
A denotational semantics of Simulink with higher-order

UTP

Xiong Xua,c, Bohua Zhana,b, Shuling Wanga, Jean-Pierre Talpinc, Naijun
Zhana,b,∗

aInstitute of Software, Chinese Academy of Sciences, Beijing, China
bUniversity of Chinese Academy of Sciences, Beijing, China

cInria, Rennes, France

Abstract

Matlab/Simulink is a de-facto industrial standard for modelling embedded
systems. Reflecting the complexity of cyber-physical system (CPS) design,
the semantics of Simulink is complex, mixing discrete and continuous time
and events. In this paper, we define a compositional semantics of hierarchi-
cal Simulink diagrams using Higher-order Unifying Theories of Programming
(HUTP) for CPS design. The HUTP theory satisfies the suitable algebraic
properties to serve as a mathematical foundation for expressing the seman-
tics of CPSs, in particular Simulink diagrams. We characterise a class of
well-formed Simulink diagrams and prove the determinacy of their HUTP
semantics. Moreover, we construct a framework for proving the consistency
between Simulink diagrams and their translation to HCSP (Hybrid Commu-
nicating Sequential Processes). Finally, we provide a case study to illustrate
and justify this translation.

Keywords: model-based design, cyber-physical systems, unifying theory of
programming, denotational semantics, Mathworks Simulink

1. Introduction

Cyber-Physical Systems (CPSs) are networked computing units control-
ling physical plants as diverse as grids, factories, supply chains, ground, sea,
air and space transportation systems. CPSs are complex to design, verify and
maintain, while often entrusted safety-critical roles. The efficient and verified
development of safe and reliable CPSs is hence a priority mandated by many

∗Corresponding author
Email address: znj@ios.ac.cn (Naijun Zhan)

Preprint submitted to Elsevier August 28, 2022



standards, yet a notoriously difficult and challenging field of engineering and
research. Matlab/Simulink is a de-facto industrial standard for modelling
cyber-physical systems. Reflecting the complexity of CPS design, Simulink
is known to have a complex semantics, which need to describe interactions
between discrete and continuous time behaviors, trigger events, hierarchical
structure, and so on.

Model-based design (MBD) (Gajski et al., 2009) has long become a pre-
dominant approach to break down the difficulties and challenges in CPS
design into abstracted and comprehensible elements. Hoare and He’s Uni-
fying Theories of Programming (UTP) (Hoare and He, 1998) is built upon
the mathematical foundations of theorem proving and has both the core sim-
plicity and the necessary extensibility to capture models of imperative and
concurrent software, hardware, and physics found in CPS design under a
common relational calculus suitable for design and verification.

Hybrid systems, which could be subsumed in the domain of CPSs, seam-
lessly integrate discrete behavior with continuous dynamical systems, and
have been extended to capture probabilistic, stochastic, time-delayed be-
haviours and even more complex features. In previous works (Xu et al.,
2022a), we defined one such conservative extension to Hoare and He’s UTP
theory with higher-order quantification, i.e., the Higher-order UTP (HUTP),
to provide a formal semantics for modelling and verifying hybrid systems,
mixing discrete real-time processes and continuous dynamics. Within HUTP,
we defined a calculus of normal hybrid designs to model and analyse hybrid
systems. A normal hybrid design describes a contract between the component
and its environment, and therefore supports the decomposition of engineering
tasks to resolve system design complexity. Normal hybrid designs as a first-
class notion in the HUTP theory enjoys some desired algebraic properties,
and therefore can serve as a semantic foundation for CPS design.

In (Zou et al., 2013b, 2015), we introduced methods for translation of
Simulink and Stateflow diagrams to Hybrid Communicating Sequential Pro-
cesses (HCSP), in order to verify them using the Hybrid Hoare Logic prover
implemented in Isabelle/HOL (Zou et al., 2013a; Wang et al., 2015). The
correctness of the translation can be proved using HUTP. Concretely, we
define the respective HUTP semantics for Simulink and HCSP, and then
compare the HUTP representations of Simulink diagrams and their HCSP
models to check the semantic consistency. In (Xu et al., 2022a), we defined
a formal semantics for Simulink based on normal hybrid designs. However,
the normal-hybrid-design semantics is complex, which pose difficulties for
ensuing analysis and verification. The complexity comes from (1) involve-
ment of a large number of communications (including the communications
between atomic discrete blocks), and (2) the use of normal hybrid design,

2



although intuitive for system design, makes the definitions long and cumber-
some. Moreover, compositional semantics for hierarchical Simulink subsys-
tems is not considered.

Therefore, we introduce in this paper a new compositional formalisa-
tion of denotational semantics for hierarchical Simulink diagrams based on
HUTP, featuring both discrete and continuous behaviours, as well as compo-
sition using normal, enabled and triggered subsystems. The expressivity of
the present denotational semantics is well-suited for verifying correctness of
translation from Simulink to other formalisms, such as HCSP (Zou et al.,
2013b), differential dynamic logic (Liebrenz et al., 2018) and hybrid au-
tomata (Agrawal et al., 2004). We exercise this capability by constructing a
framework for proving the semantic consistency between Simulink diagrams
and their corresponding HCSP models, and provide a case study to demon-
strate and justify our translation of Simulink into HCSP.

In summary, the main contributions of this paper comprise:

• A notion of Simulink processes and their parallel composition based
on conjunction of relations, which simplifies the HUTP theory for
Simulink;

• A denotational semantics for hierarchical Simulink diagrams based on
Simulink processes, reflecting the composability of subsystems and there-
fore following the principle of modular design;

• Notions of well-formedness of Simulink diagrams, and proof of semantic
determinacy for these diagrams;

• A framework for proving correctness of translation from Simulink to
HCSP, which is illustrated with a simple case study.

Paper Organisation. The rest of the paper is organised as follows. Section 2
retrospects some preliminary concepts of Simulink, UTP and Higher-order
UTP. Section 3 defines the notion of Simulink processes which serve as the
semantic foundation for Simulink. Starting from Simulink blocks, Section 4
defines the HUTP semantics for Simulink diagrams by Simulink processes,
and proves determinacy of the semantics for well-formed diagrams. Sec-
tion 5 defines the compositional HUTP semantics for hierarchical Simulink
diagrams containing normal, triggered and enabled subsystems. In Section 6,
we illustrate by a case study how to prove the semantic consistency between
Simulink diagrams and the corresponding HCSP models. Section 7 addresses
the related work and Section 8 concludes this paper and discusses future
work.

3



2. Preliminaries

In this section, we will present the preliminaries on Simulink, classical
UTP, and our previous work on the higher-order UTP for hybrid systems.

2.1. Simulink

Simulink (MathWorks, 2013) is a widely-used design environment for
building embedded control systems, with support for graphical modelling
and efficient numerical simulation. Dynamic systems, possibly combining
continuous and discrete behaviors, can be modelled by Simulink block di-
agrams. A rich set of fixed-step and variable-step solvers is provided for
simulating dynamic systems. Fig. 1 shows how a simple plant-control system
can be modelled in Simulink.

➕

➖
PID

des_v

Constant
Subtract

Discrete 
PID Controller

acceleration

velocity

position

Plant

Control

> ?

des_a

Constant

Switch

Integrator0 Integrator1

Fig. 1: A Simulink diagram of a plant-control model

Blocks are the basic units for building Simulink models. Each block is
defined with input and output ports, an output method that defines how
the output values are calculated, optional internal states and corresponding
update methods that define how the states are changed. It may also con-
tain user-defined parameters that alter the functionality, such as the symbol
parameter “+-” for Add block, resulting in Subtract; the parameter of thresh-
old for Switch block, and so on. Sample time is one of the most important
parameters of a block and specifies the rate of execution when the block ex-
ecutes the output method and the update method (if it exists). Among the
different types of sample time, three basic ones are frequently used: discrete
with sample time st for some st > 0, continuous with sample time 0, and
inherited. For the inherited case, the sample time is not defined explicitly,

4



but instead determined from the context of the corresponding block through
a process called sample time propagation. For instance, if the sample times
of all the input signals of an inherited block are known, then sample time of
the block is computed as the greatest common divisor of the sample times
of these input signals. According to sample time, blocks can be categorised
into two kinds: discrete and continuous blocks. Simulink provides discrete
and continuous solvers to compute the states of blocks at each time step
respectively.

Blocks are connected using lines to transfer signals from one block to
another. The signals are time-varying and can be considered as functions
mapping from real time to values. For discrete blocks the functions are
piecewise constant. Blocks in a diagram may have different sample times,
e.g. a multi-rate discrete system with discrete blocks that sample at different
rates, or a hybrid continuous and discrete system. For such diagrams, the
simulator must meet the precision specified on the continuous states, and
hit all the sample times for the discrete states. The simulator needs to sort
(or schedule) the blocks to be executed in a certain order. This may not be
possible if there are algebraic loops in the diagram, in which case the diagram
may be considered to be invalid. The blocks which maintain state variables
such as the Integrator or Unit Delay blocks can break the loop.

Blocks can be grouped into subsystems to establish a hierarchical struc-
ture on Simulink diagrams. We consider three types of subsystems: normal
subsystems, triggered subsystems and enabled subsystems. A normal sub-
system executes as a single unit within the model. It can specify its system
sample time and its execution is equivalent to executing the blocks inside
the subsystem. Both triggered and enabled subsystems are conditionally ex-
ecuted subsystems. A triggered subsystem is defined with inherited sample
time, that runs when the trigger signal is rising, falling, or either (rising or
falling) through a zero value. An enabled subsystem runs when its control
signal is positive.

A hierarchical Simulink model is thus composed of blocks, subsystems,
and lines between them. After a Simulink model is built, it is ready for
simulation. Each step of simulation corresponds to one sample time of the
overall diagram. At each step, first compute the internal state and output of
each block by invoking the corresponding output and update methods in the
correct order; second, choose appropriate ODE solvers to compute evolution
of continuous blocks through time. If there are triggered subsystems or in-
tegrator blocks with resets, zero crossings may need to be computed. The
process ends when the given simulation time is reached.

5



2.2. Unifying Theories of Programming

Hoare and He’s Unifying Theories of Programming (UTP) (Hoare and
He, 1998) is an alphabetised refinement calculus unifying heterogeneous pro-
gramming paradigms. An alphabetised relation consists of an alphabet α(P ),
containing its variables x and primes x′, and a relational predicate P refer-
ring to this vocabulary. The terms x and x′ are called observable variables:
x is observable at the start of execution and x′ is observable at the end of
execution. The behaviour of a program is encoded as a relation between
the observable variables x and x′. In particular, assignment, sequential com-
position, conditional statement, non-deterministic choice, and recursion of
imperative programs can be specified as alphabetised relations below, where
x and x′ are sequences or vectors of variables, x\{x} (x′\{x′}) denotes ex-
cluding x (x′) from x (x′). To start with, the relational calculus comprises
all operators of first-order logic.

x := e =̂ x′ = e ∧ x′\{x′} = x\{x}
P #Q =̂ ∃x∗ · P [x∗/x

′] ∧Q[x∗/x]
P C bBQ =̂ (b ∧ P ) ∨ (¬b ∧Q)

P uQ =̂ P ∨Q
P tQ =̂ P ∧Q

Conventionally, u is an algebraic sibling for ∧ and t for ∨. In the equal
tradition of UTP (Hoare and He, 1998; Xu et al., 2022a), however, they
denote ∨ and ∧, respectively. We will follow UTP’s convention in this paper.

Assignment x := e is defined by observing the update x′ of variable x once
its value e is evaluated, leaving other variables in the alphabet x unchanged.
Sequence P # Q is modelled by locally binding, through x∗, the final state
x′ of P and the initial state x of Q, both of which are instantiated to x∗.
Note that # requires αout(P ) = α′in(Q), where αout(P ) and αin(Q) denote
the sets of output and input variables in α(P ) and α(Q), respectively, and
α′in(Q) is the primed version by priming all the variables in αin(Q). The
conditional P C bBQ evaluates as P if b is true and as Q otherwise. P uQ
non-deterministically chooses P or Q, and P t Q is a conjunction of P and
Q.

