is done by first exploring clock relations among signals by application of a so-called clock 

calculus. Then, specifications are translated into EDGs (Equation-Dependency Graphs) to analyze global data-dependency 

relations. An EDG is then partitioned into concurrent tasks to help explore parallelism in the original specification while 

preserving its semantic. Combined with clock relations, parallel tasks are finally mapped onto the OpenMP structures. The 

proposed approach is illustrated by a realistic case study. 

Keywords:Synchronous specifications, SIGNAL, parallel programming, OpenMP, code generation; 

1. Introduction 

Safety-critical real-time systems [1] in avionics, aerospace, and automotive control, are an area of research 

where formal methods, based on rigorous mathematical models, are often used to help engineers during the 

design of complex, distributed, real-time systems. Such systems are growingly modeled using, abstract, formal 

specification languages to allow safety-critical properties to be unambiguously stated and validated (by model 
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checking tools or semi-automated theorem proving) before to automatically generate code for the system 

specification. Model-based verification allows detecting design issues as early as possible and verified models 

allow automatically generating executable code to facilitate the engineer’s job. Safety-critical real-time systems 

increasingly use on multi-core architectures, that offer tremendous performances at reasonable costs, yet with 

increasing functional and non-functional constraints for automated code generation. Many parallel 

programming models including MPI [2], OpenMP [3] and TBB [4] have been proposed and used to support 

execution of parallel applications on multi-core architecture. However, automated generation of parallel code 

from a formal specification is still a vast research area of open problems because of the heterogeneity of multi-

core architectures and the complexity of parallelizing, placing, routing, scheduling code on such architectures.  

Synchronous specification languages such as Esterel [7], Lustre [8], SIGNAL [9], QUARTZ [10], adopt the 

synchronous hypothesis. They provide an abstraction where consecutive, periodic, hardware time samples are 

represented by sequences of discrete events (or logically related instant). The model of the system in such a 

specification language is an infinite sensing-computing-actuating loop that interacts with the external 

environment continuously as a computer-controlled system. The synchronous hypothesis assumes that each 

sample of this sensing-computing-actuating loop (called reactions) can be completed within a bounded amount 

of time (the worst-case reaction time) and hence be abstracted as logical moment (logical relations between the 

input, test and output events). By using such an abstracted specification, one can describe the functional 

behavior of the system without considering its concrete execution platform, in order to model-check functional 

safety properties and generate safety-checked code. 

As the only synchronous language with a multi-clocked semantics, SIGNAL expresses combinations of data-

flow equations that are partially related in time. It is thus of an appealing model of concurrency to specify timely 

decentralized computation in a distributed or concurrent system. SIGNAL compiler Polychrony [11] allows to 

generate code from synchronous specifications, and then to verify that the generated code satisfies the 

specification, by using SAT-SMT-supported translation validation. However, the existing SIGNAL compiler 

does not yet support the verification of its distributed code generation functionalities. This paper proposes the 

automatic parallel code generation from SIGNAL specifications to a multi-core, parallel, OpenMP platform. 

Our main contributions are: 

 A clock calculus method based on the analysis of Boolean equations is proposed. It takes data flow 

equations as input and then goes through the translation of data flow equations to clock equations, the 

analysis of clock equation sets, the generation of equivalence classes, and the generation of normative 

equations. When inserting a clock node, this paper uses implication detection technology to insert it into a 

deeper position in the tree to generate more efficient code. 

 A parallel program generation method based on EDG is proposed. First, the definition of EDG and the 

method of generating EDG from the Signal data flow equation are given. Then we propose the method of 

parallel task division based on a topological sorting algorithm according to the characteristics of EDG, and 

the correct insertion of clock information into the task. It ensures that the signal runs under the correct 

clock schedule. 

 We take a typical Signal program containing four core syntaxes as an example to show the process of 

generating parallel simulation code from the Signal program. Through code analysis, the effectiveness of 

the translation method is demonstrated. Then we did a performance comparison experiment to prove the 

high performance of the parallel code under the complex multi-loop structure. 

The paper is organized as follows. Section 2 introduces synchronous language SIGNAL syntax and 

semantics. Section 3 presents a new clock calculus method to explore the clock relations among signals. Section 

4 proposes a code generation method for parallel code based on Equation-dependency Graph (Equation-

dependency Graph, EDG). Section 5 illustrates the proposed method by an example. Section 6 provides related 

work on SIGNAL code generation. Section 7 concludes this paper. 
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2. SYNCHRONOUS THEORY AND SIGNAL 

2.1. Synchronous Theory 

Real-time system programming models can be divided into three categories: asynchronous, synchronous, 

and quasi-synchronous (based on jitter/drift estimates) [12] [13]. The differences between these three models 

lies in the way the execution time is abstracted as a discrete sequence. The time of a reaction (reaction, i.e. 

input-calculation-output) is assumed to be completed within a logical moment, and the physical execution time 

is ignored. Thus, the synchronization mode is a platform-independent model. This section describes the related 

knowledge and terms of the synchronous theory briefly. 

2.1.1. Synchronous Hypothesis 

The synchronous hypothesis [14] is an assumption of synchronous languages: for each input, the system will 

complete the calculation within a bounded amount of time and then output the result before the next input. This 

assumption ensures that there is no overlap between reactions. Thus, the synchronous model does not consider 

time, but pays attention to event sequences and synchronization among events. This feature allows the user to 

process the system’s timing problems without caring about time. The synchronization model is described in 

[15]. 

1) Logic instant and reaction 

The system time in the synchronous model is abstracted as a logic instant sequence(𝑡𝑛)n∈𝑁+ without an 

overlap. In each instant, the input signal is read, computed, and output produced. Then the system enters a new 

global state. Each instant’s execution is called a reaction.    

2) Signal 

Signal is a map V→(𝑡𝑛)n∈𝑁+  from the value to a discrete sequence. In addition to carrying data of a certain 

type, V can also be "⊥" and it means absent. In a logic instant, the signal value may be present or absent (⊥).  

A stream is the sequence of values carried by a signal. 

3) Abstract clock 

The clock of a signal represents the set of logical instants in which the signal varies a (non-⊥) value.  A 

signal value can be read or computed iff the current logical instant belongs to its clock. Two signals are 

synchronous iff they have equal sets of instants. Clocks naturally have a logical algebraic structure. 

2.1.2. Mono-Clock and Multi-Clock Models 

Safety-critical real-time systems are often composed of components or sub-systems that may be deployed in 

a distributed environment. In designing of such systems, there are two views, mono-clock and multi-clock 

model.  In the mono-clock model, all actions triggered in the system are controlled by a global clock. The 

advantage of this approach is that it is easier to specify the system and to generate code from the specification. 

However, the clock of each component will have a strict relationship with the global clock, resulting tight 

coupling among the clocks of subsystems. If the clock frequency of a component is changed, the global clock 

and clocks of other components need to be adjusted. Esterel and Lustre uses the mono-clock model. 

In a multi-clock model, there is no global clock. Each component works according to its own clock. 

Components are loosely coupled so that time synchronization needs to be carried out among components.  

Therefore, the multi-clock model is more suitable for modeling distributed systems or those systems with a high 

degree of parallelism. But the multi-clock model is more complex due to synchronizations in the model, and 
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clock consistency needs to be maintained. Moreover, it is a little more difficult to generate code from multi-

clocked specifications. 

2.2. Introduction to SIGNAL 

SIGNAL is a declarative data-flow synchronous language developed by CNET and INRIA in France. 

