Concepts

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

IPv6 Courses

©G6 Association

November 13, 2015

Table of Contents istic

Facts on Addresses

Concepts

Addresses Protocol

Associated

Protocols & Mechanisms IPv6 & DNS

Pacts on Addresses

- Addresses
- Protocol
- Associated Protocols & Mechanisms
- 6 IPv6 & DNS

Concepts
Datagram

What Is A Datagram istic

Definition

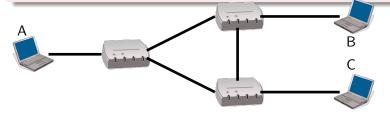
Datagram Addresses

Facts on Addresses

Addresses

Protocol

Associated


Mechanisms

IPv6 & DNS

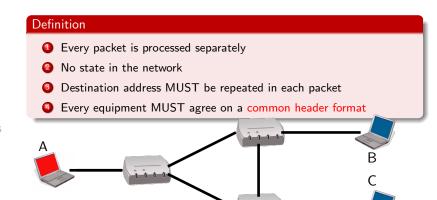
Every packet is processed separately

- No state in the network
- Oestination address MUST be repeated in each packet
- Every equipment MUST agree on a common header format

What Is A Datagram istic

Datagram Addresses

Facts on Addresses


Addresses

Protocol

Associated

Protocols & Mechanisms

IPv6 & DNS

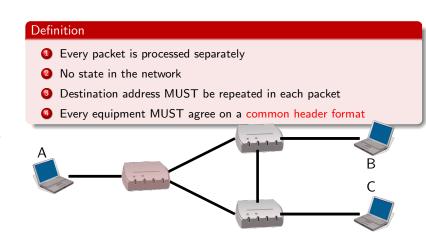
A sends a packet to B

istic What Is A Datagram

Concepts

Datagram Addresses

Facts on Addresses


Addresses

Protocol

Associated

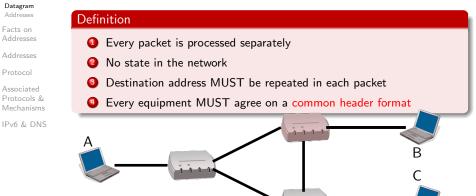
Protocols & Mechanisms

IPv6 & DNS

The first router looks at the header to find the exit interface

What Is A Datagram istic

Datagram Addresses


Facts on Addresses

Addresses

Protocol

Associated Protocols &

Mechanisms

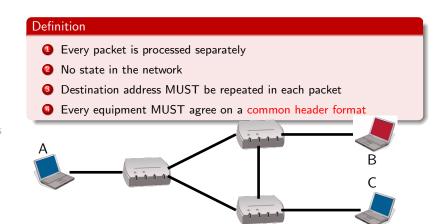
The second router looks at the header to find the exit interface

istic What Is A Datagram

Concepts

Datagram

Facts on Addresses


Addresses

Protocol

Associated Protocols 8

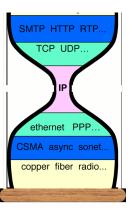
Protocols & Mechanisms

IPv6 & DNS

B accepts the packet

istic IP Layer

Concepts Datagram


Facts on Addresses

Addresses

Protoco

Associated Protocols & Mechanisms

IPv6 & DNS

- IP is kept simple
 - Forwards packet towards destination
- IP on everything
 - Adapt IP protocol on every layer 2
- Everything on IP
 - Write applications to use IP layer (through L4: TCP, UDP)
- IP must facilitate network interconnection
 - Avoid ambiguities on addresses

Whttp://www.ietf.org/proceedings/01aug/slides/plenary-1/index.html Steve deering, Watching the Waist of the Protocol Hourglass, IETF 51, London

Concepts Datagram

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

Mechanisms

Source Address

Destination Address

Data

The destination address must be easily accessible:

- Fixed location
- Fixed size
- Aligment in memory

(Sept 1981)

Addresses are fixed length of four octets (32 bits)

Destination Address Processing istic

Datagram

Facts on Addresses

Addresses

Protocol

Associated Protocols &

Source Address Mechanisms IPv6 & DNS Data

The destination address must be easily accessible:

- Fixed location
- Fixed size
- Aligment in memory

Concepts

Datagram Addresses

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

Mechanisms

Source Address

Destination Address

Data

The destination address must be easily accessible:

- Fixed location
- Fixed size
- Aligment in memory

Sept 1981)

Addresses are fixed length of four octet: (32 bits)