Let P and Q be two predicates with the same alphabet, say {x,x′}.
Then, Q is a refinement of P , denoted P v Q, if ∀x,x′ ·Q⇒ P . In addition,
P v Q iff P uQ = P iff P tQ = Q. With respect to the refinement order v,
the least (µ) and greatest (ν) fixed points of a function F between programs
can be defined as follows:

µF =̂
d
{X | F (X) v X}

νF =̂
⊔
{X | X v F (X)}

6



The notion of healthiness conditions plays an important role in the UTP
theory. If a predicate satisfies P = H(P ), then it is said to be H-healthy.
In other words, a healthiness condition H defines an invariant predicate
set {X | H(X) = X}, and is required to be idempotent (H ◦ H = H),
which means that taking the medicine twice leaves you as healthy as tak-
ing it once (no overdoses). So, in UTP, the healthy predicates of a the-
ory are the fixed points of idempotent functions. When H is monotonic
on a complete lattice (C,v), then according to the Knaster-Tarski theo-
rem (Tarski, 1955), the UTP theory satisfying H forms a complete lattice
{X ∈ C | H(X) = X}. Additionally, recursion can be well defined. Distinct
healthiness conditions can be composed to capture the characteristics of dif-
ferent programming paradigms. Concretely, a programming paradigm can be
defined by a collection of healthiness conditions H1, H2, · · ·, Hn. Their com-
position H1 ◦ H2 ◦ · · · ◦ Hn forms the semantic model of the domain-specific
paradigm under consideration. For example, in Section 3.1, we introduce
healthiness conditions characterising Simulink processes.

2.3. The higher-order UTP for hybrid systems

Higher-order UTP (HUTP) (Xu et al., 2022a) is a conservative extension
to Hoare and He’s UTP theory which supports the specification of discrete,
real-time and continuous dynamics, concurrency and communication, and
higher-order quantification. In (Xu et al., 2022a), we defined a formal se-
mantics for Simulink based on a notion of normal hybrid designs. However,
this semantics is complex and difficult to analyse for reasons given in Sec-
tion 1. In this paper, we instead consider an abstracted HUTP semantics for
Simulink, based on the notion of abstract hybrid processes proposed in (Xu
et al., 2022a) as future work. While having weaker algebraic structure than
normal hybrid designs (e.g., chaos is not a left zero of sequential composi-
tion), abstract hybrid processes are simpler, of sufficient expressivity to define
a semantics of Simulink, and are more comfortable for verification.

2.3.1. Abstract hybrid processes

As mentioned in (Xu et al., 2022a), HUTP separates the concerns in
hybrid system design into time, state and trace. We introduce the notion of
time by two observational variables ti , ti ′ : R≥0 ∪ {+∞} to specify the start-
and end-time of the observed behaviour. The notion of state is represented
by real-time variables and their derivatives, which are functions over time,
and differential relations over them that are very powerful to express all kinds
of continuous dynamics. Therefore, there are three versions for each state
variable v:

7



• v ∈ D stands for its initial value in the domain D, where D could be a
Banach space;

• the primed version v′ ∈ D stands for the final value, i.e., the output
state variable; and

• the real time version ∼v : [ti , ti ′)→ D stands for its dynamic trajectory
from the start time ti to the end time ti ′, and ∼̇v : (ti , ti ′) ⇀ D is a
partial function denoting the derivative of ∼v.

Timed traces tr and tr ′ record the execution history and capture commu-
nication behaviours, where tr represents the timed trace before the process
is started and tr ′ stands for timed trace up to the moment of observation.
However, in this paper, no communication is involved and the parallel com-
position is based on shared variables, so timed traces are abstracted away,
which is the main feature of abstract hybrid processes.

We use the boldface symbols v, v′, ∼v and ∼̇v to denote respective vectors of
input, output, real-time state variables and their derivatives. The alphabet
our theory depends on is {ti , ti ′,v, ∼v, ∼̇v,v′} by default. Therefore, first-order
predicate P (x,x′) used in classical UTP (Hoare and He, 1998) can be ex-
tended to higher-order differential relation ∼P (ti , ti ′,v, ∼v, ∼̇v,v

′). However, not
all higher-order differential relations are expected, such as ti > ti ′ indicating
time going backwards. Thus, we use healthiness conditions to exclude the
ill behaviours. As introduced in (Xu et al., 2022a), the features of abstract
hybrid processes can be captured by the following four healthiness conditions
(H1 is defined for traces, hence not applicable for abstract hybrid processes):

• Time must be irreversible:

Ha
0 (X) = X ∧ ti ≤ ti ′

• If the preceding process does not terminate, i.e., ti = +∞, the current
process should do nothing but keep the time observation unchanged,
i.e.,

Ha
2 (X) = (ti = ti ′) C ti = +∞BX

where P C bBQ =̂ (b ∧ P ) ∨ (¬b ∧Q).

• If the current process does not terminate, i.e., ti ′ = +∞, the values of
the output state variables are unobservable, i.e.,

Ha
3 (X) = (∃v′ ·X) C ti ′ = +∞BX

8



• If the process evolves for a period of time, i.e., ti < ti ′, the real-time
value ∼v should stay right-continuous (RC) and semi-differentiable (SD).
Let vk, ∼vk, and v′k denote the k-th variable in v, ∼vk, and v′k, respectively.
Then, we define

RC =̂ ∀k · ∀t ∈ [ti , ti ′) · ∃d · ∼vk(t) = limδ→0+ ∼vk(t+ δ) = d
SD =̂ ∀k · ∀t ∈ (ti , ti ′) · ∃d0 · limδ→0+ (∼vk(t+ δ)− ∼vk(t)) /δ = d0

∧∃d1 · limδ→0− (∼vk(t+ δ)− ∼vk(t)) /δ = d1

The healthiness condition

H4(X) = X ∧ RC ∧ SD

rules out some ill behaviours, such as the Dirichlet function (returning
1 if t is a rational number and 0 otherwise) and the Weierstrass function
(continuous everywhere but differentiable nowhere).

Remark 1. Note that Ha
3 does not mean that the values of v exist at infinity.

The existential quantifier just indicates that the output v′ can take arbitrary
values, i.e., chaos. In addition, the output of a process exhibiting Zeno-
behaviour should also be unobservable (chaos). However, it cannot be captured
by abstract hybrid processes as the trace information is abstracted away.

An abstract hybrid process is a fixed point of X = Ha
HP(X), where

Ha
HP =̂ Ha

0 ◦ Ha
2 ◦ Ha

3 ◦ H4

It is proved in (Xu et al., 2022a) that Ha
HP is idempotent and monotonic,

which indicates that abstract hybrid processes form a complete lattice under
the refinement order v.

3. Simulink processes in HUTP

Based on abstract hybrid processes, we propose a new notion of Simulink
processes which can serve as the semantic foundation for Simulink. We fur-
ther define parallel composition of Simulink processes as conjunction of re-
lations. Finally, we define some syntactic sugar to simplify the ensuing pre-
sentations.

3.1. Simulink processes

The semantics of Simulink can be represented by a subset of abstract
hybrid processes subject to additional healthiness conditions. First, we as-
sume that the execution of Simulink diagrams will consume time (ti < ti ′).

9



This corresponds to the requirement that simulation will last for non-zero
amount of time. Moreover, we require that simulations will always termi-
nate (ti ′ < +∞). These two properties can be captured by the following
healthiness condition:

HSIM(X) = X ∧ ti < ti ′ < +∞

It can be proved that HSIM is idempotent and monotonic, which indicates
that

Ha
SIM =̂ HSIM ◦ Ha

HP

also forms a complete lattice under the refinement order. We call the Ha
SIM-

healthy relations Simulink processes, and we prove the following property,
which reveals that Ha

0 , Ha
2 and Ha

3 are redundant and therefore simplifies
the representation of Simulink processes.

Property 2. Ha
SIM ≡ HSIM ◦ H4

Proof. It can be checked that HSIM ◦ Ha
0 (X) = HSIM ◦ Ha

2 (X) = HSIM ◦
Ha

3 (X) = HSIM(X).

We next describe the meet (u, ∨), join (t, ∧) and sequential composition
(#) operations on Simulink processes. They are specializations of correspond-
ing operations for general hybrid processes defined in (Xu et al., 2022a). The
sequential composition of two Simulink processes P and Q is defined as fol-
lows:

P # Q =̂ ∃ti0,v0 · P[ti0,v0/ti ′,v′] ∧ Q[ti0,v0/ti ,v]

provided that αout(P) = α′in(Q), where αout(P) and αin(Q) denote the sets of
output and input variables in the respective alphabets of P and Q, and α′in(Q)
is the primed version by priming all the variables in αin(Q). If αout(P) 6=
α′in(Q), then we can extend the alphabets by

α+
out(P) = α+

in
′
(Q) =̂ αout(P) ∪ α′in(Q)

to ensure the well-definedness of #. The meet and join operations simply cor-
respond to union and intersection of relations. We then prove #, ∨ and ∧ are
Ha

SIM-preserving, and the proofs for other operations on Simulink processes
are similar.

Property 3. If P and Q are Ha
SIM-healthy, so are P # Q, P ∨ Q, and P ∧ Q.

10



Proof. By the definition of Ha
SIM,

P # Q = 0 < ti < ti ′ < +∞∧ P ∧ RC (∼v, ti , ti
′) ∧ SD(∼v, ti , ti

′) #
0 < ti < ti ′ < +∞∧ Q ∧ RC (∼v, ti , ti

′) ∧ SD(∼v, ti , ti
′)

= ∃ti0,v0 · 0 < ti < ti0 < +∞∧ 0 < ti0 < ti ′ < +∞
∧P[ti0,v0/ti ′,v′] ∧ Q[ti0,v0/ti ,v]
∧RC (∼v, ti , ti0) ∧ RC (∼v, ti0, ti

′) ∧ SD(∼v, ti , ti0) ∧ SD(∼v, ti0, ti
′)

= ∃ti0,v0 · 0 < ti < ti0 < ti ′ < +∞
∧P[ti0,v0/ti ′,v′] ∧ Q[ti0,v0/ti ,v]
∧RC (∼v, ti , ti

′) ∧ SD(∼v, ti , ti
′)

where RC and SD denote ∼v is right continuous and semi-differentiable as
specified in healthiness condition H4. We can also prove

P ∨ Q = 0 < ti < ti ′ < +∞∧ P ∧ RC (∼v, ti , ti
′) ∧ SD(∼v, ti , ti

′) ∨
0 < ti < ti ′ < +∞∧ Q ∧ RC (∼v, ti , ti

′) ∧ SD(∼v, ti , ti
′)

= 0 < ti < ti ′ < +∞∧ (P ∨ Q) ∧ RC (∼v, ti , ti
′) ∧ SD(∼v, ti , ti

′)
P ∧ Q = 0 < ti < ti ′ < +∞∧ P ∧ RC (∼v, ti , ti

′) ∧ SD(∼v, ti , ti
′) ∧

0 < ti < ti ′ < +∞∧ Q ∧ RC (∼v, ti , ti
′) ∧ SD(∼v, ti , ti

′)
= 0 < ti < ti ′ < +∞∧ (P ∧ Q) ∧ RC (∼v, ti , ti

′) ∧ SD(∼v, ti , ti
′)

According to the above results, we can prove that P #Q, P∨Q and P∧Q are
Ha

SIM-healthy.

3.2. Parallel composition

Of all the operations, parallel composition is the most important. In (Xu
et al., 2022a), we assume that the state variables of different processes are
disjoint. Based on this assumption, a parallel-by-merge scheme is given. In
this paper, we relax this assumption: state variables can be shared among
processes. Intuitively, the combination is well-behaved because although vari-
ables are shared, the value of each variable is controlled by at most one pro-
cess and only read by others. Hence, under some additional assumptions,
we can prove that there exists unique assignment to all variables given the
values of input variables to the overall process.