SIGNAL adopts Polychrony multi-clock computing model [16]. Signal is the basic operation object of SIGNAL, 

defined as a value sequence with unlimited length and data type (𝑥𝑡)t∈N .Given a logical instant, the signal may 

be present and have a value, or absent (⊥) and have no value. A clock is used to indicate whether there is signal 

𝑥 in each logical instant, denoted as �̂�. In SIGNAL, a clock is represented by a signal of type event: when it 

exists, the value is true, otherwise it is absent. The system is specified by dataflow equations that describe 

relations among signal values and clocks. 

SIGNAL provides four primitive constructs to describe dataflow equations, including instantaneous relation, 

delay, under-sampling and deterministic merging (referred to merge). Table 1 shows the syntax and semantics 

of four primitive constructs. It should be noted: 1) The f in the instantaneous relational operation can be algebra 

or Boolean operation; 2) As the special meaning of delay operations, it is also called memory equation while 

the left value signal of the equation is called memory signal or status signal. 

SIGNAL shows data dependencies among signals and clock relations between signals, as shown in Table 2. 

For instantaneous relationship, the equation implicates that the left-hand signal and right-hand signals have the 

same clock, and this means signals are synchronous. Delay operation has the same clock relationship. These 

two operations are also known as synchronous operations. For the under-sampling operation, the clock of y is 

true if and only if the clock of x is true, the clock of b is true, and the value of b is true (denoted as [b]). For the 

deterministic merging, the clock of y is the union of x and z. As the clock of the signal in these two operations 

can be different, they are called multi-clocked operations. 

Table 1 Syntax and Semantics of Primitive Constructs on Dataflow Equations 

name syntax semantics 

Instantaneous 

relations 
y:=f(𝑥1, 𝑥2,…, 𝑥𝑛) 

When 𝑥1, …, 𝑥𝑛 exist, y has a value f (𝑥1, 𝑥2, …, 𝑥𝑛); otherwise 

y is absence. 

Delay y:=x $init c 
The value of y is the value of x in the previous logic instant, the 

initial value is c, while x is absent, y is absence 

Under-sampling y:=x when z 
When z has the value of true and the x exists, the y’s value is the 

x’s value; otherwise y is absence 

Deterministic 

merging 
y:=x default z 

When x exists, y has the value of x; when x does not exist and z 

exists, y has the value of z; otherwise y is absence 

The data-flow equations in SIGNAL represents the relationship between signals and clocks, and the basic 

unit of the SIGNAL program is called process. It is composed by a set of data-flow equations. The SIGNAL 

also defines two basic constructions in the process: composition and local declaration. Table 3 shows the basic 

syntax and semantic of composition and local declaration, which are two other basic operations. 

Table 2 Primitive constructs and corresponding clock relations 

syntax Clock relation explanation 

y:=f(𝑥1, 𝑥2,…, 𝑥𝑛) �̂�= �̂�1=⋯= �̂�𝑛 All signal clocks in the equation are synchronous 

y:=x $ init c �̂�=�̂� The right value signal x and the left value signal sync 

y:=x when b �̂�=�̂� ∧[b]  When b is present and the value is true and x exists, y exists 



  5 

y:=x default z �̂�=�̂� ∨ �̂� The clock of signal y is the union of x and z. 

 

Table 3 Syntax and semantics of primitive constructs in processes 

name syntax semantics 

Synchronous 

composition 
P|Q 

P and Q are processes; the behavior of P|Q is the 

combination of behavior P and Q 

Local declaration 
P where t_1 s1; t_2 

s2;…t_n sn;end; 

P is a process, s1 to sn are the signals defined in P 

invisible outside the process P. 

 

Here we can get the BNF expression of SIGNAL basic syntax, in which the data-flow equation x:=yfz means 

that the value of x is determined by the signal y, z and the operation f on them; P | Q is a combination of inter-

process; P / x is the local declarations in the process: 

, :: : | | | /P Q x yfz P Q P x   
SIGNAL also provides the clock construct "^" and memories construct "cell" and other extended constructs 

to simplify the expression of SIGNAL program, but all extensions constructs can be represented by the basic 

constructs, so the SIGNAL programs in this paper are written by the basic syntax. More information about 

SIGNAL can be found in [17], and its formal semantics can be found in [18]. 

We take a watchdog component [40] as an example to introduce the design and implementation of the Signal 

program. The functional block diagram is shown in Fig. 1. The main function of the watchdog detects whether 

the operation of the system is overtime. Delay is a timeout parameter. Whenever the req signal arrives, the 

watchdog starts to count down, and the clock tick will decrease by one for each tick. When the input signal 

finish comes, the watchdog will be reset. If the watchdog counts down to 0, the alarm will send a signal. 

 

Fig. 1 Watchdog block diagram 

Table 4 implements the Signal code. Line 2 defines the parameter of this process as an integer value delay. 

Line 3 defines the input and output signals of the program: the req, finish, and tick after "?" are input signals; 

the alarm after "!" is output signals. Lines 4 to 13 define the main body of the program, that is, the combination 

of data flow equations. Each equation is used to express the data and clock relationship between signals. Line 

4 explicitly specifies the clock synchronization relationship between the signal hour and tick, that is, the two 

signals must appear or be absent synchronously at any logical moment. Line 5 defines the calculation of the 

hour: if hour exists at a certain logical instant, its value at this logical instant equals the value of its last 

occurrence plus 1. Line 8 defines an assignment for the signal cnt, using a merge operation. It means when the 

signal req exists and is true, the value of cnt equals the parameter delay; otherwise, if the signal finish exists 

(delay)

alarm

Watchdog

req

tick

finish
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and is true, cnt is reset to -1; otherwise, when prev_cnt exists and is not less than 0, cnt equals the value of 

prev_cnt minus 1; 

Table 4 Signal code of the watchdog component 

1:process Watchdog= 

2:{ integer delay;} 

3:(?boolean req, finish, tick;! integer alarm;) 

4:(|hour^=tick 

5: |hour:=(hour$ init 0)+1 

6: |cnt^=tick^=req^=finish 

7: |prev_cnt := cnt $ init (-1) 

8: |cnt := (delay when req) 

9: default (-1 when finish) 

10: default (prev_cnt -1) when ( prev_cnt >= 0) 

11: default -1 

12| alarm := hour when (cnt=0) 

13|) 

14where integer hour, cnt, prev_cnt; 

15 end; 

3. CLOCK CALCULUS 

Clock analysis is needed to transform a multi-clocked SIGNAL program. The first problem is to extract the 

control structure from synchronous equations from the clock model.  Clock calculus is a process to resolve the 

clocks and construct the control structure of the executive code, and [19] [20] proposed clock calculus for 

Polychrony. The idea is to extract the system of Boolean equations from the program and develop a hierarchical 

relation among clocks. If a single-rooted clock tree can be constructed and the sequential code can be generated 

based on the clock tree, the program is endochronous [16], meaning that it is deterministic w.r.t. its input-output 

streams. Later works, such as [21], [22] and [23] have focused on the resolution of numerical expressions to 

improve the precision of this determination. 