Concepts Datagram

Facts on

Addresses

Addresses

Associated Protocols &

Mechanisms

IPv6 & DNS

Source Address

Destination Address

Data

The destination address must be easily accessible:

- Fixed location
- Fixed size
- Aligment in memory

(Sept 1981)

Addresses are fixed length of four octets (32 bits)

Concepts Datagram

Facts on

Addresses

Addresses

Associated Protocols &

Mechanisms

IPv6 & DNS

The destination address must be easily accessible:

- Fixed location
- Fixed size
- Aligment in memory

RFC 791 (Sept 1981)

Addresses are fixed length of four octets (32 bits)

Concepts Addresses

IPv4 address allocation (originally) istic

Datagram Addresses

Facts on Addresses

Addresses

Protocol

Associated Protocols &

IPv6 & DNS

Mechanisms

Class B 11 1 01

- The address is split into two parts:
 - Network part
 - Host part
- Initially the boundary was given by a prefix
 - 3 boundaries called classes
 - 1 class (D) for mutlicast added later
 - 1 class (E) reserved (never used)
- An authority used to give unique prefix to sites
- This plan was developed to guarantee address uniqueness

IPv4 address allocation (originally) istic

Datagram Addresses

Facts on Addresses

Addresses

Protocol

Associated Protocols &

Mechanisms

	+			
		+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-		
1 0 NETWORK	i		Class	В
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-	-+-+-+-+-+- NETWORK	Local Address	+ Class	С

- The address is split into two parts:
 - Network part
 - Host part
- Initially the boundary was given by a prefix
 - 3 boundaries called classes
 - 1 class (D) for mutlicast added later
 - 1 class (E) reserved (never used)
- An authority used to give unique prefix to sites
- This plan was developed to guarantee address uniqueness

Facts on Addresses Historical view

istic IPv4 address allocation (originally)

Concepts

Facts on Addresses

Historical view Emergency

NAT Prefixes delegation

Addresses

Associated Protocols & Mechanisms

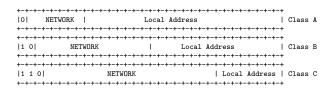
+-+-+-+	-+-+-+-+-+-+-+	-+-+-+-+	-+-+-+-+-	+-+-+-	-+-+-+-+		
101	NETWORK	Local Address		1	Class	Α	
+-+-+-+	-+-+-+-+-+-+-+-+	-+-+-+-+	-+-+-+-+-	+-+-+-	-+-+-+-+		
+-+-+-+	-+-+-+-+-+-+-+-+	-+-+-+-+	-+-+-+-+-	+-+-+-	-+-+-+-+		
1 0	NETWORK	1	Local Ad	dress	1	Class	В
+-+-+-+	-+-+-+-+-+-+-+-+	-+-+-+-+	-+-+-+-+-	+-+-+-	-+-+-+-+		
+-+-+-+	-+-+-+-+-+-+-+-+	-+-+-+-+	-+-+-+-+-	+-+-+-	-+-+-+-+		
1 1 0	NETWO	RK		Local	Address	Class	С
+-+-+-+		-+-+-+-+	-+-+-+-+-	+-+-+-	-+-+-+-+		

- The address is split into two parts:
 - Network part
 - Host part
- Initially the boundary was given by a prefix
 - 3 boundaries called classes
 - 1 class (D) for mutlicast added later
 - 1 class (E) reserved (never used)
- An authority used to give unique prefix to sites
- This plan was developed to guarantee address uniqueness

istic IPv4 address allocation (originally)

Concept

Facts on Addresses


Historical view Emergency

NAT Prefixes delegation

Addresses

Associated

Protocols & Mechanisms

- The address is split into two parts:
 - Network part
 - Host part
- Initially the boundary was given by a prefix
 - 3 boundaries called classes
 - 1 class (D) for mutlicast added later
 - 1 class (E) reserved (never used)
- An authority used to give unique prefix to sites
- This plan was developed to guarantee address uniqueness

istic Historical facts

Concept

Facts on Addresses

Historical view

Measures NAT Prefixes delegation

Addresses

Protocol Associated

Protocols & Mechanisms

- 1983 : Research network for about 100 computers
- 1992 : Commercial activity
 - Exponential growth
- 1993 : Exhaustion of the class B address space
 - Allocation in the class C space
 - Require more information in routers memory
- Forecast of network collapse for 1998!
 - 1999 : Bob Metcalfe ate his Infoworld 1995 paper where he made this prediction