Therefore, the parallel-by-merge scheme (Fig. 1 of (Xu et al., 2022a)) can
be revisited to represent the parallel composition by shared state variables
in this paper. The parallel-by-merge, originated from (Hoare and He, 1998),
is a typical scheme to define parallel composition in UTP (Xu et al., 2022a;
Foster et al., 2020). Intuitively, parallel processes first execute independently
and their respective outputs are fed into the merge predicate M . Then, M
produces the merged result as the output of the parallel composition. Each
merge predicate reflects a parallel scheme, therefore the parallel composition

11



is parametric over M , which is indicated by the notation ‖M . Concretely, let
P and Q be the parallel processes with respective state variables v0 and v1

(which are not necessarily disjoint), then

P‖MQ =̂ Ha
SIM ((PX ∧ QY ) #M)

where PX (QY ) makes an X (Y )-version of P (Q) by adding the time variable
ti ′ in P (Q) with the X (Y )-subscript, i.e.,

PX =̂ P # (ti = ti ′X ∧ v0 = v′0) = P[ti ′X/ti ′]
QY =̂ Q # (ti = ti ′Y ∧ v1 = v′1) = Q[ti ′Y /ti ′]

Remark 4. Note that the Ha
SIM-healthiness of parallel composition P‖MQ is

enforced. Otherwise, Ha
SIM-healthiness could be violated, because the merge

predicate M can be arbitrary. We could investigate well-defined merge pred-
icates that guarantee Ha

SIM-healthiness by definition (just as the merge predi-
cate SIM, which does), but it is not the concern in this paper.

For Simulink, we define a new merge predicate:

SIM =̂ tiX = tiY = ti ′ ∧ v′0 = v0 ∧ v′1 = v1

It states that the parallel processes are synchronous on time (tiX = tiY ), i.e.,
their termination time should be identical (+∞ for non-termination); and the
output values of the shared state variables v0 ∩ v1 should keep consistent.
We denote the parallel operator defined by SIM as ‖SIM. For brevity, in the
remainder, we write ‖ for ‖SIM unless otherwise stated. The following property
states that ‖ is equivalent to conjunction.

Property 5. P‖Q ≡ P ∧ Q if P and Q are Simulink processes.

Proof. According to the definition, P‖Q = Ha
SIM ((PX ∧ QY ) # SIM), where

(PX ∧ QY ) # SIM = (P[ti ′X/ti ′] ∧ Q[ti ′Y /ti ′])#
(tiX = tiY = ti ′ ∧ v′0 = v0 ∧ v′1 = v1)

= ∃ti?X , ti?Y ,v?0,v?1 · P[ti?X ,v
?
0/ti ′,v′0] ∧ Q[ti?Y ,v

?
1/ti ′,v′1]

∧(ti?X = ti?Y = ti ′ ∧ v′0 = v?0 ∧ v′1 = v?1)
= P ∧ Q

Since P and Q are Ha
SIM-healthy, P ∧ Q is also Ha

SIM-healthy (Property 3).
Then, we can get

P‖Q = Ha
SIM ((PX ∧ QY ) # SIM) = Ha

SIM(P ∧ Q) = P ∧ Q

The property is proved.

12



Although parallel composition is equivalent to conjunction in essence, we
distinguish the two concepts in this paper. Concretely, parallel composition
between blocks in a Simulink diagram or within a subsystem is called con-
junction; while parallel composition between subsystems is called parallel
composition. Consider the Simulink diagram in Fig. 1, where each block can
be translated to a Simulink process. The semantics of subsystem Plant can
be defined by the conjunction Integrator0∧ Integrator1, while the semantics of
the whole diagram can be defined by the parallel composition Plant‖Control,
which is logically equivalent to Plant ∧ Control.

3.3. Syntactic sugar

For brevity in the ensuing presentation, we introduce some syntactic sugar
for the HUTP representation of Simulink semantics. Notice that the following
notations are different from the definitions in (Xu et al., 2022a). Let ∼P denote
a predicate relating ∼v and ∼̇v, then

d∼P c =̂ Ha
SIM (∀t ∈ (ti , ti ′) · ∼P (∼v(t), ∼̇v(t)))

is a continuous process reflecting the flow of ∼v over the time interval (ti , ti ′)
for ti < ti′, and it states that ∼P holds at every instant t from ti to ti ′. Note
that although the input and output state variables v and v′ do not appear
in d∼P c, they are in the alphabet of d∼P c, or in other words, v and v′ can take
arbitrary values. We can also bind v and v′ to the initial and final values of

∼v, respectively, resulting in the following definitions:

V∼P c =̂ v = ∼v(ti) ∧ d∼P c
d∼PU =̂ d∼P c ∧ v′ = ∼v(ti ′−)
V∼PU =̂ v = ∼v(ti) ∧ d∼P c ∧ v′ = ∼v(ti ′−)

Especially, we define
Idle =̂ V∼̇v = 0U

Besides, we add subscripts to the above definitions to constrain the duration.
For example,

V∼PUd =̂ V∼PU ∧ ti ′ − ti = d
V∼PU≤d =̂ V∼PU ∧ ti ′ − ti ≤ d

Note that the above continuous processes are all Simulink processes as they
are Ha

SIM-healthy.
A causal sequence of operations or events which is assumed to take no time

is called super-dense computation (Manna and Pnueli, 1993). Under super-
dense computation, rendering the time to compute the discrete operations is

13



negligible. However, the causal order of computations is still significant. Un-
der the assumption of super-dense computation, a discrete process is defined
by

[P ] =̂ ti = ti ′ < +∞∧ P

where P denotes a predicate relating v and v′. It executes instantly at time
ti = ti ′, rather than continuously over a time interval. Note that [P ] is not
a Simulink process as its duration is 0. This would violate the healthiness
condition HSIM. However, the sequential composition of [P ] and a Simulink
process is usually Ha

SIM-healthy, as demonstrated in the later content. We
define

Skip =̂ ti = ti ′ < +∞∧ v = v′

Similar to Property 16 in (Xu et al., 2022a), it can be proved that (Skip#P) =
(P # Skip) = P for any Simulink process P.

Since Simulink processes form a complete lattice according to the dis-
cussion at the end of Section 2.3.1, recursion can be defined. Theoretically,
recursion is denoted by the fixed points of the equation X = F (X), where F
constructs the body of the recursion. If F is monotonic, the fixed points
of X = F (X) also form a complete lattice by the Knaster-Tarski theo-
rem (Tarski, 1955). The least fixed point is denoted by µX.F (X), based
on which we can define

P∗ =̂ µX.(Skip ∨ P #X)

where P is a Simulink process.

4. Semantics for Simulink blocks

In this section, we give the HUTP semantics of Simulink blocks in terms of
Simulink processes. A (non-hierarchical) Simulink diagram consists of blocks
graphically connected by directed lines. Each such connection is the output
signal of a unique block. We represent a signal by a variable x defined as a
real-valued function of time x ∈ F =̂ R≥0 → R. A Simulink block can be
represented by the tuple (I,O,S,R), where I is the set of input variables,
O is the set of output variables, S is the set of internal state variables, and
R is a relation between the signals F I , F S and FO. In the following, we use
x(t) for the vector of input variables as a function of time, y(t) for the vector
of output variables, and s(t) for the vector of state variables. Note that s is
different from the state variables v in HUTP (Section 2.3), and the latter is
actually the group of x, s and y.

14



Example 6. A continuous Add block specifies that the output signal y is the
sum of the two input signals x0 and x1. Here I = {x1, x2}, O = {y}, S = ∅,
and the relation for R is given by

∀t ≥ 0 · y(t) = x1(t) + x2(t).

Example 7. A discrete Add block with sample time st > 0 specifies that the
output is updated to the sum of inputs whenever the time is a multiple of st,
and keeps constant otherwise. Here, I, O and S are the same as before. The
relation for R is given by

∀k ∈ N · ∀t ∈ [k · st, (k + 1)st) · y(t) = x1(k · st) + x2(k · st).

Example 8. A continuous Switch block with condition “>0” specifies that
the output y is equal to the top input x1 if the middle input x2 satisfies the
condition; and the bottom input x3 otherwise (x2 ≤ 0). Here I = {x1, x2, x3},
O = {y} and S = ∅. The relation for R is given by

∀t ≥ 0 · y(t) = x1(t) C x2(t) > 0 B y(t) = x3(t).

Example 9. A Unit Delay block with sample time st > 0 and initial value
v0 updates its state whenever the time is a multiple of st, and outputs the
previous value of state. Here I = {x}, O = {y} and S = {s}. The relation
for R is given by

∀k ∈ N · ∀t ∈ [k · st, (k + 1)st) · s(t) = x(k · st)
∧ ∀t ∈ [0, st) · y(t) = v0 ∧
∀k ∈ N · ∀t ∈ [(k + 1)st, (k + 2)st) · y(t) = s(k · st).

Example 10. An Integrator block with initial state s0 specifies that its state
is the integral of the input signal and the output signal is consistent with the
state. Here I = {x}, O = {y} and S = {s}. The relation for R is given by

y(0) = s(0) = s0 ∧ ∀t > 0 · ṡ(t+) = x(t) ∧ s(t−) = s(t) = y(t).

Given a Simulink diagram consisting of blocks {bi}1≤i≤m. Let I(bi),
O(bi), S(bi) and R(bi) be the sets of input variables, output variables, state
variables, and relation for block bi, respectively. We require the state vari-
ables S(bi) are disjoint from each other and from the input/output variables.
Let {vj}1≤j≤` be the set of variables denoting the lines (signals) connect-
ing blocks of the Simulink diagram. Each vj is in at most one O(bi). The
semantics of the Simulink diagram is a relation on vi(t), defined to be the
conjunction of the relation for each block:

R =
∧

1≤i≤mR(bi)

15



Following the above analysis, we can define the HUTP semantics for (non-
hierarchical) Simulink diagrams. The definition is bottom-up as we start from
the individual blocks, then combine them to form the semantics of the entire
diagram.

4.1. Discrete blocks

A discrete block is specified by a sample time st > 0, initial state s0,
and two functions f and g for updating the state and computing the output,
respectively. The values of state and output variables of a discrete block are
constant on each time interval [k ·st, (k+1)st) for k ∈ N. Hence, we only need
to specify their values at times k · st. They satisfy the following equations:

s(k · st) = f(x(k · st), s((k − 1) · st))
y(k · st) = g(x(k · st), s((k − 1) · st))

where we take s((k−1)st) to be s0 for k = 0. The main idea here is that the
output and state at the current round is computed from the input at current
round and state at previous round.

For example, the discrete Add block in Example 7 is given by

y(k · st) = g(x1(k · st), x2(k · st)) = x1(k · st) + x2(k · st).

There is no need for f as there are no state variables. The discrete Unit Delay
block in Example 9 is given by

s(k · st) = f(x(k · st), s((k − 1) · st)) = x(k · st)
y(k · st) = g(x(k · st), s((k − 1) · st)) = s((k − 1) · st).

Now we describe how to encode the above formulas using the HUTP
language. A discrete block can either be stateful or stateless. For a stateless
discrete block, there is no need for the function f . The computation of g is
instant and can be expressed by the following discrete process:

Comp =̂ [y′ = g(x′)].

Intuitively, this means that the output y′ is computed from the input values
only after they are computed by other processes at the same round, that is
after the values of x′ are all available. This will enforce the ordering between
computation of different blocks, as we will demonstrate afterwards.

After the computation, the block will keep quiescent for the period of
st (sample time), i.e., the output y remains unchanged, specified by the
following continuous process:

Period =̂ V ˙
∼
y = 0cst

16



Thus, the hybrid process of the stateless discrete block is defined by

DisBlock =̂ (Comp # Period)∗ # Comp # Tail

where
Tail =̂ V ˙

∼
y = 0c≤st

means that the block can terminate at the times k · st or within the time
intervals (k · st, (k + 1)st).

For a stateful discrete block, its state variables s should be initialised,
given by

Init =̂ [s′ = s0]

The state variables s and output variables y are updated periodically ac-
cording to functions f and g, respectively. The update is instant and can be
described by the following discrete process:

Comp′ =̂ [s′ = f(x′, s) ∧ y′ = g(x′, s)]

The waiting period of the stateful discrete block is represented by the follow-
ing continuous process:

Period′ =̂ V∼̇s = ˙
∼
y = 0cst

During the period, state variables s and output variables y keep unchanged.
Thus, similar to DisBlock, the hybrid process of the stateful discrete block is
given by

DisBlockSt =̂ Init # (Comp′ # Period′)∗ # Comp′ # Tail′

where
Tail′ =̂ V∼̇s = ˙

∼
y = 0c≤st

Theorem 11. DisBlock and DisBlockSt are Simulink processes.

Proof. The sequential composition Comp # Period can be expanded to

[y′ = g(x′)] # V ˙
∼
y = 0cst =

∼
y(ti) = g(∼x(ti)) ∧ d ˙

∼
y = 0cst

which is Ha
SIM-healthy according to the definition in Section 3.3. Similarly,

we can prove Comp # Tail is also Ha
SIM-healthy. According to Property 3

and by induction on the number of iterations of ∗, DisBlock is Ha
SIM-healthy.