Additionally, data dependencies need to be analyzed, to determine how to schedule the execution of data-

flow equations. Current methods often separate clock calculus from the data-dependency analysis. In this case, 

two different structures are needed: one for clock hierarchy and another to represent data dependencies. To 

avoid the situation that hierarchical clock relations may not be consistent with data dependencies (e.g., lock-to-

data cycle), the two structures need to be combined [24]. Besides, when being executed, code with hierarchical 

and nested control structure will be more efficient than the corresponding flat code, because, in the nested 

structure, guard conditions enclosed will not be checked unless the outer ones evaluate to true. Our previous 

work has completed part of the clock calculus research, where we designed a clock calculus that generates 

efficient control structures, published in [25]. Please see that paper for details, here we highlight some important 

definitions and algorithms of the clock calculus for a better understanding of the following content. 

3.1. Generating Clock Equations  

The first step is to translate the data-flow equations into a system of Boolean equations called clock equations. 

The set of clock equations is denoted as SCE (Set of Clock Equations). The corresponding BNF is given in 

Table 5: 
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Table 5 BNF of SCE  

ClockEquation::= cl=e 

e::= �̂�1|◇𝑥1|𝐶𝑜𝑛𝑑|¬e|e ∨ e|e ∧ e|e ∖ e 

cl::= �̂�|◇𝑥 

In the definition, the left value (cl) of the clock equation is a signal variable, which is defined by the clock 

expression on the right side of the equation (cl=e). Signal variables are divided into two categories. One is the 

clock variable �̂�, which represents the clock of signal x; the other is the value variables (◇𝑥), which represents 

the value of Boolean or event typed signal x. Note that in this paper, x, the expression returning Boolean value 

is treated as the black box, denoted as Cond. The operators on clocks are the same as Boolean variables, 

including negative, union, intersection, and difference. These operators are used to represent the relations among 

clocks. The mappings from primitive constructs to clock equations are shown in Table 6. Note that for the 

convenience of the resolution, there are at most two operands in the clock equations so that two auxiliary clock 

variables, zt̂ and 𝑥𝑑𝑒𝑓𝑎𝑢𝑙𝑡̂ , are introduced. 

Table 6 Primitive Constructs and Corresponding Clock Equations 

Primitive Clock relation 

y:=f(𝑥1, 𝑥2,…, 𝑥𝑛) ŷ = xn̂, x1̂ = xn̂, … , xn−1̂ = xn̂ (if f returns a Boolean 
value, add the equation ◇𝑥:=f (◇𝑥1,…, ◇𝑥𝑛)) 

y:=x $init c ŷ = x̂ 

y:=x when z zt̂ = ẑ ∧ ◊ z, ŷ = x ̂ ∧  zt̂ 

y:=x default z ŷ = x̂ ∨ ẑ,  𝑥𝑑𝑒𝑓𝑎𝑢𝑙𝑡̂ = ẑ\x̂ 

3.2. Resolution of Clock Equations 

The set of clock equations generated needs to be resolved to a) find the implicit synchronization among 

clocks; b) get the definition for each clock; c) detect the inconsistency among clocks. This paper translates 

SCE into SNF (Set of Normal Form) by the resolution process. Fig. 2 illustrates the resolution process. In each 

iteration, every clock in eq will first be replaced with its definition in SNF (line 5, denoted as eq ← [SNF] eq). 

If the replaced equation cannot be resolved for one of the following reasons: 

1) Both sides of eq are complex expression (line 6);  

2) LHS of eq exists at the RHS of eq (line 11, denoted as eq.LHS ∈ Vars (eq.RHS));  

3) LHS of eq has been defined in SNF (line 11),  

It will be put into USNF (a set storing the equations that cannot be solved temporarily). Otherwise, LHS of 

eq in each equation of SNF (denoted as eq2) will be replaced with its definition (eq. RHS) (line 16). 

If a recursive definition exists after the substitution, eq2 will be put into USNF (line 17-19). After that, each 

clock in USNF will be replaced with its definition in SNF. If both sides of the equation are equivalent, the 

equation will be removed from USNF (line 22-27). At the end of the iteration, if eq has not been put into 

USNF, it will be put into SNF (line 28).  

We use OBDDs (Ordered Binary Decision Diagrams) [26] to verify the equivalent relation among 

expressions (as they are Boolean expressions). The replacement of variables in the algorithm can be 

implemented as the substitution of their OBDD values. 
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Fig. 2 Algorithm ClockToNF 

All equations in SCE need to be represented by OBDDs and the time complexity of the construction will be 

O (2𝑛) where n is the number of variables in the Boolean expression. Furthermore, the number of executions 

of the loops in line 15 to line 20 or line 22 to line 27 have the same magnitude as the size of SCE. As a result, 

the magnitude of the worst execution time will be O (𝑚2 ∗w) where m is the size of SCE and w is the 

maximum execution time of the OBDD substitution. We use JDD (a Java implementation of BDD)[27] as the 

implementation method of OBDD. The website site shows that the performance is relatively good compared 

with other implementations. 

After the resolution, if the USNF is empty, it can be deduced that there do not exist any inconsistencies or 

cycle definitions in the program and all equations in SCE have been normalized. 

3.3. Generating Clock Equivalence Classes and SRNF 

After the resolution, a unique definition for each clock is included in SNF (except for clocks on the RHS that 

are undefined, usually clocks for input signals). Some of them may have identical definitions and this means 

they are synchronous. 
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The synchronous clock relation is reflexive, symmetric, and transitive so that it is an equivalence relation on 

the set of clocks. To get more efficient code, the paper introduces the concept of clock equivalence classes [26], 

that is, a partition on the set of clocks X = {𝑋𝑖 |i ∈  Z+}. For each 𝑋𝑖, its elements  �̂�1... �̂�𝑘 are clock variables 

that are synchronous with each other. The definition of a clock equivalence class is given below. 

Definition 1 Clock equivalence class (CEC) is a triple <ClassID, Sc, Eq>, where, 

 ClassId: identification of the class; 

 Sc: set of synchronous clocks belonging to this class; and 

 Eq: actions to be executed/initiated by the clock of this class, that will be used in the construction of the 

clock tree 

By traversing all equations in SNF, clocks can be divided into these equivalent classes. For the undefined 

clocks, corresponding classes will be also generated. The set of clock equivalence class is denoted as SCEC. 

Note that as endochrony is the necessary and sufficient condition to generate executable code, there will be only 

one class for all undefined clocks. Reduced Normal Form (RNF) is then introduced to represent the relations 

among clock equivalence classes. The corresponding set of these equations is denoted as SRNF that can be 

obtained by replacing clocks with their class in SCE. The BNF definition is shown in Table 7: 

Table 7 the BNF definition 

NCE::=ClassId=e 

e::=ClassId|◇𝑥 | 𝐶𝑜𝑛𝑑|¬e|e ∨ e|e ∧ e|e ∖ e 

ClasseId is the LHS value of the equation and RHS is the expression specifying relations on classes. ◊x and 

Cond have the same meaning as in the definition of clock equations. Note that different from SNF, there is no 

additional constraint on SRNF so that defined classes can exist on RHS of equations. In the remainder of the 

paper, RNF is also called as clock definition equation. SRNF will be used in the construction of clock trees. In 

the remaining sections, the term clock does not only represent the clock of signals, but also represents a clock-

equivalence class: synchronous signals have the same clock represented by their equivalence classes. 

3.4. Clock Tree Construction 

Clock equivalence classes and relations can be obtained in SRNF, from which hierarchical relations among 

clocks can be extracted. The definition of clock hierarchy relation “ ≤” is given as follows:  

 for all Boolean signals x, there are relations �̂� ≤ [x] and    �̂� ≤ [¬x]; 
 for variables b and c, if there are relations b≤c and c≤b, then b and c are synchronous; and 

 for clock equation 𝑏1=𝑐1 op c2, op∈ {∧,∨,∖}, if there are relations 𝑏2 ≤ 𝑐1，𝑏2 ≤ 𝑐2，then there exists 

relation 𝑏2 ≤ 𝑏1. 