Facts on Addresses Emergency Measures

Emergency Measures: Better Addresses Management

Concept

Facts on Addresses

Emergency Measures NAT Prefixes delegation

Addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

RFC 1517 - RFC 1520 (Sept 1993)

- Ask the internet community to give back allocated prefixes (RFC 1917)
- Re-use class C address space
- CIDR (Classless Internet Domain Routing)
 - network address = prefix/prefix length
 - less address waste
 - recommend aggregation (reduce routing table length)
- Introduce private prefixes (RFC 1918)

Facts on Addresses NAT

Emergency Measures: Private Addresses (RFC 1918 BCP)

Concept

Facts on Addresses Historical view

NAT

Prefixes delegation

Addresses

Protoco

Associated Protocols & Mechanisms

- Allow private addressing plans
- Addresses are used internally
- Similar to security architecture with firewalls
- Use of proxies or NAT to go outside
 - RFC 1631, RFC 2663 and RFC 2993
- NAPT is the most commonly used of NAT variations

istic How NAT with Port Translation Works

Concepts

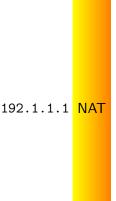
Facts on Addresses

Historical view Emergency Measures

NAT

Prefixes delegation

Addresses


Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

128.1.2.3

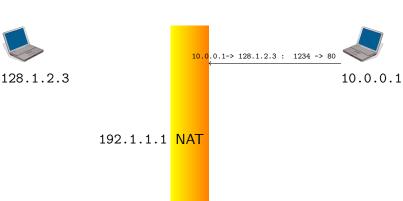
10.0.0.1

istic How NAT with Port Translation Works

Concepts

Facts on Addresses

Historical view Emergency Measures


NAT

Prefixes delegation

Addresses

Protocol

Associated Protocols & Mechanisms

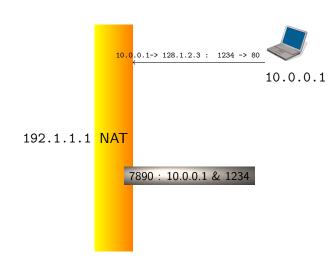
istic How NAT with Port Translation Works

Concepts

Facts on Addresses

Historical view Emergency Measures

128.1.2.3


NAT

Prefixes delegation

Addresses

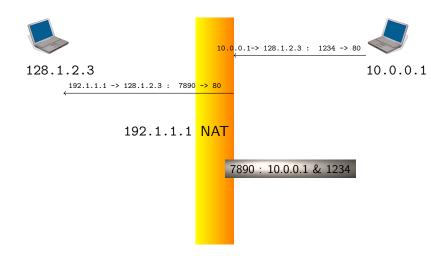
Protocol

Associated Protocols & Mechanisms

How NAT with Port Translation Works

Concepts

Facts on Addresses Historical view Emergency Measures


NAT

Prefixes delegation

Addresses

Protocol

Associated Protocols & Mechanisms

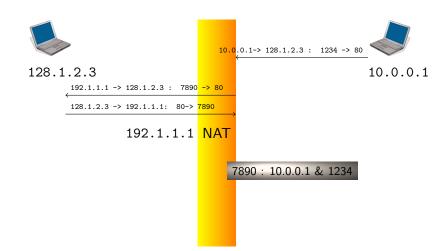
How NAT with Port Translation Works

Concepts

Facts on Addresses

Historical view Emergency Measures

NAT


Prefixes delegation

Addresses

Protocol

Associated

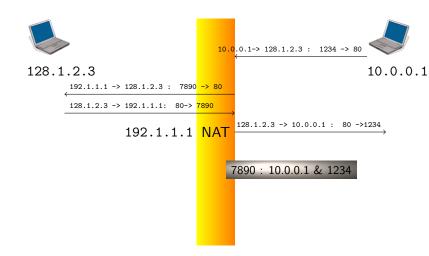
Protocols & Mechanisms

How NAT with Port Translation Works

Concepts

Facts on Addresses

Historical view Emergency


NAT

Prefixes delegation

Addresses

Protocol

Associated Protocols & Mechanisms

istic NAT Impact

Concepts

Facts on

Addresses Historical view

NAT

Prefixes delegation

Addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

first consequence

The application does not know its public name.

second consequence

It is difficult to contact a NATed equipment from outside

- Security feeling
- Solutions for NAT traversal exist

third consequence

There is no standardized behavior for NAT yet

Facts on Addresses Prefixes delegation

istic What Has Changed

Concepts

Facts on Addresses

Historical view Emergency Measures NAT

Prefixes delegation

Addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

Classful Addressing

- Ensure uniqueness
- Pacilitate administrative allocation
 - One central entity

Class-Less (CIDR)