Similarly, we can also prove DisBlockSt is Ha
SIM-healthy.

17



Example 12. Consider two discrete blocks in sequence. One block B1 has
input line x and output line y, and set y := x + 1 every sample time 1; the
other block B2 has input line y and output line z, and set z := 2 · y every
sample time 1. The Simulink processes for B1 and B2 are given by:

JB1KHUTP =̂ ([y′ = x′ + 1] # V
∼̇
y = 0c1)∗ # [y′ = x′ + 1] # V

∼̇
y = 0c≤1

JB2KHUTP =̂ ([z′ = 2 · y′] # V∼̇z = 0c1)∗ # [z′ = 2 · y′] # V∼̇z = 0c≤1

We first rewrite the above two definitions to corresponding logical equations.
By the definition of sequential composition #, the definition for [y′ = x′ + 1] #
V

∼̇
y = 0c1 in JB1KHUTP expands to

[y′ = x′ + 1] # V
∼̇
y = 0c1 (1)

= (ti = ti ′ < +∞∧ y′ = x′ + 1) # (2)ti < ti ′ < +∞∧ x = ∼x(ti) ∧ y =
∼
y(ti)

∧∀t ∈ (ti , ti ′) ·
∼̇
y(t) = 0 ∧ ti ′ − ti = 1

∧RC (∼x,∼y, ti , ti
′) ∧ SD(∼x,∼y, ti , ti

′)

 (3)

= ∃t0, x0, y0 · ti = ti0 < +∞∧ y0 = x0 + 1

∧ti0 < ti ′ < +∞∧ x0 = ∼x(ti0) ∧ y0 =
∼
y(ti0)

∧∀t ∈ (ti0, ti
′) ·

∼̇
y(t) = 0 ∧ ti ′ − ti0 = 1

∧RC (∼x,∼y, ti0, ti
′) ∧ SD(∼x,∼y, ti0, ti

′)

= ti ′ − ti = 1 ∧
∼
y(ti) = ∼x(ti) + 1 ∧ ∀t ∈ (ti , ti + 1) ·

∼̇
y(t) = 0

∧RC (∼x,∼y, ti , ti + 1) ∧ SD(∼x,∼y, ti , ti + 1)

Note that although ∼x does not appear in V
∼̇
y = 0c1, it is in the alphabet of

JB1KHUTP. Therefore, we cannot remove x = ∼x(ti) from V
∼̇
y = 0c1 (see (3)).

Besides, by Ha
4 , the continuous state variables in V

∼̇
y = 0c1 are right con-

tinuous and semi-differentiable during the period, specified by RC and SD.
Then, by induction, we can get

([y′ = x′ + 1] # V
∼̇
y = 0c1)∗

= Skip ∨


∃n ∈ N+ · ti ′ − ti = n
∧∀k ∈ N<n · ∼y(ti + k) = ∼x(ti + k) + 1

∧∀t ∈ (ti + k, ti + k + 1) ·
∼̇
y(t) = 0

∧RC (∼x,∼y, ti , ti + n) ∧ SD(∼x,∼y, ti , ti + n)

 (4)

where N+ =̂ N\{0} and N<n =̂ {k ∈ N | k < n}. Similar to (1),

[y′ = x′ + 1] # V
∼̇
y = 0c≤1 = 0 < ti ′ − ti ≤ 1 ∧

∼
y(ti) = ∼x(ti) + 1

18



∧∀t ∈ (ti , ti ′) ·
∼̇
y(t) = 0

∧RC (∼x,∼y, ti , ti
′) ∧ SD(∼x,∼y, ti , ti

′)

Based on the above results, JB1KHUTP expands to

∃n ∈ N · n < ti ′ − ti ≤ n+ 1∧
∀k ∈ N<n · ∼y(ti + k) = ∼x(ti + k) + 1 ∧

∼
y(ti + n) = ∼x(ti + n) + 1

∧∀t ∈ (ti + k, ti + k + 1) ·
∼̇
y(t) = 0 ∧ ∀t ∈ (ti + n, ti ′) ·

∼̇
y(t) = 0

∧RC (∼x,∼y, ti , ti
′) ∧ SD(∼x,∼y, ti , ti

′)

Similarly, JB2KHUTP expands to

∃n ∈ N · n < ti ′ − ti ≤ n+ 1∧
∀k ∈ N<n · ∼z(ti + k) = 2 ·

∼
y(ti + k) ∧ ∼z(ti + n) = 2 ·

∼
y(ti + n)

∧∀t ∈ (ti + k, ti + k + 1) · ∼̇z(t) = 0 ∧ ∀t ∈ (ti + n, ti ′) · ∼̇z(t) = 0
∧RC (

∼
y,∼z, ti , ti

′) ∧ SD(
∼
y,∼z, ti , ti

′)

The connection of B1 and B2 can be defined by JB1KHUTP ∧ JB2KHUTP, i.e.,

∃n ∈ N · n < ti ′ − ti ≤ n+ 1∧
∀k ∈ N<n · ∼y(ti + k) = ∼x(ti + k) + 1 ∧ ∼z(ti + k) = 2 ·

∼
y(ti + k)

∧
∼
y(ti + n) = ∼x(ti + n) + 1 ∧ ∼z(ti + n) = 2 ·

∼
y(ti + n)

∧∀t ∈ (ti + k, ti + k + 1) ·
∼̇
y(t) = ∼̇z(t) = 0

∧∀t ∈ (ti + n, ti ′) ·
∼̇
y(t) = ∼̇z(t) = 0

∧RC (∼x,∼y,∼z, ti , ti
′) ∧ SD(∼x,∼y,∼z, ti , ti

′)

This example demonstrates that the parallel composition of the HUTP
semantics for B1 and B2 simplifies to the desired form, enforcing that the
computation in B1 is performed before that of B2 at every sample time. We
further note that the values of

∼
y and ∼z are determined given values of input

signal ∼x.

4.2. Continuous blocks

We consider two kinds of continuous blocks: computation blocks and
Integrator blocks. A computation block is a stateless block with sample time
0 (see Examples 6 and 8). When building Simulink diagrams, the sample
time of computation blocks are usually inherited from integrator blocks by
sample time propagation. It is specified by a function g from its input x to
its output y, so its relation is specified by ∀t ≥ 0 · y(t) = g(x(t)). Hence, its
HUTP representation is

ConBlock =̂ d
∼
y = g(∼x)c

19



Remark 13. For a continuous block, our concern is the evolution of its
output signals (

∼
y) according to its input signals (∼x) rather than its initial

and/or final observations (x, y, x′, and y′). Thus, we use d·c rather than
V·U in ConBlock.

The Integrator block is already given in Example 10, and its HUTP rep-
resentation is given by

IntBlock =̂
∼
y(ti) = ∼s(ti) = s0 ∧ d∼̇s+ = ∼x ∧ ∼s

− = ∼s =
∼
yc

where s0 is the initial state of s, and ∼̇s
+ and ∼s

− denote the right-hand deriva-
tive and the left limit of ∼s, respectively. Since ∼x could be discontinuous but
at least right continuous as stated by H4, we use ∼̇s

+ rather than ∼̇s in the rep-
resentation. Besides, ∼s should be continuous and the output signal should
keep consistent with the state, so we need the condition ∼s

− = ∼s =
∼
y.

Theorem 14. ConBlock and IntBlock are Simulink processes.

Proof. ConBlock and IntBlock are Ha
SIM-healthy by the definition of d·c spec-

ified in Section 3.3.

Property 15. d∼P c ∧ d∼Qc = d∼P ∧ ∼
Qc

Proof. According to the definition of d·c,

d∼P c ∧ d∼Qc = 0 < ti < ti ′ < +∞∧ ∀t ∈ (ti , ti ′) · ∼P (∼v(t), ∼̇v(t))

∧RC (∼v, ti , ti
′) ∧ SD(∼v, ti , ti

′)∧
0 < ti < ti ′ < +∞∧ ∀t ∈ (ti , ti ′) ·

∼
Q(∼v(t), ∼̇v(t))

∧RC (∼v, ti , ti
′) ∧ SD(∼v, ti , ti

′)
= d∼P ∧ ∼

Qc

The property is proved.

Example 16. Consider an Integrator block B3 with state s, input line z and
output line x, and s is set to 0 initially. The Simulink process for B3 is given
by:

JB3KHUTP = ∼x(ti) = ∼s(ti) = 0 ∧ d∼̇s+ = ∼z ∧ ∼s
− = ∼s = ∼xc

=

ti < ti ′ < +∞∧ ∼x(ti) = ∼s(ti) = 0
∧∀t ∈ (ti , ti ′) · ∼̇s(t+) = ∼z(t) ∧ ∼s(t

−) = ∼s(t) = ∼x(t)
∧RC (∼x,∼s,∼z, ti , ti

′) ∧ SD(∼x,∼s,∼z, ti , ti
′)



20



4.3. Composition

A (non-hierarchical) Simulink diagram is composed of discrete and con-
tinuous blocks connected by lines. Given such a diagram, we can construct
a directed graph G, called its causality graph, as follows. The vertices of G
are the input/output variables, and there is an edge from vi to vj if vi is the
input and vj is the output of some non-delay discrete or computation block
Bk. Note that the discrete delay block and the integrator block are excluded.
If G is acyclic, then the diagram is said to be well-formed. Otherwise, there
exist some loops among discrete and/or computation blocks called algebraic
loops (also called logical loops in (Zou et al., 2013b)), which may not always
admit a solution. Actually, the cycle-freedom of causality graphs is a neces-
sary condition for Simulink diagrams to behave well. In particular, it allows
to avoid straightforward deadlocks. To our knowledge, should the causality
graph of a diagram contain a cycle, the tool Matlab/Simulink would reject
it, returning an error or a warning. Accordingly, we only consider Simulink
diagrams with acyclic causality graphs in this paper.

If the diagram is well-formed, its HUTP semantics can be described by
the parallel composition of the atomic blocks it contains. Specifically, given a
well-formed diagram consisting of n blocks whose semantics are represented
by Pi (1 ≤ i ≤ n), the semantics of the diagram is denoted by the following
parallel composition, which is equivalent to the conjunction by Property 5:

P1‖ · · · ‖Pn ≡
∧n
i=1 Pi

We say the semantics of a diagram is determined if, given any choice
of input signals to the overall diagram, there are unique functions for all
output and state variables that satisfies

∧n
i=1 Pi. We wish to prove that

under additional conditions related to the unique solvability of ODEs, the
HUTP semantics of a well-formed diagram is determined. Before proving
this result, we prove the following lemmas.

Lemma 17. Consider a well-formed Simulink diagram consisting of n dis-
crete blocks whose semantics are represented respectively by Pi. Given any
choice of input signals to the overall diagram, there are unique functions for
all input, output, and state variables that satisfy

∧n
i=1 Pi. Moreover, let st be

the sample time of the diagram (greatest common divisor of the sample times
of the blocks), then the values of output and state variables depend only on
the values of input variables at multiples of st, and they are constant over
each time interval [k · st, (k + 1) · st).

Proof. Since the causality graph G of the Simulink diagram is acyclic, we can
choose a topological ordering ∼v1, · · ·, ∼vm for the input and output variables

21



of the blocks in the diagram. For brevity, we assume that the sample time of
the diagram is 1. We prove by induction on k that there exist unique values
for input, output and state variables on each time interval [k, k + 1). First,
consider the base case k = 0, we perform a second induction on the index i
in the ordering ∼vi. For the variable ∼vi, by the induction hypothesis, we can
assume ∼vj(0) is uniquely determined for each j < i. ∼vi is either an input to
the overall diagram, or the output of some block Bj. If Bj is a delay block,
then ∼vi(0) is given by the initial value of the state. Otherwise, according
to the definition of G, all input variables of the block occur earlier in the
topological order, whose values at 0 are uniquely determined by induction,
so again ∼vi(0) is uniquely determined. Since the values of state variables at
time 0 is a function of input variables at time 0 and the initial state, they
are also determined.