This paper proposes a process to generate clock trees and a new methodology with the following features: 

 Implication checking is used to insert the clock node into a deeper position 

 Information of data dependency is added in the clock tree and an insertion algorithm to preserve data 

dependencies;  

To construct a clock tree preserving the necessary properties mentioned in [25], we divide the process into 

three steps. 

 Divide all signal equations into corresponding clock equivalence classes; 

 Sort the signal equations and clock equations altogether according to the data and clock dependencies, 

obtaining the ordered list called Elist;  

 Traverse Elist to construct the clock tree. 
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In the first step, data flow equations are translated into signal equations and attached to corresponding clock 

equivalence class. The mapping relation is shown in Table 8. 

Table 8 signal definition equations for primitive constructs and input signals 

Data flow equations Signal definition equations Clock equivalence class 

y:=f(𝑥1, 𝑥2,…, 𝑥𝑛) y:=f(𝑥1, 𝑥2,…, 𝑥𝑛) CECS[OBDD(y)] 

y:=x when z y=x CECS[OBDD(y)] 

y:=x default z y=x CECS[OBDD(x)] 

y:=x default z y=z CECS[OBDD(z\x)] 

y:=x $ init c NULL NULL 

? type_x x read(x) CECS[OBDD(x)] 

After this process, each class C in SCEC has a set of assignments (C. Eq). Furthermore, these assignments 

are also put into a set called SDCE. Along with clock equations (RNF in SRNF), these equations will be sorted 

to obtain the ordered list Elist. After the sort, Elist will meet the following properties: 

 For signal definition equations eq1 and eq2, if the RHS of eq2 depends on LHS of eq1, then eq1 precedes 

eq2 in Elist; 

 For clock definition equation Ce, C=e, and signal definition equation eq, if eq∈C.Eq,then Ce precedes eq 

in Elist; 

 For clock definition equation C=C1 op C2, C1 and C2 precede C in Elist; 

 For clock definition equation Ce, C= C1 op ◇𝑥 and signal definition eq x=e, then eq precedes Ce in Elist. 

The construction of the clock tree is translated by the traversal of the Elist and equations in the EList will be 

attached to the clock node of the tree. Assume that for equation x=e, the node it is attached to is denoted as N, 

then for any node which contains operand in expression e, denoted as M, one of the relations listed below exists: 

 M=𝑓𝑛(N), n is the positive integer; 

 f(N)=f(M), and M∈LB(N); and 

 There exists a positive integer m, P=𝑓𝑚(N), and M∈LB (P). 

Fig. 3 illustrates the process of the traversal. The insertion is along with the traversal of Elist. If the current 

equation (denoted as eq) is a clock definition equation (line 6), since no node in the tree represents the class it 

defines, a new node is created and to be inserted into the tree (line 7-11). If the current equation is a signal 

definition equation (line 13), the first thing to do is to find a node to attach (line 16). If no proper node is found, 

a so-called copy-node is created. As its name indicates, there has (have) been a node (or nodes) representing 

the same clock but the equation is not allowed to insert into it (one of them) due to the violation of properties 

mentioned above. As a result, the copy-node will be first inserted into the tree (line 18-22), then eq will be 

attached to it (line 23). 

After getting the path, the clock node will be inserted into the position at the rightmost position of the path. 

To insert as deep as possible, this paper uses the clock-implication checking based on the Breath-First Search 

algorithm, as shown in Fig. 4. 

First, the root is put into Queue. Then, the iteration begins: get the head of that sub-tree; for each direct 

children of the head, if it is in the right side of the path (node ∈ RST) and the clock of CN implies the clock of 

node (CN.Clock → node.Clock), put it into the tail of Queue. The iteration will not stop until Queue is empty 

and CN will be inserted at the last node of ordered list of direct children of the element got from Queue. Clocks 

relationship and data dependences can be obtained using the algorithm above. It is the basis for generating 

concurrent code. 
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Fig. 3 Algorithm treeConstruction 

 

Fig. 4 Algorithm “findInsertClock” 

4. Generation of Concurrent Code based on EDG 

SIGNAL describes the functional behavior of the system through data-flow equations. If equations have no 

data and clock dependencies, they can be executed in parallel. This paper proposes a method based on EDG 

that can discover the implicit parallelism and generate OpenMP parallel simulation code based on the EDG 

analysis. Compared with the method proposed in [28], this paper takes clock information into account. The 

overall process flows shown in Fig. 5. SIGNAL specifications include signal data dependencies and implicit 

relationships among the signal clocks. An EDG can be obtained through data dependence analysis. Clock status 
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equation can be obtained by analyzing clock relations. Then one can get the task sequences through the EDG 

division of parallel tasks and combination of clock relations information. At last, the task sequences will be 

mapped the grammatical structure of OpenMP. 

SIGNAL 
Program

Clock 
analysis

Data 
dependen

cy
analysis

Normal Form 
of clock 

equations

EDG

Task
Partitionin

g
Task List

Mapping 
to 

OpenMP

OpenMP
Parallel code

  

Fig. 5 Process of Parallel-Code Generation from SIGNAL Specification to OpenMP 

4.1. Definitions and Construction of EDG 

To support SIGNAL code generation, [29] first proposed the concept of synchronous flow dependency graph 

(SFDG). The SDFG comprises a directed-acyclic graph (DAG), while the nodes in DAG represent signals, and 

the edges in DAG represent the dependencies between the signals. The appearance of the nodes and edges are 

determined by activation clocks. However, SFDG does not contain the information about how the signal is 

calculated based on the data dependencies. EDGs describe the dependencies among equations better to facility 

ate that final mapping. The data-flow equations are nodes in the EDG graph and the edges represent the data-

dependency relation.  A node in the EDG, denoted as NDG, can be defined as follows.  

Definitions 4: A node NDG of the EDG is a triple <B, L, R>, where  

 B is a tuple <G, A>, where G is the guard condition and A is the action, meaning that the action A will be 

executed under the trigger of guard condition of G (A is also referred as the signal defined equation).  

 L is the left-hand signal of action A. 

 R is the set of right-hand signals of action A.   

Based on the above definitions, Table 9 gives the mapping rules from four primitive operations and the input 

signals to the corresponding NDG.  

For an instantaneous relationship, y corresponds to the node L; the right value set𝑥1, …, 𝑥𝑛 corresponds to 

the R; the G in B is the clock C_y of signal y, action A is a relational operator y:=f(𝑥1, 𝑥2,…, 𝑥𝑛). As y and signal 

𝑥1 to 𝑥𝑛 are synchronized, while the clock of y is true, 𝑥1 to 𝑥𝑛 must exist. 

Table 9 Mapping from primitive constructs to NDG 

Syntax L R G 

y:=f(𝑥1, 𝑥2,…, 𝑥𝑛) y x1,….,xn if  C_y  then  y:=f(x1,…,xn) 

y:=x $ init c NULL NULL NULL 

y:=x when b y x,z if  C_y  then  y:=x 

y:=x default z y x if  C_x  then  y:=x 

y:=x default z y z if  C_z\C_x  then y:=z 

Input signal s S NULL if  C_s  then read(s) 
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For an under-sampling operation, y corresponds to the node L; the right value x and z corresponding to R, 

the G in B is the clock C_y of signal y, the action is an assignment operation y:=x. If the action y:=x is to be 

executed, the value of x and z have to been obtained and the value of C_y is true first.  