- Facilitate administrative allocation (hierarchical)
 - Nowadays 5 regional entities
- Pacilitate host location in the network
- Allocate the minimum pool of addresses

istic What Has Changed

Concepts

Facts on

Historical view Emergency Measures NAT

Prefixes delegation

Addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

Classful Addressing

- Ensure uniqueness
- Pacilitate administrative allocation
 - One central entity

Class-Less (CIDR)

- Facilitate administrative allocation (hierarchical)
 - Nowadays 5 regional entities
- Pacilitate host location in the network
- Allocate the minimum pool of addresses

istic What Has Changed

Concepts

Facts on Addresses

Historical view Emergency Measures NAT

Prefixes delegation

Addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

Classful Addressing

- Ensure uniqueness
- Pacilitate administrative allocation
 - One central entity

Class-Less (CIDR)

- Facilitate administrative allocation (hierarchical)
 - Nowadays 5 regional entities
- Pacilitate host location in the network
- 3 Allocate the minimum pool of addresses

istic What Has Changed

Concepts

Facts on Addresses

Historical view Emergency Measures NAT

Prefixes delegation

Addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

Classful Addressing

- Ensure uniqueness
- Pacilitate administrative allocation
 - One central entity

Class-Less (CIDR)

- Facilitate administrative allocation (hierarchical)
 - Nowadays 5 regional entities
- Pacilitate host location in the network
- Allocate the minimum pool of addresses

istic What Has Changed

Concepts

Facts on

Historical view Emergency Measures NAT

Prefixes delegation

Addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

Classful Addressing

- Ensure uniqueness
- Pacilitate administrative allocation
 - One central entity

Class-Less (CIDR)

- Facilitate administrative allocation (hierarchical)
 - Nowadays 5 regional entities
- 2 Facilitate host location in the network
- 3 Allocate the minimum pool of addresses

istic CIDR Administrative Point of View

Concepts

Addresses
Historical view
Emergency
Measures

Prefixes delegation

Addresse

Associated Protocols & Mechanisms

- A hierarchy of administrative registries
 - IANA/ICANN at the top
- 5 Regional Internet Registries (RIR)
 - APNIC (Asia Pacific Network Information Centre)
 - ARIN (American Registry for Internet Numbers)
 - LACNIC (Regional Latin-American and Caribbean IP Address Registry)
 - RIPE NCC (Réseaux IP Européens Network Coordination Center)
 - Europe, Middle east.
 - AfriNIC (Africa)
- Providers get prefixes allocation from RIR

istic RIR Regions

Concepts

Facts on Addresses Historical view Emergency Measures

NAT Prefixes delegation

Addresses

Protocol

Associated Protocols & Mechanisms

istic Prefix

Concept

Facts on Addresses Historical view Emergency Measures NAT Prefixes

delegation Addresses

Associated Protocols & Mechanisms

- CIDR can be viewed as an extension of the netmask concept
- It is called classless since IP addresses are no longer interpreted as belonging to a given Class (A, B, C) based on the value of the 1-4 leading bits
- The prefix length must be added to the 32 bit word to indicate what is the network part.
 - Lookup complexity in the FIB (Forwarding Information Base) is increased:
 - Best prefix match rule

Exhaustion of IPv4 Prefix Pool

Concepts

Facts on Addresses Historical view Emergency Measures NAT Prefixes

delegation Addresses

Protocol

Associated Protocols & Mechanisms

- IANA Unallocated Address Pool Depleted: February, 1st 2011
 - See: Whttp://www.nro.net/news/ipv4-free-pool-depleted
- RIR Unallocated Address Pool Exhaustion
 - APNIC (Asia) : April 2011
 - RIPE-NCC (Europe) : September 2012
 - LACNIC (South America): June 2014
 - ARIN (North Amercia) : September 2015 (completely exhausted!)
 - See: Whttp://www.potaroo.net/tools/ipv4/
 - See als: Whttp://www.ipv4depletion.com/

istic Genesis of a new version of IP

Concepts

Facts on Addresses Historical view Emergency Measures NAT

Prefixes delegation

.

Associated Protocols & Mechanisms

IPv6 & DNS

Preliminary works between 1991 and 1994

- In 1991 IAB proposed an ISO-like solution (CNLP), refused by IETF
- An IPng area is created, initiated a call for tender
- Between 1992 and 1994, several propositions emerged

During IETF'30 (Toronto, July 1994), the SIPP+ solution is adopted

- Keep the fundamentals of IPv4
- Larger address space (16-byte addresses)
- Simpler header

IPv6 is formalized in RFC 1883 in december 1995 (updated with RFC 2460). First deployments followed (6bone, G6).