Now consider the inductive case k + 1. Again, we induct on the index i
in the ordering ∼vi. If ∼vi is an input to the overall diagram, then it is already
determined. So suppose ∼vi is the output of some block Bj. If the sample
time of block Bj is a multiple of k + 1, again we divide into cases for delay
block and non-delay block. For the delay block, the value of ∼vi(k+1) is given
by the value of state at a previous time. For non-delay blocks, the value of

∼vi(k + 1) is a function of ∼vj(k + 1) for j < i and state variables at time k.
In both cases the value is determined. Finally, if the sample time of Bj is
not a multiple of k + 1, we have ∼vi(k + 1) = ∼vi(k). This shows ∼vi(k + 1) is
determined for all 1 ≤ i ≤ m. Then, since the state variables at time k + 1
is a function of variables ∼vi(k + 1) and state variables at time k, they are
determined as well.

In this way, we construct the values of all ∼vi, as well as that of the state
variables, at the integer time points. In the process, we have considered
relations for all blocks. Hence, the solution we obtained satisfies the relation∧n
i=1 Pi. Finally, by the construction in this proof, it is clear that the output

and state variables depend only on the values of input variables at each
integer k, and are constant over each time interval [k, k + 1).

Lemma 18. For a well-formed Simulink diagram consisting of continuous
blocks, let v be the line variables of the diagram, where x denote the input
variables to the diagram and s and y represent the state and output variables
of the Integrator blocks in the diagram. Then,

(1) its semantics can be expressed in the form of

y(ti) = s(ti) = s0 ∧ d∼P (∼v) ∧ ∼̇s
+ = E(∼x ] ∼s) ∧ ∼s

− = ∼s =
∼
yc (5)

where s0 are the initial states of s, ∼P is a relation only relating ∼v, and
E is a (vector) function in terms of variables in ∼x ] ∼s;

22



(2) if the function E satisfies the global Lipschitz condition, given any
choice of input signals to the overall diagram, there are unique functions
for all input, output, and state variables that satisfy the semantics.

Proof. (1) Assume the diagram consists of m Integrator blocks and n com-
putation blocks. Label the Integrator blocks by Bi for 1 ≤ i ≤ m, and
the computation blocks by Bj for m + 1 ≤ j ≤ m + n. Let ai, si and
yi be the input, state and output variables of an Integrator block Bi,
respectively, and bj and cj be the input and output variables of a com-
putation block Bj, respectively. According to the semantics of these
continuous blocks (see Section 4.2) and Property 15, the semantics of
the diagram can be defined by

Init ∧ Evolve (6)

where

Init =̂
∧m
i=1 ∼

yi(ti) = ∼si(ti) = si,0

Evolve =̂
⌈∧m

i=1 ∼̇s
+
i

= ∼ai ∧ ∼s
−
i = ∼si =

∼
yi ∧

∧m+n
j=m+1 ∼cj = gj(∼bj)

⌋
where si,0 is the initial value of si. For each computation block Bj, it
defines a variable substitution mapping Γjk. Concretely, it maps each
output variable cjk ∈ cj of the block to an expression gjk on the input
variables bj, i.e., Γjk(cjk) = gjk(bj), where all the gjk form the function
gj. Since the diagram is well-formed, the input and output variables of
all computation blocks in the diagram form a directed acyclic graph.
Therefore, all the mapping functions Γjk can be composed to form a
function Γ that maps the input variable ai (which could be some cj,k)
of each Integrator block Bi to Γ(ai) which is an expression on x ] s,
denoted ei(x ] s). Note that for ai /∈ dom(Γ), we let Γ(ai) = ai.
All the expressions ei(x ] s) form the expression function E. Besides,∧m+n
j=m+1 ∼cj = gj(∼bj) denotes the relation ∼P in the representation. In

summary, the formula of (6) can be expresses in the form of (5).

(2) According to Equation (5), the right-hand derivative of ∼s always exists,
which means ∼s is piecewise differentiable. By induction on the time
intervals where ∼s is differentiable, and using the fact that E satisfies
the global Lipschitz condition, we obtain the existence and uniqueness
of the solution.

The lemma is proved.

Theorem 19. For a well-formed diagram consisting of discrete and con-
tinuous blocks, if the expression function E of the continuous sub-diagram

23



(consisting of the continuous blocks) satisfies the global Lipschitz condition,
then the HUTP semantics of the entire diagram is determined and can be
represented by a Simulink process.

Proof. By Property 3 and Theorems 11 and 14, the HUTP semantics is a
Simulink process. To show that the HUTP semantics of the combination of
discrete and continuous sub-diagrams is determined, we perform an induction
on multiples of the sample time st of the discrete sub-diagram (as defined in
Lemma 17). At each step k, the computation of the discrete diagram provides
the initial conditions at time k·st for evolution of the continuous diagram, and
the continuous evolution provides the initial value for the discrete diagram at
time (k+ 1) · st. Hence determinacy follows from Lemma 17 and Lemma 18.

Example 20. The connection of B1, B2 (Example 12) and B3 (Example 16)
forms a closed Simulink diagram with the causality graph G = {(x, y), (y, z)}
acyclic, hence the diagram is well-formed. Then, the HUTP semantics of
this diagram is JB1KHUTP ∧ JB2KHUTP ∧ JB3KHUTP, expanding as follows:

∼x(ti) = ∼s(ti) = 0∧
∃n ∈ N · n < ti ′ − ti ≤ n+ 1 ∧ ∀k ∈ N<n·
∼
y(ti + k) = ∼x(ti + k) + 1 ∧ ∼z(ti + k) = 2 ·

∼
y(ti + k)∧

∼
y(ti + n) = ∼x(ti + n) + 1 ∧ ∼z(ti + n) = 2 ·

∼
y(ti + n)∧

∀t ∈ (ti + k, ti + k + 1) ·
∼̇
y(t) = ∼̇z(t) = 0 ∧ ∼̇s(t) = ∼z(t)∧

∀t ∈ (ti + n, ti ′) ·
∼̇
y(t) = ∼̇z(t) = 0 ∧ ∼̇s(t) = ∼z(t)∧

∀t ∈ (ti , ti ′) · ∼s(t−) = ∼s(t) = ∼x(t)∧
RC (∼x,∼y,∼z,∼s, ti , ti

′) ∧ SD(∼x,∼y,∼z,∼s, ti , ti
′)


Since ∼z is differentiable within the intervals (ti +k, ti +k+1) and (ti +n, ti ′),

∼̇s(t
+) is replaced with ∼̇s(t) in the above formula. For ensuring the continuity

of ∼s, there should be ∼s
− = ∼s during the period. For the above formula, we get

the following unique solution:

∀t ∈ [ti , ti ′) · ∃d ∈ R · d = t− ti ∧


∼s(t) = 2 · 3bdc(d− bdc) + 3bdc − 1

∼x(t) = 2 · 3bdc(d− bdc) + 3bdc − 1

∼
y(t) = 3bdc

∼z(t) = 2 · 3bdc


which is exactly the semantics of the Simulink diagram (here b·c : R→ Z is
the floor function).

24



5. Hierarchical Simulink diagrams

Modular design is a design principle that subdivides a system into smaller
parts called modules (or subsystems), which can be independently created,
modified, replaced, or exchanged with other modules or between different sys-
tems. The modelling of hierarchical Simulink diagrams reflects the principle
of modular design: a Simulink diagram is composed of hierarchical subsys-
tems, which may include enabled or triggered behaviours. In this section, we
establish the HUTP semantics for normal, triggered and enabled subsystems,
which forms hierarchical Simulink diagrams.

5.1. Normal subsystems

A normal subsystem groups a set of atomic Simulink blocks together, and
will execute them as a single unit. Simulink distinguishes the input (output)
variables i (o) as seen from within the subsystem and the input (output)
variables ī (ō) as seen from outside (as lines in the overall diagram). For
normal subsystems, we will identify the variables i with ī, and variables o
with ō (see x and y in Fig. 2). Later on, we may not identify i with ī for
triggered and enabled subsystems.

A normal subsystem is well-formed if its causality graph is acyclic. The
effect of executing a well-formed normal subsystem is equivalent to execut-
ing the corresponding Simulink diagram consisting of the same set of blocks.
Therefore, the semantics of a normal subsystem can be defined by the con-
junction of the semantics of all the blocks it contains, as specified in Sec-
tion 4.3.

Int0

Int1

Bias0

Bias1

Subsystem0

Subsystem1

Bias0

Bias1

Int0

Int1

Continuous Discrete

Fig. 2: A well-formed Simulink diagram composed of two subsystems. The left is the
original hierarchical diagram and the right is the flattened form.

In the translation algorithm from Simulink to HCSP presented in (Zou
et al., 2013b), the subsystem is flattened by connecting the in-ports and out-
ports as seen from inside with the corresponding in-ports and out-ports on the

25



outside. The result of this process is shown on the right side of Fig. 2. This
flattening makes the translation process easier to implement, and is necessary
for collecting together all continuous blocks in the diagram for translation to
a single ODE. However, it violates to some extent the principle of modular
design, i.e., the hierarchical structure of the Simulink diagram is not reflected
in the translated HCSP process. In this paper, subsystems are not flattened
and therefore the structure of Simulink diagrams can be reflected in their
HUTP semantics. For example, the Simulink diagram on the left of Fig. 2 is
composed of two well-formed subsystems Subsystem0 and Subsystem1 whose
semantics are given by

JSubsystem0KHUTP =̂ JInt0KHUTP ∧ JBias0KHUTP

JSubsystem1KHUTP =̂ JInt1KHUTP ∧ JBias1KHUTP

where JBias0KHUTP and JBias1KHUTP are discrete processes (Section 4.1), and
JInt0KHUTP and JInt1KHUTP are continuous processes (Section 4.2).

5.2. Triggered subsystems

A triggered subsystem only contains blocks with inherited sample time
(−1). Such a block has no specified sample time, whose execution depends
solely on the triggering signal. Concretely, the blocks execute at the instant
when the trigger condition on the trigger line holds. A sketch of a triggered
subsystem with rising edge trigger is shown in Fig. 3. Similar to well-formed
normal subsystems, a triggered subsystem is well-formed if its causality graph
is acyclic. The trigger port senses the input signal z in real time. In this
paper, we assume that each triggered subsystem has only one trigger line.
There are three basic trigger types: rising, falling and either. For the rising
edge trigger, the subsystem is triggered at time t whenever (1) z rises from
negative to non-negative at t or (2) z rises from non-positive to positive at
t. Formally,

∼z(t−) < 0 ∧ ∼z(t) ≥ 0 ∨ ∼z(t−) ≤ 0 ∧ ∼z(t) > 0

The triggering conditions for the other two trigger types can be defined sim-
ilarly. Therefore, in this section, we only define the HUTP semantics for
triggered subsystems with rising edge trigger. In this paper, we assume that
the trigger line of each triggered subsystem is the output of a discrete block,
hence piecewise constant with some sample time st. Treatment of continu-
ous triggering will be more complicated, involving analysis of zero-crossing
detection and potential cascade of zero-crossings (Benveniste et al., 2012).

26



Trigger

Blocks

Fig. 3: A sketch of a triggered subsystem with rising edge trigger

Now we consider the HUTP semantics of well-formed triggered subsys-
tems. The subsystem is triggered at current time iff (1) the previous value
of the signal z is less than 0 and the current value of z reaches or crosses 0;
or (2) the previous value of z is not greater than 0 and the current value of z
crosses 0. After that, the signal z will keep “not triggering” for some period
until it satisfies the trigger condition again. Therefore, the behaviour of z
between two adjacent triggering time instants can be defined by

Trigger =̂ [z < 0 ∧ z′ ≥ 0 ∨ z ≤ 0 ∧ z′ > 0] # V¬triggerU

where
trigger =̂ z− < 0 ∧ z ≥ 0 ∨ z− ≤ 0 ∧ z > 0

When triggered, the subsystem gets the latest values from the input ports,
given by the relation ∼x(ti) = ∼a(ti), where ti is the current triggering time,
x denote the input variables from within the subsystem while a denote the
input variables to the overall subsystem (see Fig. 3). The reason we dis-
tinguish x and a is that their values are not the same at all times: during
the idle period of the subsystem, x will keep unchanged while a can change
dynamically according to the behaviour of its source subsystem. The input
variables x synchronise with the input variables a from the outside only
when the triggering signal arrives. However, for output variables, it is not
necessary to distinguish the output variables to within the subsystem and
the output variables from the overall subsystem, because the output vari-
ables are controlled by the subsystem solely and they will not be modified
by other subsystems, i.e., they always keep consistent.