For the deterministic merging operation, we generate two nodes, corresponding to the choice of x or z. When 

the clock C_x of x is true, x is assigned to y. When the clock of x is false and the clock of z is true, z is assigned 

to y. Since the guard conditions of two nodes action are exclusive, it is not necessary to consider the issue of 

the shared variable update. 

For the input signal NDG, since the input signal will get value from the environment, R is null. It will be a 

read operation when the clock of the L signal is true. 

The EDG is a directed acyclic graph that contains the global data dependency of the SIGNAL program:   

Definition 5: EDG is a tuple <SNDG, →>, where 

 SNDG is a set of nodes NDG. 

 → is the dependency between the nodes: if the node v1, v2 satisfy the relation v1→v2 if and only if v1. L∈
v2. R. 

The SNDG can be constructed by analyzing the collected data-flow equations, where the guard condition 

clock of each node denoted by the corresponding clock equivalence class. The EDG can be obtained by 

analyzing the data relation between the SNDG’s right value and left value. It should be noted that, for the case, 

that the memory signal appears in the equation’s RHS, because of the peculiar semantic of the delay operation, 

we can ensure that the data dependency and the guard condition G in the node are satisfied so that the value 

obtained from the memory signal is correct. 

4.2. Parallel Task Partitioning based on EDG 

Through analyzing the EDG to collect data dependencies among equations, one may classify it into parallel-

execution and serial-execution parts. First, one can divide EDG into parallel tasks by a topological sort, then, 

put the clock information into those parallel tasks. 

4.2.1. EDG Division based on Topological Sorting 

In the EDG, the binary relation “→” defines the dependency between the nodes, that is, for two nodes v1, 

v2, if the left value signal of v1 corresponding to defined equation eq1 appears in the right of v2 corresponding 

to defined equation eq2, then eq2 relies on eq1. As the data dependency satisfies strict partial order, we can 

define its transitive closure, denoted “↘”. If the two data-flow equations eq1 and eq2 in the program do not 

have this relationship, then these two equations can be executed in parallel. To generate parallel code from the 

SIGNAL specification, we need to divide the EDG further. Here one provides the definition of parallel tasks.   

Definition 6: A parallel task is a tuple <T, ↗>, where 

 T is a partition of the nodes in the EDG, that is  

 for any t∈T, t ∈ EDG.SNDG,  

 For two any nodes 𝑡1、𝑡2∈T, 𝑡1 ∩ 𝑡2=∅,  

 The union of all the elements in T is the node set of the EDG. An element t is called as task node. 

 "↗" is the binary precedence relation on T. 

The task partition method has a great impact on the final parallel program performance on different target 

platforms. We consider a topological sorting method to divide the EDG. The key is to define a partition of T 

and a priority relation from the dependence relation:  
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 For any t∈T, t is defined as an anti-chain on "↘", that is, for any two nodes n1, n2∈t, n1↘n2 and n2↘n1 

are always false.  

 For any t1, t2∈T, t1↗t2 if and only if there is at least one node n in t2 and a node m in t1: m↘n. 

Table 10 Partition of EDG based on topological sorting 

1:Input: EDG 

2:Output:TaskList % ordered table, the order shows linear relationship 

3:NodeSet ← EDG.Nodes % the initial value NodeSet contains all the nodes in EDG  

4:while NodeSet≠∅  

5:    setNoDegree←findNodeWithNoIndegree(NodeSet) % find the node with nodegree in NodeSet  

6:     tempTask←createT(setNoDegree) % Establish the elements t in the Task 

7:     addTask(TaskList,tempTask) %add the new build element to the end of the queue  

8:     removeRelation(NodeSet,setNoDegree) %delete the binary relations associated with the nodes in the setNoDegree set  

9:     removeNode(NodeSet,setNoDegree) % delete all the nodes in setNodegree for the NodeSet 

10:endwhile 

11:return TaskList 

Table 10 gives the EDG partition algorithm, the input of the algorithm is the EDG, and the output is the 

TaskList that shows an ordered list of the parallel tasks. First of all, the algorithm puts all the nodes in the EDG 

into the NodeSet (line 3), then starts the iterative process (line 4). Line 5 to line 10 describe the topological sort: 

first, it finds the nodes without in-degree in the NodeSet (line 5, the in-degree refers to a data dependency “→”) 

to form a node set named setNoDegree that is an element of the Task, denoted tempTask (line 6). Then, it adds 

the tempTask into the TaskList (line 7) and delete all nodes in setNoDegree set and relations out-degree with 

those nodes in NodeSet (line 8 and line 9). The iteration ends when the NodeSet is empty, that is, when all nodes 

in the EDG have been partitioned into the TaskList. 

For any EDG, the sequence TaskList = {𝑡𝑛1
,..., 𝑡𝑛𝑘

}obtained by the above topological sort satisfies the 

following properties:  

 Any t∈T is an anti-chain of the dependency relation"↘"  

 For any integer x, y∈ {𝑛1, ..., 𝑛𝑘}, 𝑡𝑥 and 𝑡𝑦 satisfy the relation 𝑡𝑥↗𝑡𝑦 or 𝑡𝑦↗𝑡𝑥.  

 For any integers x, y ∈ {1, ..., k}, if x <y, for any node n∈ 𝑡𝑛𝑦
, there is no node m∈ 𝑡𝑛𝑥

, such n↘m 

established.  

The TaskList is a special case in the parallel task, while the priority relationship "↗" is a total order 

relationship among the task nodes. We can further define the adjacent relationship between the task list: for the 

task sequence TaskList= {𝑡𝑛1
,..., 𝑡𝑛𝑘

} and x, y∈{𝑛1, ..., 𝑛𝑘}, if y = x + 1, then the task node 𝑡𝑥 is left adjacent 

of the task node 𝑡𝑦, denoted 𝑡𝑥 ⇒ 𝑡𝑦. The above algorithm is applicable to the case that there is no circular 

dependency in the EDG. If there is a signal s meet "s↘s", the EDG cannot be partitioned. For multi-clock 

operations, it should be noted the data dependencies depend on a clock. 

Hence, for a data dependency 
11 2

1 2 k...
kcc c

n n n


    , if the value of 1 2 k-1....c c c   is the empty clock 0, then the cyclic 

dependency will never be established. The algorithm assumes that there are no such cyclic dependency or 

pseudo-cyclic dependency in the program.   
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4.2.2. Combination of Clock Information and Parallel Tasks 

Through the EDG task partition, one can get the task sequence TaskList where elements can be executed 

according to the sequence, and the nodes in the inner of the element without data dependency can be executed 

in parallel. However, this structure lacks information on how to calculate the clocks, so it is necessary to put 

the clock equations (called RNFS) into the right position of the task sequence. To this end, we give the properties 

that need to be satisfied: 

 All the signal definitions must be executed after its activation clock has been calculated. 

 All the signal definitions must be executed after the equation right value or the value variable has been 

calculated. 

To satisfy the above properties, one adds the clock equation set into its neighbor binary relation” ” by 

traversing the TaskList, denoted as t1
ClockDef

 t2, where the ClockDef is the clock defined equation set between t1 

and t2. It means that equations in the ClockDef must be executed before the task 𝑡2, and the equation in the 

ClockDef may depend on the calculation result in 𝑡1.  