Addresses versus Packet Format istic



Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

1980

1993

IPv4

????

2013

IPv6

Concepts

Facts on Addresses

Addresses

Addressing scheme Address Format Kind of addresses

Protoco

Associated Protocols & Mechanisms

- Larger address space from 2³² to 2¹²⁸
 - Allow different addressing scheme
- Stateless auto-configuration of hosts
 - Layer 3 "Plug & Play" Protocol
- Simple header ⇒ Efficient routing
 - No checksum
 - No fragmentation by routers
 - Enhanced extension system
- •
- 0
- •
- •

Concepts

Facts on Addresses

Addresses

Addressing scheme Address Format Kind of addresses

Protoco

Associated Protocols & Mechanisms

- Larger address space from 2^{32} to 2^{128}
 - Allow different addressing scheme
- Stateless auto-configuration of hosts
 - Layer 3 "Plug & Play" Protocol
- Simple header ⇒ Efficient routing
 - No checksum
 - No fragmentation by routers
 - Enhanced extension system
- end to end, but...
- •
- .
- •

Concepts

Facts on Addresses

Addresses

Addressing scheme Address Format Kind of addresses

Protoco

Associated Protocols & Mechanisms

- Larger address space from 2^{32} to 2^{128}
 - Allow different addressing scheme
- Stateless auto-configuration of hosts
 - Layer 3 "Plug & Play" Protocol
- ullet Simple header \Rightarrow Efficient routing
 - No checksum
 - No fragmentation by routers
 - Enhanced extension system
- end to end, but...
- Quality of service
- •

Concepts

Facts on Addresses

Addresses

Addressing scheme Address Format Kind of addresses

Protoco

Associated Protocols & Mechanisms

IPv6 & DNS

- Larger address space from 2^{32} to 2^{128}
 - Allow different addressing scheme
- Stateless auto-configuration of hosts
 - Layer 3 "Plug & Play" Protocol
- Simple header ⇒ Efficient routing
 - No checksum
 - No fragmentation by routers
 - Enhanced extension system
- end to end, but...
- Quality of service
- Better support of mobility

•

Concepts

Facts on Addresses

Addresses

Addressing scheme Address Format Kind of addresses

Protoco

Associated Protocols & Mechanisms

- Larger address space from 2^{32} to 2^{128}
 - Allow different addressing scheme
- Stateless auto-configuration of hosts
 - Layer 3 "Plug & Play" Protocol
- Simple header ⇒ Efficient routing
 - No checksum
 - No fragmentation by routers
 - Enhanced extension system
- end to end, but...
- Quality of service
- Better support of mobility
- IPsec

Addresses Notation

istic IPv6 addresses

Facts on Addresses

Addresses

Notation

Addressing Kind of addresses

Associated Protocols & Mechanisms

IPv6 & DNS

F2C:544:9E::2:EF8D:6B7 F692:: A:1455::A:6E0 D:63:D::4:3A:55F B33:C::F2 7:5059:3D:C0:: 9D::9BAC:B8CA:893F:80 1E:DE2:4C83::4E:39:F35:C875 2:: A:FDE3:76:B4F:D9D:: 369F · 9 · F8 · DRF · · 2 DD4 · B45 · 1 · C42F · BE6 · 75 · · 9D7B · 7184 · EF · · 3FB · BF1A · D80 FE9 · · B · 3 EC:DB4:B:F:F11::E9:090 83:B9:08:B5:F:3F:AF:B84 E::35B:8572:7A3:FB2 99:F:9:8B76::BC9 D64.07.F394..BDR.DF40.08EF.A79E_AC.23.5D.78..233.84.8_F0D.F..F4EB.0F.5C7 E71 · F577 · ED · E · 9DE8 · · B · · 3 1D3F · AOAA · · 70.8EA1..8.D5.81.2.F302 26..8880.7 93.. F..9.0 E · 2 · 0 · 266B · · 763E · C · 2E · 1EB · F6 · F4 · 14 · 16 E6 · 6 · F4 · B6 · A888 · 979E · D78 · 09 9.754.5.90.0A78.A1A3.1.7 2.8.. 97B.C4..C36 A40.7.5.7E8F.O.32EC.9A.DO 8A52..575 D.:4CB4:E:2BF:5485:8CE 07:5::41 6B::A9:C 94FF:7B8::D9:51:26F 2::E:AE:ED:81 8241:: 5F97:: AD5B: 259C: 7DB8: 24:58:552A:: 94:4:9FD: 4:87E5:: 5A8: 2FF: 1::CC EA:8904: 7C:: 7C::D6B7:A7:B0:8B DC:6C::34:89 6C:1::5 7B3:6780:4:B1::E586 412:2:5E1:6DE5:5E3A:553:3:: 7F0:: B39::1:B77:DB 9D3:1F1:4B:3:B4E6:7681:09:D4A8 61:520::E0 1:28E9:0:095:DF:F2::