After the input synchronisation (x obtain the values of a), the subsystem
will perform the computation and then keep idle for some period, which can
be represented by the conjunction of the idle process d∼̇v = 0c, where v are the
variables inner the subsystem, and the continuous processes d∼Pic (1 ≤ i ≤ n)
of all blocks in the subsystem. Therefore, according to Property 15, which
indicates

d∼̇v = 0c ∧
∧n
i=1d∼Pic = d∼̇v = 0 ∧

∧n
i=1 ∼Pic

27



Trigger

Bias Gain

Fig. 4: An example of a triggered subsystem with rising edge trigger

the behaviour of the subsystem can be captured by

SubSys =̂ ∼x(ti) = ∼a(ti) ∧ d∼̇v = 0 ∧
∧n
i=1 ∼Pic

Before triggering, the variables v of the lines in the subsystem should be ini-
tialised, because if the subsystem is not triggered at the beginning, it should
be guaranteed that the values of v are valid. By default, v are initialised
to 0 in Simulink. If the subsystem is not triggered initially, the values of v
will keep constant. Besides, the trigger line z should also be initialised, be-
cause at the beginning, it will compare the initial value of z with the current
value of z to determine if the subsystem should be triggered at the time. By
default, we also set z to 0 initially. Then, the initialisation is specified by

InitTrig =̂ [v′ = 0 ∧ z′ = 0] # (Trigger ∧ SubSys ∨ Idle)

In summary, the semantics of triggered subsystem can be defined by

TrigSubSys =̂ InitTrig # (Trigger ∧ SubSys)∗

When creating the causality graph of a triggered subsystem, we add edges
from the trigger line to each input line inside the subsystem, since whether
the input lines receive values from the outside is determined by the trig-
ger line. For the example in Fig. 4, the causality graph G is given by
{(z, x), (a, x), (x, y), (y, b)}.

Example 21. Consider the triggered subsystem in Fig. 4, we only analyse
SubSys. Concretely, SubSys is equivalent to

∼x(ti) = ∼a(ti) ∧ d∼̇x =
∼̇
y = ˙

∼b = 0 ∧ ∼b = 2 ·
∼
y ∧

∼
y = ∼x+ 1c

which can expand as follows:

∼x(ti+) = ∼x(ti) = ∼a(ti) = ∼a(ti+) ∧
∼
y(ti) =

∼
y(ti+) ∧ ∼b(ti) = ∼b(ti+) ∧ (7)

∀t ∈ (ti , ti ′) · ∼̇x(t) =
∼̇
y(t) = ˙

∼b(t) = 0 ∧ ∼b(t) = 2 ·
∼
y(t) ∧

∼
y(t) = ∼x(t) + 1 (8)

∧RC (∼a, ti , ti
′) ∧ SD(∼a, ti , ti

′)

28



This process specifies the behaviour that the subsystem is triggered at the
beginning and then keeps idle for some period. First, the subsystem gets the
latest input at ti , i.e., ∼x(ti) = ∼a(ti); then, according to (8), we can get the
relation ∼b(ti+) = 2 ·

∼
y(ti+)∧

∼
y(ti+) = ∼x(ti+) + 1; combining (7), we can infer

that

∼b(ti) = 2 ·
∼
y(ti) ∧

∼
y(ti) = ∼x(ti) + 1 (9)

which indicates the subsystem executes the computation at the beginning when
triggered; afterwards, x, y and b keep constant from ti to ti ′, and therefore
the relation between these variables always holds during the period (see (8)).

Theorem 22. If the triggered subsystem is well-formed, then TrigSubSys is
a Simulink process with determined semantics.

Proof. According to Property 3 and by induction on the number of iterations
of ∗, TrigSubSys is a Simulink process. When the triggering signal z is de-
termined, the triggering times are determined as well. When triggered, the
subsystem gets the latest inputs and performs the execution expressed by a
relation between the variables at the time (see (9)). Since the subsystem is
well-formed, the solution of the relation is unique given any choice of input
signals. The signals then keep constant during the period until the next
trigger time arrives. Therefore, the semantics represented by TrigSubSys is
determined.

5.3. Enabled subsystems

An enabled subsystem is similar to a normal subsystem except that its
execution depends on the enabled signal: it executes as usual when the value
of the enabled signal is larger than 0 and keeps idle otherwise. A sketch of an
enabled subsystem is illustrated in Fig. 5. Similar to triggered subsystems,
we assume that each enabled subsystem has only one enabling line z.

Enable

Normal subsystem

Fig. 5: A sketch of an enabled subsystem

The evolution of the enabled signal z can be seen as an interleaving of pos-
itive and non-positive phases. Concretely, the evolution of z can be defined

29



by
(z ≤ 0 ∧ d∼z > 0U ∨ z ≥ 0 ∧ d∼z ≤ 0U)∗

In the beginning of a positive phase, it checks if the value of z from the
preceding phase (which should be non-positive) is non-positive (z ≤ 0); if so,
the value of z will keep positive for some period (d∼z > 0U). The behaviour
of non-positive phases are similar.

In a positive phase, the inner input variables x should keep consistent
with the input variables a to the overall subsystem, and then the subsystem
executes as if it were a normal subsystem. Concretely, let Pi (1 ≤ i ≤ n) be
the process denoting the semantics of the i-th block in the subsystem, then
the behaviour of the enabled subsystem in a positive phase can be described
by

Enabled =̂ z ≤ 0 ∧ d∼z > 0U ∧ d∼a = ∼xc ∧
∧n
i=1 Pi ∧ v′ = ∼v(ti ′−)

where v are the variables of all the lines in the subsystem. Note that a∩v = ∅
and x ⊆ v. In each non-positive phase, the subsystem does nothing and keep
idle:

Disabled =̂ z ≥ 0 ∧ d∼z ≤ 0U ∧ V∼̇v = 0c

In addition, similar to triggered subsystems, the variables v of the lines in
the subsystem should also be initialised. By default, v are initialised to 0. If
the subsystem is disabled during the initial period, i.e., z keeps non-positive,
then v will keep constant:

Disabled′ =̂ d∼z ≤ 0U ∧ d∼v = 0c

Otherwise, i.e., z keeps positive initially, the subsystem is enabled during the
period:

Enabled′ =̂ d∼z > 0U ∧
∧n
i=1 Pi ∧ v′ = ∼v(ti ′−)

In summary, the semantics of an enabled subsystem can be denoted by

EnSubSys =̂ (Enabled′ ∨ Disabled′) # (Enabled ∨ Disabled)∗

As with triggered subsystems, when creating the causality graph of an
enabled subsystem, we add edges from the enabling line to each input line
inside the subsystem. An enabled subsystem is well-formed if its causality
graph is acyclic.

Theorem 23. If the enabled subsystem is well-formed, then EnSubSys is a
Simulink process with determined semantics.

30



Proof. According to Property 3 and Theorem 19 and by induction on the
number of iterations of ∗, EnSubSys is a Simulink process. Whether the
subsystem is enabled or not depends on the enabling signal z. During the
enabled period, the subsystem performs as a (well-formed) normal subsys-
tem with determined semantics; during the disabled period, the subsystem
keeps quiescent. In summary, the semantics represented by EnSubSys is de-
termined.

5.4. Composite systems

A complex Simulink diagram is usually composed of hierarchical sub-
systems each encapsulating specific functions. Preferably, the hierarchical
structure should be preserved when defining the Simulink semantics. In this
section, we show how modular design can be taken into account when defining
the HUTP semantics of hierarchical Simulink diagrams.

Overall, we adopt the bottom-up approach for defining the semantics. We
start from the normal, enabled and triggered subsystems specified from Sec-
tions 5.1 to 5.3. Each well-formed subsystem can be treated as a unit, and we
obtain the causality relation between its input and output variables by ab-
stracting from the causality graph of the subsystem. For example, the causal-
ity graph of the triggered subsystem in Fig. 4 is {(z, x), (a, x), (x, y), (y, b)},
yielding the causality relation of the subsystem: {(z, b), (a, b)}. The causal-
ity graph of a high-level subsystem is then defined in terms of the causality
relations of its component subsystems. We say a high-level subsystem is
well-formed if (1) all its subsystems are well-formed and (2) the causality
graph of the high-level subsystem is acyclic. For a well-formed high-level
subsystem, its semantics can be represented by the parallel composition of
the subsystems it contains.

Theorem 24. For a well-formed high-level subsystem, if the semantics of its
subsystems are determined, then its HUTP semantics is determined and can
be represented by a Simulink processes.

Proof. Since the semantics of the subsystems in the high-level subsystem are
determined, the theorem can be proved from Theorems 19, 22 and 23 and
by the well-formedness of the high-level subsystem (the causality graph of
variables constructed from the causality relations of its subsystems is acyclic).

Subsystems on the same level can be connected together by parallel com-
position. In this way, a Simulink diagram can be organised as a composite
system composed of hierarchical subsystems, from atomic (normal, triggered
and enabled) subsystems to high-level subsystems.

31



Example 25. Consider the Simulink diagram on the left of Fig. 2, it is a
structured diagram consisting of two well-formed subsystems. Note that al-
though the causality graphs of these two subsystems are {(a, x)} and {(b, y)},
respectively, the causality relations of these two subsystems are empty, as
there is no causality relation between x and y. Therefore, this diagram, which
is a high-level subsystem, is well-formed. Then, we can define its semantics
by the parallel composition of the two subsystems:

JDiagramKHUTP =̂ JSubsystem0KHUTP ‖ JSubsystem1KHUTP

where JSubsystem0KHUTP and JSubsystem1KHUTP are referred in Section 5.1.

6. Case study: proving the semantic consistency between Simulink
and HCSP

In this section, we illustrate by an example how to prove the semantic
consistency between Simulink diagrams and the translated HCSP models
based on the simplified HUTP semantics of Simulink. The example is shown
in Fig. 2 which is borrowed from Section 6.4 of (Xu et al., 2022a) but with
a slight modification. The syntax and semantics of HCSP can be found
in (Zhan et al., 2017). Consider the Simulink diagram in Fig. 2, we set the
initial values of variables y and a to 0, then the corresponding HCSP model
is shown as follows, by the translation algorithm in (Zou et al., 2013b).

JDiagramKHCSP =̂ ConSubDiag‖DisSubDiag
ConSubDiag =̂ y := 0; a := 0;(

〈ȧ = y, ẏ = b&true〉D 8
(

cha!a→ skip
chb?b→ skip

))∗
DisSubDiag =̂ t := 0;

 t%2 == 0→ (cha?a;x := a+ 1);
t%3 == 0→ (b := x+ 1; chb!b);
wait(1)

∗

where we now use ‖ to denote the parallel operator in HCSP (and use ‖SIM to
denote parallel operator on Simulink processes). As shown in Fig. 2 (right),
the diagram consisting of two subsystems is flattened and then divided into
two sub-diagrams:

(1) the continuous sub-diagram ConSubDiag consisting of continuous blocks
Int0 and Int1;

(2) the discrete sub-diagram DisSubDiag consisting of discrete blocks Bias0
and Bias1.

32



The parallel composition of ConSubDiag and DisSubDiag is by communi-
cation: ConSubDiag evolves along the ODEs ȧ = y, ẏ = b and then gets
interrupted by the communication along cha or chb. It sends the value of a
to DisSubDiag via channel cha and receives the value of b from DisSubDiag
via channel chb. Notice that shared variables are not allowed in the context
of HCSP.

In the latest version of our tool chain MARS1, we implemented a new
translation algorithm from Simulink to HCSP, avoiding the use of commu-
nication. Hence the Simulink diagram is translated to one sequential HCSP
process. For the diagram in Fig. 2 (right), it is translated to the following
process:

JDiagramKHCSP =̂ tt := 0; a := 0; y := 0; (10) tt%2 == 0→ x := a+ 1;
tt%3 == 0→ b := x+ 1;
〈ȧ = y, ẏ = b, ṫt = 1&true〉D1 skip

+

In the above process, we use tt to denote the time variable, and it is
set to 0 initially. The initial values of a and y, the output lines of two
Integrator blocks, are also set to 0. Then, at each iteration, we execute the
discrete blocks according to a topological order. In the discrete sub-diagram
in Fig. 2 (right), Bias0 is prior to Bias1 as the input of the latter depends
on the output of the former. For Bias0, it can execute (update the output
x according to the latest input a) if the current time is a multiple of the
sample time 2, and it does nothing otherwise, depicted by the HCSP process
tt%2 == 0→ x := a+ 1. The process of Bias1 is similar. After the discrete
blocks update their outputs, the whole diagram waits for 1 time unit which is
the greatest common divisor of the sample times of Bias0 and Bias1. During
the waiting period, the continuous blocks Int0 and Int1 can evolve. The
evolution can be described by an ODE 〈ȧ = y, ẏ = b, ṫt = 1&true〉 D1 skip,
which indicates the ODE can only evolve for 1 time unit (D1) and then does
nothing (skip). The superscript + means the loop iterates at least once.