From the root clock, we can traversal the TaskList from the second element. Firstly, to get the signal 

definition of the current task; then find out the RNF set ClockDef from RNFS that did not add into the binary 

relation and relies on these signals defined equation, finally the ClockDef will be added into the binary relation 

task.pre⇒task to form task.pre⇒task. 

For a task list 𝑡1
 ...  𝑡𝑛, we can get a sequence  𝑡1

ClockDef1

 t…
ClockDefn-1

 𝑡𝑛, that satisfies the following conditions: 

 For any binary relation 𝑡𝑘 ⇒ 𝑡𝑘+1, the equation calculation in the ClockDef does not depend on nodes 

𝑡𝑘+1,…, 𝑡𝑛. 

 The values of signal defined equation clock 𝐶1,…, 𝐶𝑚 in any 𝑡𝑘 have been calculated in the clock defined 

equation ClockDef1, …, ClockDefk-1. 

The above properties will ensure that the sequence maintains the data dependency and the clock relationships 

in the SIGNAL program. 

4.2.3. Mapping Parallel Tasks to OpenMP Parallel Structure 

OpenMP is a multi-platform shared-memory parallel programming API, that can support programming 

languages such as C, C++, FORTRAN. It provides many mechanisms including compiling guidance, 

application-programming interface (API), environment variables. It also supports users to describe the parallel 

algorithm at a high level of abstraction. Now, we previously converted SIGNAL programs into a parallel task 

sequences and execution actions such as simple math, logic, calculation, or assignment. Therefore, we use the 

compiler-guided syntax "parallel sections" of OpenMP as mapping object. The syntax is shown in Table 11: 

Table 11 the compile-guided syntax “parallel sections” 

#pragma omp sections [clause [[,] clause] ...] 

{ 

[#pragma omp section] 

structured-block 

[#pragma omp section ] 

structured-block 

... 

} 
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The guidance statement “#pragma omp sections” contains a parallel domain. The code blocks between 

“structured-block” in the guidance statement “pragma omp section” can run in parallel, while codes interior 

blocks run in serial. According to the semantics of parallel task sequences, we can get mapping rules from the 

task sequence elements to sections syntax, as shown in Table 12. 

Table 12 Mapping from TaskList to sections 

Task sequence element Sections syntax 

Task node #pragma omp sections{ 

} 

Signal defined equation eq #pragma omp section{ 

if(eq.Class==true){ 

  eq.A 

}} 

Task list t1 t2 t3… tk 

#pragma omp sections { 

  t1 %t1sections code 

} 

… 

#pragma omp sections { 

  tk %tk sections 

} 

Every task in the sequence is mapped to a code block encircled by “#pragma omp sections” and every signal 

definition equation in the task will be translated to a block encircled by “#pragma omp section”. According to 

the semantics of sections, all signal definition equations in the same task can be executed in parallel. 

The third line in the Table 12 specifies that a task’s sequential relation is mapped to a code block entitled 

“sections”. Next, during compilation of the OpenMP wrapper, several threads are generated to support the 

parallel execution.  

These threads will cost more time and resources. If there is only one node in the task, OpenMP will generate 

actions instead of code block sections so as to improve the program efficiency. 

Apart from task and task nodes, clock definition equations also need to be mapped. In order to improve the 

degree of parallelism, for the binary relation 𝑡1  𝑡2, consider clock defined equation set ClockDef1: 

 If there is only one equation in ClockDef1, it will generate directly the corresponding assignment actions; 

 If there are several equations and there are not data-dependency relations among equations, it will generate 

the parallel code block using the same proposed method. 

 If there are data-dependency relations, it will generate the sequence code. 

Through above mapping method, we can get OpenMP+C codes that satisfies the clock and data-dependency 

relations. The code can be further optimized based on the specific target platform and the OpenMP compiler. 

For instance, the number of threads can be parameterized to be equal to the number of section code blocks. The 

iteration mode of the SIGNAL compiler Polychrony is adopted to simulate program behaviors, which is 

unlimited circle simulation and interactive process. Every circle represents an execution process in the logic 

instant. We can get an OpenMP parallel structure as iteration core parts and update the value of memory signals 

after every iteration. 
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5. Case Study 

This section uses a typical SIGNAL program to illustrate the process of generating OpenMP parallel code 

based on the proposed method. First, we analyze the data-flow equations to obtain clock information, then 

generate an EDG by analyzing the data dependency, then divide the tasks into parallel parts, and finally map 

the parallel task sequence to the OpenMP parallel structure. 

 

Fig. 6 State machine of ABRO 

Table 13 SIGNAL Program of ABRO 

1:process ABRO= 

2:( ? boolean A, B, R;! boolean O;) 

3:| A^=B^=R 

4:| A^=A_received 

5:|A_received^=B_received^=after_R_until_O 

6:| nR := not R 

7:| RT := nR when nR 

8:| A_received := RT default AR 

9:| AT := A when A 

10:| AR := AT default Adelay 

11:| Adelay := A_received $ init false 

12:| BT := B when B 

13:| B_received := RT default BR 

14:| BR := BT default Bdelay 

15:| Bdelay := B_received $ init false 

16:| nO:= not O 

17:| from_R_before_O := nO default RR 

18:| RR := Re default after_R_until_O 

19:| Re := R when R 

20:| after_R_until_O := from_R_before_O $ init true 

21:| O := true when ABR 

22:| ABR := A_received when Arr 

23:| Arr := B_received when after_R_until_O|) 

24:where boolean nR, nO, A_received, B_received, from_R_before_O , 

Adelay,Bdelay,AR,BR,RR,ABR,Arr,after_R_until_O,AT,BT,RT,Re; end; 

?R ?R

?R

?A
?B
!O

?A ?B

?B !O ?A!O
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Table 14 Partition of clock equivalence classes for ABRO 

C_2={�̂� , 𝐴_𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑̂ , 𝐵_𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑̂ , 𝑎𝑓𝑡𝑒𝑟_𝑅_𝑢𝑛𝑡𝑖𝑙_𝑂̂ , �̂�, �̂� , �̂� , 𝑛�̂� , 𝑅�̂�, 𝐴𝑑𝑒𝑙𝑎𝑦̂ , 𝐵𝑑𝑒𝑙𝑎𝑦̂ , 𝑓𝑟𝑜𝑚_𝑅_𝑏𝑒𝑓𝑜𝑟𝑒_𝑂̂ , 𝐴�̂�,

 𝐵�̂�} 

C_6={𝑅�̂�, 𝑅_𝑓𝑎𝑙𝑠𝑒̂ , 𝑅�̂�} 

C_75={𝐴_𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑_𝑑𝑒𝑓𝑎𝑢𝑙𝑡̂ , 𝐵_𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑_𝑑𝑒𝑓𝑎𝑢𝑙𝑡̂ , 𝑅𝑅_𝑑𝑒𝑓𝑎𝑢𝑙𝑡̂ } 

C_13={𝐴_𝑡𝑟𝑢𝑒̂ , 𝐴�̂�} 

C_26={𝐵_𝑡𝑟𝑢𝑒̂ , 𝐵�̂�} 

C_77={𝐴𝑅_𝑑𝑒𝑓𝑎𝑢𝑙𝑡̂ } 

C_79={𝐵𝑅_𝑑𝑒𝑓𝑎𝑢𝑙𝑡̂ } 

C_84={𝐴𝐵𝑅,̂  𝐴𝑟𝑟_𝑡𝑟𝑢𝑒̂ } 

C_92={𝑓𝑟𝑜𝑚_𝑅_𝑏𝑒𝑓𝑜𝑟𝑒_𝑂_𝑑𝑒𝑓𝑎𝑢𝑙𝑡̂ } 

C_82={𝑎𝑓𝑡𝑒𝑟_𝑅_𝑢𝑛𝑡𝑖𝑙_𝑂_𝑡𝑟𝑢𝑒̂ , 𝐴𝑟�̂�}  

C_86={𝐴𝐵𝑅_𝑡𝑟𝑢𝑒̂ ,𝑛�̂�, �̂�} 

5.1. Example SIGNAL Program 

This paper chooses the classic example ABRO [30] as the case study. ABRO automaton, as shown in Fig. 6. 