We will prove the consistency between the example and the new trans-
lated HCSP process (10), by comparing the HUTP semantics of Diagram
and JDiagramKHCSP. The HUTP semantics of HCSP has already been given
in (Xu et al., 2022a), but it is based on normal hybrid designs. Since defin-
ing the new HUTP semantics of HCSP in terms of abstract hybrid processes
is not the concern of this paper, we simply present the definitions which are
sufficient to express the HUTP semantics of JDiagramKHCSP of (10):

1https://gitee.com/bhzhan/mars.git

33



• The skip statement terminates immediately having no effect on vari-
ables, and it is modelled as the rational identity:

JskipKHUTP =̂ Skip

• The assignment of the value e to a variable x is modelled as setting
x to e and keeping all other variables constant if e can be successfully
evaluated. Let the alphabet be {ti , ti ′,v,v′}, where x ∈ v, then

Jx := eKHUTP =̂ [ϕ(e) ∧ x′ = e ∧ v′\{x′} = v\{x}]

where ϕ(e) specifies the condition by which e can be evaluated.

• The sequential composition P;Q behaves as P first and as Q afterwards:

JP;QKHUTP =̂ JPKHUTP # JQKHUTP

• The alternative B → P, where B is a Boolean expression, behaves as
P if B is true; otherwise, it does nothing:

JB → PKHUTP =̂ JPKHUTP CB B Skip

• The recursion P+ can be defined as the least fixed point:

JP+KHUTP =̂ JPK+HUTP = µX.(JPKHUTP ∨ JPKHUTP #X)

• A continuous evolution statement 〈F (ṡ, s) = 0&B〉 says that the pro-
cess keeps waiting, and meanwhile keeps continuously evolving follow-
ing the differential equations F , until the domain constraint B is vio-
lated:

J〈F (ṡ, s) = 0&B〉KHUTP =̂ Exit ∨ (ODE # Exit)

where
Exit =̂ [¬B(s) ∧ s′ = s]
ODE =̂ VF (ṡ, s) = 0 ∧B[∼s/s]U

• 〈F (ṡ, s) = 0&B〉 Dd P behaves like 〈F (ṡ, s) = 0&B〉, if the evolu-
tion terminates before d time units. Otherwise, after d time units of
evolution, it moves on to execute P:

J〈F (ṡ, s) = 0&B〉Dd PKHUTP =̂ Exit ∨ (ODE<d # Exit)
∨(ODEd # JPKHUTP)

where
ODE<d =̂ VF (ṡ, s) = 0 ∧B[∼s/s]U<d
ODEd =̂ VF (ṡ, s) = 0 ∧B[∼s/s]Ud

34



The semantics of other statements, like communication (ch?x and ch!e),
ODE with communication interruption (〈F (ṡ, s) = 0&B〉D 8i∈I(ioi −→ Pi))
and parallel composition (P‖Q), can also be represented by abstract hybrid
processes. Since they are not involved in JDiagramKHCSP of (10), we will not
introduce the details. Note that the above HUTP representations of the
HCSP processes are abstract hybrid processes rather than Simulink processes,
because JskipKHUTP and Jx := eKHUTP are not Simulink processes as they violate
healthiness condition HSIM.

Hence, the HUTP representation of JDiagramKHCSP of (10) can expand to

JJDiagramKHCSPKHUTP

= Jtt := 0KHUTP # Ja := 0KHUTP # Jy := 0KHUTP#Jtt%2 == 0→ x := a+ 1KHUTP#
Jtt%3 == 0→ b := x+ 1KHUTP#
J〈ȧ = y, ẏ = b, ṫt = 1&true〉D1 skipKHUTP

+

= ∼a(ti) = 0 ∧ b = ∼b(ti) ∧ x = ∼x(ti) ∧
∼
y(ti) = 0 ∧ ∼tt(ti) = 0

∧∃n ∈ N+ · ti + n = ti ′ ∧ ∀k ∈ N<n · ∼tt(ti + k) = k∧
(∼x(ti + k) = ∼a(ti + k) + 1 C k%2 = 0 B ∼x(ti + k) = ∼x(ti + k − 1))
∧ (∼b(ti + k) = ∼x(ti + k) + 1 C k%3 = 0 B ∼b(ti + k) = ∼b(ti + k − 1))
∧∀t ∈ (ti + k, ti + k + 1) · ∼̇a(t) =

∼
y(t) ∧

∼̇
y(t) = ∼b(t) ∧ ∼̇tt(t) = 1

∧˙
∼b(t) = ∼̇x(t) = 0 ∧ ∀t ∈ (ti , ti ′) · ∼a(t−) = ∼a(t) ∧

∼
y(t−) =

∼
y(t)

∧RC (∼a,∼b, ∼x,∼y, ∼tt, ti , ti
′) ∧ SD(∼a,∼b, ∼x,∼y, ∼tt, ti , ti

′)∧
a′ = ∼a(ti ′−) ∧ b′ = ∼b(ti ′−) ∧ x′ = ∼x(ti ′−) ∧ y′ =

∼
y(ti ′−) ∧ tt ′ = ∼tt(ti ′−)

According to the above result, JJDiagramKHCSPKHUTP is HSIM-healthy, i.e., it is
a Simulink process. For the HUTP semantics of the left diagram in Fig. 2,
we can get

JDiagramKHUTP = JSubsystem0KHUTP ‖ JSubsystem1KHUTP

≡ JSubsystem0KHUTP ∧ JSubsystem1KHUTP (Property 5)

35



where ‖ denotes ‖SIM, and

JSubsystem0KHUTP = ∼a(ti) = 0 ∧ ∃n ∈ N · 2n < ti ′ − ti ≤ 2(n+ 1)
∧∀k ∈ N<n · ∼x(ti + 2k) = ∼a(ti + 2k) + 1
∧∼x(ti + 2n) = ∼a(ti + 2n) + 1
∧∀t ∈ (ti + 2k, ti + 2k + 2) · ∼̇a(t) =

∼
y(t) ∧ ∼̇x(t) = 0

∧∀t ∈ (ti + 2n, ti ′) · ∼̇a(t) =
∼
y(t) ∧ ∼̇x(t) = 0

∧∀t ∈ (ti , ti ′) · ∼a(t−) = ∼a(t)
∧RC (∼a, ∼x,∼y, ti , ti

′) ∧ SD(∼a, ∼x,∼y, ti , ti
′)

JSubsystem1KHUTP =
∼
y(ti) = 0 ∧ ∃m ∈ N · 3m < ti ′ − ti ≤ 3(m+ 1)

∧∀k ∈ N<m · ∼b(ti + 3k) = ∼x(ti + 3k) + 1
∧∼b(ti + 3m) = ∼x(ti + 3m) + 1

∧∀t ∈ (ti + 3k, ti + 3k + 3) ·
∼̇
y(t) = ∼b(t) ∧ ˙

∼b(t) = 0

∧∀t ∈ (ti + 3m, ti ′) ·
∼̇
y(t) = ∼b(t) ∧ ˙

∼b(t) = 0

∧∀t ∈ (ti , ti ′) ·
∼
y(t−) =

∼
y(t)

∧RC (∼b, ∼x,∼y, ti , ti
′) ∧ SD(∼b, ∼x,∼y, ti , ti

′)

Note that in the above formulas, for brevity, we omit the state variables
and replace them by the corresponding output variables, because the state
variable and the output variable of an Integrator block are consistent in this
setting.

However, JJDiagramKHCSPKHUTP 6≡ JDiagramKHUTP in two aspects: (1) there
are more variables involved in JJDiagramKHCSPKHUTP, such as tt ; (2) the dura-
tion of JJDiagramKHCSPKHUTP is always a positive integer (ti ′ − ti = n ∈ N+)
but the one of JDiagramKHUTP can be any positive real number. Therefore,
we formulate a notion of equivalence under which JJDiagramKHCSPKHUTP and
JDiagramKHUTP can be considered to be equivalent.

Definition 26 (Equivalence). Let Diagram be a Simulink diagram, S be the
set of variables occurring in Diagram, and N be a positive integer. Then
Diagram and its translation to HCSP, i.e., JDiagramKHCSP, are equivalent with
respect to S until time N , if JJDiagramKHCSPKHUTP is equivalent to JDiagramKHUTP

on the variables in S under the constraint ti ′ − ti = N , denoted

JJDiagramKHCSPKHUTP ≡N,S JDiagramKHUTP

If ∀N ∈ N+ · JJDiagramKHCSPKHUTP ≡N,S JDiagramKHUTP, then

JJDiagramKHCSPKHUTP ≡S JDiagramKHUTP

Intuitively, we compare two HUTP representations (with potentially dif-
ferent alphabets) by projecting them on their shared variables first, and then

36



by checking whether the two resulting representations are equivalent within
the same duration.

Since we are only concerned with the variables relating to the lines in
the Simulink diagram, we let S =̂ {∼a,∼b, ∼x,∼y}. Then we expand (ti ′ − ti =

N) ∧ JDiagramKHUTP. Before expanding, we reformulate (ti ′ − ti = N) ∧
JSubsystem0KHUTP to observe the finer-grained behaviour of Subsystem0, i.e.,
we shorten the step size of Subsystem0 from 2 to 1. Therefore,

(ti ′ − ti = N) ∧ JSubsystem0KHUTP = (ti ′ − ti = N) ∧ JInt0KHUTP ∧ JBias0KHUTP

can expand to

ti ′ − ti = N ∧ ∼a(ti) = 0 ∧ ∀K ∈ N<N ·
∼x(ti +K) = ∼a(ti +K) + 1 CK%2 = 0 B ∼x(ti +K) = ∼x(ti +K − 1)
∧∀t ∈ (ti +K, ti +K + 1) · ∼̇a(t) =

∼
y(t) ∧ ∼̇x(t) = 0

∧∀t ∈ (ti , ti ′) · ∼a(t−) = ∼a(t) ∧ RC (∼a, ∼x,∼y, ti , ti
′) ∧ SD(∼a, ∼x,∼y, ti , ti

′)

We can also reformulate (ti ′ − ti = N) ∧ JSubsystem1KHUTP by shortening the
step size from 3 to 1:

ti ′ − ti = N ∧
∼
y(ti) = 0 ∧ ∀K ∈ N<N ·

∼b(ti +K) = ∼x(ti +K) + 1 CK%3 = 0 B ∼b(ti +K) = ∼b(ti +K − 1)

∧∀t ∈ (ti +K, ti +K + 1) ·
∼̇
y(t) = ∼b(t) ∧ ˙

∼b(t) = 0

∧∀t ∈ (ti , ti ′) ·
∼
y(t−) =

∼
y(t) ∧ RC (∼b, ∼x,∼y, ti , ti

′) ∧ SD(∼b, ∼x,∼y, ti , ti
′)

Therefore, we can get

(ti ′ − ti = N) ∧ JDiagramKHUTP = (ti ′ − ti = N)∧
JSubsystem0KHUTP ∧ JSubsystem1KHUTP

which can expand to

ti ′ − ti = N ∧ ∼a(ti) = 0 ∧
∼
y(ti) = 0 ∧ ∀K ∈ N<N ·

(∼x(ti +K) = ∼a(ti +K) + 1 CK%2 = 0 B ∼x(ti +K) = ∼x(ti +K − 1))
∧ (∼b(ti +K) = ∼x(ti +K) + 1 CK%3 = 0 B ∼b(ti +K) = ∼b(ti +K − 1))

∧∀t ∈ (ti +K, ti +K + 1) · ∼̇a(t) =
∼
y(t) ∧

∼̇
y(t) = ∼b(t) ∧ ˙

∼b(t) = ∼̇x(t) = 0

∧∀t ∈ (ti , ti ′) · ∼a(t−) = ∼a(t) ∧
∼
y(t−) =

∼
y(t)

∧RC (∼a,∼b, ∼x,∼y, ti , ti
′) ∧ SD(∼a,∼b, ∼x,∼y, ti , ti

′)

and it can be proved that JJDiagramKHCSPKHUTP ≡N,S JDiagramKHUTP for any
N ∈ N+, i.e.,

JJDiagramKHCSPKHUTP ≡S JDiagramKHUTP

37



Comparing with the proof of semantic consistency based on normal hybrid
designs in Section 6.4 of (Xu et al., 2022a), the proof in this section is more
formal and concise, because we adopt Simulink processes as the semantic
foundation for Simulink. After all, Simulink processes, a subset of abstract
hybrid processes, are much simpler than normal hybrid designs, and arguably
more suitable for defining the Simulink semantics.

7. Related works

There is a large amount of existing work on formal semantics of Simulink
and translation of Simulink models to other languages as part of various sys-
tem design workflows. Initial work focused on the discrete part of Simulink.
Tripakis et al. described a translation of discrete Simulink to the data-
flow language Lustre (Tripakis et al., 2005). Dragomir et al. translates
Simulink’s hierarchical block diagrams into an algebra of transformers con-
nected together via series, parallel and feedback operators (Dragomir et al.,
2016). In follow-up work, Preoteasa et al. proved the determinacy of these
translations, showing that the semantics of the resulting model does not de-
pend on the various choices made during translation (Preoteasa et al., 2019).
The proofs are formalised in the interactive theorem prover Isabelle/HOL.
These work resulted in the Refinement Calculus of Reactive Systems (RCRS)
toolset for modelling and reasoning about reactive systems (Dragomir et al.,
2020). Compared to RCRS, we consider in addition the continuous blocks
in Simulink (without discretisation), triggered and enabled subsystems, and
multi-rate systems, establishing the determinacy of the semantics in this
more general setting. Ye et al. present a compositional assume-guarantee
reasoning framework to provide a purely relational mathematical semantics
for discrete time Simulink diagrams, and then to verify the diagrams against
the contracts in the same semantics in UTP (Ye et al., 2020). However, the
work only captures single sampling rate Simulink models, while multi-rate
models are not supported by the reasoning framework.

Existing work take different approaches to formalise the semantics of con-
tinuous blocks in Simulink. Some focused on describing in detail how ODE
solving and zero-crossing detection are performed. For example, Bouissou
et al. gave an operational semantics for both continous-time and discrete-
time blocks in Simulink that emphasises the details of numerical simula-
tion (Bouissou and Chapoutot, 2012). Other works focused on first giving
a mathematically precise definition of the semantics, and then possibly con-
sider connections to numerical simulation results. Lee and Zheng (Lee and
Zheng, 2005) detailed the issues that arise when defining semantics of hybrid
systems. They described a semantic model where each signal is given by a

38



function from tags to states, where each tag consists of a time and an inte-
ger, thus able to describe multiple computation steps at a single time point.
While they give semantics for HyVisual (part of the Ptolemy framework),
many of the ideas apply to Simulink as well. Benveniste et al. (Benveniste
et al., 2018) gave an alternative semantic model based on the theory of non-
standard analysis, which is able to handle cascades of zero-crossings resulting
continuous triggers in the system. Based on this model, Bourke et al. pro-
posed Zélus (Bourke and Pouzet, 2013), extending a Lustre-like synchronous
language with ODEs. The Zélus language is then used to give semantics to
a large collection of Simulink blocks (Bourke et al., 2017). Compared to se-
mantics based on tags and non-standard analysis, we use a simpler semantic
model based on functions from real numbers. On the other hand we currently
do not consider continuous triggers and hence cascaded zero-crossings.

Several existing work connected translation from Simulink to models of
hybrid systems with verification using either model checking or theorem
proving. Librenz et al. (Liebrenz et al., 2018) proposed a translation from
Simulink diagrams to differential dynamic logic (Platzer, 2008), for verifica-
tion in the KeYmaera X tool. The work of Agrawal et al. (Agrawal et al.,
2004) provides a characterisation of Simulink as a translation or interpreta-
tion as hybrid automata. Minopoli et al. (Minopoli and Frehse, 2016) trans-
lates Simulink into SpaceEx models. Our work originated from the initial
translation method of Zou et al. (Zou et al., 2013b) from Simulink models
into HCSP, within the MARS platform for analysis, verification and simu-
lation of hybrid systems (Chen et al., 2017), and the theory of higher-order
UTP (Xu et al., 2022a). We then proposed a unified graphical co-modelling,
analysis and verification of CPSs by combining AADL and Simulink/State-
flow (Xu et al., 2022b) based on these works. Compared to these previous
works, our method yields simpler translated results, and permits easier proofs
of semantic determinacy as well as correctness of translation.

8. Conclusions and future works

Reflecting the complexity of cyber-physical systems design, the semantics
of Simulink models is highly complex. In the aim of breaking down this
complexity, we abstract the meaning of hierarchical Simulink diagrams into
logically and mathematically comprehensible terms, by employing a notion of
Simulink processes, a subset of abstract hybrid processes, defined in HUTP.
Based on our HUTP semantics of Simulink, we construct a framework for
proving Simulink diagrams consistent with their translation into HCSP. We
provide a case study that illustrates and justifies this translation.

39



Future works. As mentioned in Section 5.1, existing translation procedures
from Simulink to HCSP begin by flattening some subsystems, which under-
mines the modular design of Simulink diagrams. Therefore, we will consider
improving the translation algorithm to take modular design into account. In
this paper, we only introduce parts of the new HUTP semantics of HCSP
when proving the semantic consistency in Section 6. In the future, we will
provide the complete definition of the new HUTP representation of HCSP,
covering communication and ODE with communication interrupts, and prove
its consistency with the operational semantics of HCSP. Finally, based on
the HUTP representation, we will provide a systematic proof (not just by
examples) for the correctness of the translation algorithm from Simulink to
HCSP.

Acknowledgement

This research is partly supported by NSFC under grant No. 62192732,
62192730, 62032024, and 61972385, and is also partly funded by Inria’s joint
research project CONVEX. The authors would like to thank the editors and
anonymous reviewers, whose criticisms and suggestions did improve the pre-
sentation of our work very much.

References

Agrawal, A., Simon, G., Karsai, G., 2004. Semantic translation of
Simulink/Stateflow models to hybrid automata using graph transforma-
tions. Electron. Notes Theor. Comput. Sci. 109, 43–56.

Benveniste, A., Bourke, T., Caillaud, B., Pouzet, M., 2012. Non-standard
semantics of hybrid systems modelers. J. Comput. Syst. Sci. 78, 877–910.

Benveniste, A., Caillaud, B., Nickovic, D., Passerone, R., Raclet, J.B.,
Reinkemeier, P., Sangiovanni-Vincentelli, A.L., Damm, W., Henzinger,
T.A., Larsen, K.G., 2018. Contracts for system design. Foundations and
Trends in Electronic Design Automation 12, 124–400.

Bouissou, O., Chapoutot, A., 2012. An operational semantics for simulink’s
simulation engine. SIGPLAN Not. 47, 129–138.

Bourke, T., Carcenac, F., Colaço, J., Pagano, B., Pasteur, C., Pouzet, M.,
2017. A synchronous look at the Simulink standard library. ACM Trans.
Embed. Comput. Syst. 16, 176:1–176:24.

40



Bourke, T., Pouzet, M., 2013. Zélus: a synchronous language with ODEs, in:
16th international conference on Hybrid systems: computation and control
(HSCC), pp. 113–118.

Chen, M., Han, X., Tang, T., Wang, S., Yang, M., Zhan, N., Zhao, H., Zou,
L., 2017. MARS: A toolchain for modelling, analysis and verification of hy-
brid systems, in: Provably Correct Systems. Springer. NASA Monographs
in Systems and Software Engineering, pp. 39–58.

Dragomir, I., Preoteasa, V., Tripakis, S., 2016. Compositional semantics and
analysis of hierarchical block diagrams, in: 23rd International Symposium
on Model Checking Software (SPIN), Springer. pp. 38–56.

Dragomir, I., Preoteasa, V., Tripakis, S., 2020. The refinement calculus of
reactive systems toolset. Int. J. Softw. Tools Technol. Transf. 22, 689–708.

Foster, S., Cavalcanti, A., Canham, S., Woodcock, J., Zeyda, F., 2020. Unify-
ing theories of reactive design contracts. Theor. Comput. Sci. 802, 105–140.

Gajski, D.D., Abdi, S., Gerstlauer, A., Schirner, G., 2009. Embedded System
Design: Modeling, Synthesis, Verification. Springer-Verlag.

Hoare, C.A.R., He, J., 1998. Unifying Theories of Programming. Prentice
Hall, Englewood Cliffs.

Lee, E.A., Zheng, H., 2005. Operational semantics of hybrid systems, in:
Hybrid Systems: Computation and Control, 8th International Workshop
(HSCC), pp. 25–53.

Liebrenz, T., Herber, P., Glesner, S., 2018. Deductive verification of hybrid
control systems modeled in Simulink with KeYmaera X, in: International
Conference on Formal Engineering Methods (ICFEM), Springer. pp. 89–
105.

Manna, Z., Pnueli, A., 1993. Verifying hybrid systems, in: Grossman, R.L.,
Nerode, A., Ravn, A.P., Rischel, H. (Eds.), Hybrid Systems, Springer
Berlin Heidelberg, Berlin, Heidelberg. pp. 4–35.

MathWorks, 2013. Simulink® User’s Guide.
http://www.mathworks.com/help/pdf doc/simulink/sl using.pdf.

Minopoli, S., Frehse, G., 2016. SL2SX translator: From Simulink to SpaceEx
models, in: 19th International Conference on Hybrid Systems: Computa-
tion and Control (HSCC), pp. 93–98.

41



Platzer, A., 2008. Differential dynamic logic for hybrid systems. J. Autom.
Reason. 41, 143–189.

Preoteasa, V., Dragomir, I., Tripakis, S., 2019. Mechanically proving deter-
minacy of hierarchical block diagram translations, in: 20th International
Conference on Verification, Model Checking, and Abstract Interpretation
(VMCAI), pp. 577–600.

Tarski, A., 1955. A lattice-theoretical fixpoint theorem and its applications.
Pacific Journal of Mathematics 5, 285–309.

Tripakis, S., Sofronis, C., Caspi, P., Curic, A., 2005. Translating discrete-
time Simulink to Lustre. ACM Trans. Embed. Comput. Syst. 4, 779–818.

Wang, S., Zhan, N., Zou, L., 2015. An improved HHL prover: an interactive
theorem prover for hybrid systems, in: International Conference on Formal
Engineering Methods (ICFEM), Springer. pp. 382–399.

Xu, X., Talpin, J.P., Wang, S., Zhan, B., Zhan, N., 2022a. Semantics foun-
dation for cyber-physical systems using higher-order UTP. ACM Trans.
Softw. Eng. Methodol. .

Xu, X., Wang, S., Zhan, B., Jin, X., Talpin, J.P., Zhan, N., 2022b. Unified
graphical co-modeling, analysis and verification of cyber-physical systems
by combining AADL and Simulink/Stateflow. Theor. Comput. Sci. 903,
1–25.

Ye, K., Foster, S., Woodcock, J., 2020. Compositional assume-guarantee
reasoning of control law diagrams using UTP, in: From Astrophysics to
Unconventional Computation. Springer, pp. 215–254.

Zhan, N., Wang, S., Zhao, H., 2017. Formal Verification of Simulink/State-
flow Diagrams (A Deductive Approach). Springer.

Zou, L., Lv, J., Wang, S., Zhan, N., Tang, T., Yuan, L., Liu, Y., 2013a. Ver-
ifying Chinese train control system under a combined scenario by theorem
proving, in: Verified Software: Theories, Tools, Experiments (VSTTE),
pp. 262–280.

Zou, L., Zhan, N., Wang, S., Fränzle, M., 2015. Formal verification of
Simulink/Stateflow diagrams, in: 13th International Symposium on Au-
tomated Technology for Verification and Analysis (ATVA), Springer. pp.
464–481.

42



Zou, L., Zhan, N., Wang, S., Fränzle, M., Qin, S., 2013b. Verifying Simulink
diagrams via a hybrid Hoare logic prover, in: International Conference on
Embedded Software (EMSOFT), IEEE. pp. 1–10.

43