ABRO has three input signals, A, B, R, and an output signal O. In the initial state ABRO waiting for the input 

signal, when the A, B signal has read in any order, ABRO output signal O. Signal R is used for resetting ABRO 

state: 

(1) Once O is outputted, ABRO will not receive the input from either A or B until it receives R and returns 

to the initial state; 

(2) If R is received after one of A and B has been received, ABRO will return to the initial state, waiting for 

the next inputs of A and B. 

According to the feature and function of ABRO, [15] gives the corresponding SIGNAL program, and a 

modified version is given in Table 13. The basic unit of the Signal program is a process (line 1). Line 2 defines 

the declaration of program input signals (A, B, R) and the output signal (O). In order to generate simulation 

code, set the input signals A, B, and R to Boolean type, and establish the synchronization relationship of the 

three signals (line 3). This synchronization condition guarantees that the three signals can always be read in at 

the same logical moment. Besides, when the program reads the value of the input signal as true, it means that 

the signal can trigger a state transition. The output signal O is also of Boolean type. If the calculated value is 

true, the signal can be output. Lines 3 to 5 specify the clock synchronization relationship between signals. 

Because the signal synchronization relationship is transitive, the signals A, B, R, A_received, B_received, and 

after_R_until_O are synchronized. In the code, Adelay and Bdelay represent the value of the signal which A 

and B received last time so that it can be guaranteed that A and B do not appear in a tick at the same time (A is 

before B or B is before A), and when there is no R signal, the value of O can still be calculated. 

5.2. Exploration of Clock Relations 

During the translation, each signal x corresponds to a clock variable �̂�. For sampling operations and merging 

operations, temporary clock variables are generated correspondingly. For example, for the equation "RT:=nR 

when nR", the corresponding clock variable R_false is generated, and its value is defined as " �̂�∧nR", R is the 

value variable of the signal R, which means the value of the signal variable. R_false is true when the signal R 

exists and its value is false. For the merge operation "AR:=AT default Adelay", the clock variable AR_default 

and its definition equation " 𝐴𝑅_𝑑𝑒𝑓𝑎𝑢𝑙𝑡̂ = 𝐴𝑑𝑒𝑙𝑎𝑦̂  \ 𝐴�̂�" are generated. After obtaining the set of clock 

equations, it can be parsed to get the clock equivalence classes. Table 14 shows the partition results of the clock 
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variable equivalence classes. Each integer x in equivalence class "C_x" is the value of BDD. The equivalence 

classes C_2 is the root clock of the program. Table 15 shows the corresponding RNFS equations. Since only the 

clock C_2 appears on the right equation, the program meets the endochrony property and C_2 is the root clock 

of the program. 

Table 15 RNFS of ABRO 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.  Generation of EDG and Task Division 

By analyzing the ABRO data-flow equations and data dependencies, one can get its EDG as shown in Fig. 

7. Although the EDG in the graph does not add the clock information, the clock relations have been taken into 

consideration when analyzing data dependency. For example, for the equation ABR: =A_received when Arr, 

the signal defined equation ABR=A_received depends on the value of A_received and Arr. In addition, for the 

merge operation, two mutually exclusive actions are put into a node and will not be executed simultaneously in 

same iteration. 

From this EDG, a parallel task sequence will be generated by topological sort and by adding the clock 

information as shown in Fig. 8. The solid line arrow in the figure represents the linear relationship of the parallel 

task execution, and the equations in a task can be performed in parallel. 

5.4. Generation of Parallel Code of OpenMP 

Table 16 shows the generated OpenMP parallel code fragments where the three input signals A, B and R can 

be simultaneously read. The generated code corresponds to the OpenMP parallel structure. 

5.5. Validation of Generated Code 

A SIGNAL code generation tool was developed as a plugin tool on the Eclipse platform. The generated 

simulation code is available on the GitHub website [39]. 

The procedure obtains the input signal by reading a text file and outputs to the corresponding text file. In the 

ABRO program example, the input signals are A, B, R, the output signal is O. The corresponding signal values 

of the three input signal files are respectively “1 1 1 1 0 1 0”, “1 1 1 1 1 0 1” and “0 0 1 0 1 0 0”. We obtain the 

output file O.txt which is “1 0 0 1 0 1 0”, which illustrates that the generated parallel code can effectively 

simulate the functional behavior of the ABRO program. 

 

C_6=C_2∧R 

C_75=C_2 \ C_6 

C_13=C_2∧A 

C_77=C_2 \ C_13 

C_26=C_2∧B 

C_79=C_2 \ C_26 

C_82=C_2∧after_R_until_O 

C_84=C_82∧Arr 

C_86=C_84∧ABR 

C_92=C_2 \ C_86 
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Fig. 7 EDG of ABRO 

 

Table 17 shows a possible result of the ABRO program once executed. For example, for the logic instant t1, 

the signal A and B are true at the same time and the R is false, then the output signal O is true. However, 

although A and B are true at the logic instant t2, the state is not reset at this time, the value of O is not existing. 

In logic instant t3, the input value of R is true and the state has been reset (the value of A, B are not still read 

in, the value of O does not exist). In logic instant t4, the value of O is true after A and B have been read at the 

same time. At instant t5, R reset the value of O at the instant t4, and the value of B is stored in B_received. At 

instant t6, the value of A is 1 and the value of R is 0, so it outputs 1. 

 

read(A) read(B) read(R)

nR!=RAT=A BT=B Re=R

RT=nR
AR=AT

AR=Adelay

BR=BT
BR=Bdelay

RR=Re
RR=after_R_until_O

A_received=RT
A_received=AR

B_received=RT
B_received=BR

Arr=B_received

ABR=A_received

O=true

nO=!O

from_R_before_O=nO
from_R_before_O=RR
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read(A) read(B) read(R)

nR!=RAT=A BT=B Re=R

C_82=C_2∧ after_R_until_O

C_13=C_2∧A

C_77=C_2∧ !C_13

C_26=C_2∧B

C_79=C_2∧ !C_26

C_6=C_2∧R

C_75=C_2∧ !C_6

RT=nR
AR=AT

AR=Adelay
BR=BT

BR=Bdelay

RR=Re
RR=after_R_u

ntil_O

A_received=RT
A_received=AR

B_received=RT
B_received=BR

Arr=B_received

ABR=A_received

C_84=C_82∧ Arr

C_86=C_84∧ ABR
C_92=C_2\C_82

O=true
nO=!O

from_R_before_O=nO
from_R_before_O=RR

 

Fig. 8 TaskList of ABRO 
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Table 16 Fragment of OpenMP code 

1:int core(){ 

2: int mark=0; 

3: #pragma omp parallel sections 

4: { 

5:  #pragma omp section 

6:  { 

7:   if(read_A()==EOF) 

8:    mark=1; 

9:  } 

10:  #pragma omp section 

11:  {  

12:   if(read_B()==EOF) 

13:    mark=1; 

14:  } 

15:  #pragma omp section 

16:  { 

17:   if(read_R()==EOF) 

18:    mark=1; 

19:  } 

20: } 

… 

Table 17 A Possible Execution Trace of ABRO 

Signal t1 t2 t3 t4 t5 t6 t7 

A 1 1 1 1 0 1 0 

B 1 1 1 1 1 0 1 

R 0 0 1 0 1 0 0 

O 1 0 0 1 0 1 0 

5.6. Performance comparison 

To compare the performance of the OpenMP parallel code generated by our method with the serial code 

generated by Polychrony, we test the execution times of the two separately. Firstly, we establish the running 

environment with CodeBlocks of version 20.03 such as configuring it to support OpenMP. Our experiment is 

divided into four steps, and in each step, we run 10 times and remove the strange data, and then get the average 

to reduce the error. 

1) In the first step, we compare directly the execution time between two codes, and the result for two 

parallel and serial codes is 5ms and 1ms respectively. This is because the generated codes are simple 

and don’t contain many cycles; 

2) In the second step, we add a loop to simulate the situation of reducing the speed of reading the input file 

A.txt which is very likely to happen in the actual system like blocking time-consuming IO operations 

The loop structure is shown in Table 18, where we also print out the thread number to verify the parallel 

calculation. The result is 227ms and 505ms respectively; 

Table 18 Function for reading files 

int read_A(){ 
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 for(int i=0;i<100;i++){ 

    printf("section A, thread id=%d\n", omp_get_thread_num()); 

 } 

 return (fscanf(fp_A,"%d",&A)); 

} 
3) In the third step, we also add a loop in read_B() function, and the result is 446ms and 976ms respectively; 

4) In the last step, we continue to add a loop in read_C() function, and the result is 672ms and 1452ms 

respectively.  

As shown in Fig. 9, it can be concluded that the parallel code shows superior performance under complex 

multi-loop structures when compared with serial code. Because in the parallel code, these three functions that 

read files are called in parallel while they are executed sequentially in the serial code, as shown in Table 16. 

 

Fig. 9 Performance comparison graph 

6. Related Work 

Code generation from SIGNAL specifications, particularly generating multi-threaded and distributed code, 

has been an active research area, but the work on cross-platform code generation is at an early stage. 

There are two main Signal compilers working in two ways. One is developed by the Geensys which is 

integrated RT-Builder as code generation tool. Another is developed by the ESPRESSO INRIA project team 

called Polychrony. Polychrony compiler provides the Signal language into C, C ++, Java and other languages 

serial code. The tool is integrated as an Eclipse plug-in in the TOPCASED environment within the Polarsys 

Industry Working Group. Users can create a Signal model then convert to needed code by using plug-ins. 

Polychrony proposes a directed acyclic Hierarchical Conditional Dependency Graph (HCDG) to describe clock 

relations of hierarchy and the respective signal calculations. However, it requires calculating clock relations and 

scheduling relationship respectively and then merging them into a diagram HCDG.  It does not optimize clock 

calculation or clock hierarchy as we do but proposes several clustering policies. How to optimize the structure 

of the clock tree to generate optimized code is this paper’s objective. 

Besnard et al. [31] introduce a multi-threaded code generation for SIGNAL supporting either static or 

dynamic scheduling. For static scheduling, the compiler generates multiple clusters of code according to a 

scheduling diagram. There is a main computation cluster used for iteration. Each cluster has its own single clock 

tree. In the distributed code generation from the dynamic scheduling, each equation that can be executed in 

parallel in the SIGNAL program will generate a thread. The micro-thread waits for input signal and sends notify 



24 

signal when outputting. Such unrelated processes can be executed in parallel. However, the multi-threaded code 

is generated using the particular thread library of OepnMP, so it cannot be executed in a different platform.   

In a distributed or multi-core system, due to the communication delay between components and some other 

reasons, signals between components cannot meet the synchronization relationship. These systems are called 

global asynchronous locally synchronous (GALS) systems and do not satisfy the endochrony property. Potop-

Butucaru [32] proposed a weak endochrony theory. As the name implies, weak endochrony reduced conditions 

of SIGNAL programs to generate deterministic code, that the program can exist multiple root clocks. If the 

inter-signal meets the full-diamond conditions, it can generate deterministic multi-threaded code. However, 

how to detect whether the program can satisfy the property of weak endochrony is difficult. Potop-Butucaru 

[33] proposed a method to detect weak endochrony nature and gave the conflict-free minimum reaction 

collection from the SIGNAL programs. If this collection is unique, the program is weakly endochronous. But a 

disadvantage is that one needs to translate the SIGNAL program to a stateless abstraction, which makes some 

weakly endochronous programs lose information so that they cannot satisfy this property.  

Talpin et al. [34] proposed a method to check weak endochrony based on bounded model checking and 

isochrony [35] property. However, these two methods cannot be applied to all weakly endochronous programs. 

Jose [36] proposed a multi-threaded code generation method based on synchronous data-flow dependency graph 

(SFDG), but does not give a verification method for the weak endochrony property. 

Compared with the previous multi-threaded code generation method based on weak endochrony, we obtain 

a good degree of parallelism by using the EDG description and the partition of tasks. 

In addition, Baudisch [37] proposed a method from the Synchronous Guarded Actions (SGA) to generate 

the OpenMP parallel code. SGA is first converted to the Dependency Graph (DG). Then the synchronized parts 

can be obtained from the DG from which the OpenMP structure can be finally generated. However, since 

SIGNAL has great differences with the synchronization guard action in syntax and semantics, especially in the 

semantics of the clock and response action [38], the proposed approach is very different from [37], especially 

in the clock analysis. SGA uses the mono-clock model, without considering the clock access to information. 

This paper chooses the multi-clocked SIGNAL model and proposes a method that adds clock information to 

the parallel task sequence. In addition, for the intermediate data structure design, the EDG can describe the 

intuitive global data dependencies of the program, better than the bipartite graph representation method 

proposed in [37].  

Compared with the previous studies, the proposed method has the following characteristics:  

 It adopts an EDG that can describe data dependencies between equations and the equations in the SIGNAL 

program. It can extract the parallel parts easily by the topological sorting. The generated code can get 

better parallelism. 

 The paper uses a cross-platform parallel programming techniques OpenMP as the generated object. The 

generated parallel simulation code can be executed on a variety of platforms with great flexibility. 

7. Conclusion and Future Work 

This paper presents a parallel code generation method from SIGNAL synchronization specification to 

OpenMP with clock calculus that can extract the clock information from the SIGNAL program based on 

analysis of Boolean equations. Then, after that, EDG is used for describing the global data-dependency 

relationship in the program, and the topological sorting is used to allocate tasks to be executed in parallel. 

Finally, the parallel task sequence is mapped to the sections structure of the OpenMP. 

Future work will focus on the following three aspects: 

1) Optimize the parallel task partitioning, and improve the parallelism and execution efficiency of the 

generated code. 
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2) Formalize the code generation process and make the process modular. Each part will be formalized by 

using Coq and Caml to verify correctness and validate the whole process to ensure the correctness of the entire 

compilation process. 

3) Study the weak endochrony theory and investigate feasible algorithm to verify whether SIGNAL programs 

are weakly endochronous. The goal is to generate parallel code from the weakly endochronous programs. 
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