1B61:4::1DE:50A 34BC:99::E9:9EFB E:EF:: BDC:672A:F4C8:A1::4:7:9CB7 C697:56AD:40:8:0::62

istic Don't Worry

Concepts

Facts on Addresses

Addresses

Notation

Addressing scheme Address Format Kind of addresses

Protocol

1 101000

Associated Protocols & Mechanisms

IPv6 & DNS

Addresses are not random numbers...they are often easy to handle and even to memorize sometimes

Facts on Addresses

Notation

Addressing scheme Address Format Kind of addresses

Protoco

Associated Protocols & Mechanisms

IPv6 & DNS

- Base format (a 16-octet Global IPv6 Address):
 - 2001:0db8:beef:0001:0000:0000:cafe:deca
- Compact Format:

2001:0db8:beef:0001:0000:0000:cafe:deca

- Remove 0 on the left of each word
- To avoid ambiguity, substitute ONLY one sequence of zeros by ::
 - an IPv4 address may also appear: ::ffff:192.0.2.1

Warning

Facts on Addresses

Notation

Addressing scheme Address Format Kind of addresses

Protoco

Associated Protocols & Mechanisms

IPv6 & DNS

- Base format (a 16-octet Global IPv6 Address):
 - 2001:0db8:beef:0001:0000:0000:cafe:deca
- Compact Format:

2001:0db8:beef:0001:0000:0000:cafe:deca

- Remove 0 on the left of each word
- ② To avoid ambiguity, substitute ONLY one sequence of zeros by ::
- an IPv4 address may also appear: ::ffff:192.0.2.1

Warning

Facts on Addresses

Notation

Addressing scheme Address Format Kind of addresses

Protoco

Associated Protocols & Mechanisms

IPv6 & DNS

- Base format (a 16-octet Global IPv6 Address):
 - 2001:0db8:beef:0001:0000:0000:cafe:deca
- Compact Format:

2001:db8:beef:1:0:0:cafe:deca

- Remove 0 on the left of each word
- ② To avoid ambiguity, substitute ONLY one sequence of zeros by ::
- an IPv4 address may also appear: ::ffff:192.0.2.1

Warning

Facts on Addresses

Notation

Addressing scheme Address Format Kind of addresses

Protoco

Associated Protocols & Mechanisms

IPv6 & DNS

- Base format (a 16-octet Global IPv6 Address):
 - 2001:0db8:beef:0001:0000:0000:cafe:deca
- Compact Format:

2001:db8:beef:1:0:0:cafe:deca

- Remove 0 on the left of each word
- ② To avoid ambiguity, substitute ONLY one sequence of zeros by ::
- an IPv4 address may also appear: ::ffff:192.0.2.1

Warning

Facts on Addresses

Addresses

Addressing scheme Address Format Kind of addresses

Protoco

Associated Protocols & Mechanisms

IPv6 & DNS

- Base format (a 16-octet Global IPv6 Address):
 - 2001:0db8:beef:0001:0000:0000:cafe:deca
- Compact Format:

2001:db8:beef:1::cafe:deca

- Remove 0 on the left of each word
- ② To avoid ambiguity, substitute ONLY one sequence of zeros by ::
- an IPv4 address may also appear: ::ffff:192.0.2.1

Warning

Facts on Addresses

Notation

Addressing scheme Address Format Kind of addresses

Protoco

Associated Protocols & Mechanisms

IPv6 & DNS

- Base format (a 16-octet Global IPv6 Address):
 - 2001:0db8:beef:0001:0000:0000:cafe:deca
- Compact Format:

2001:db8:beef:1::cafe:deca

- Remove 0 on the left of each word
- ② To avoid ambiguity, substitute ONLY one sequence of zeros by ::
- an IPv4 address may also appear: ::ffff:192.0.2.1

Warning:

2001:db8:3::/40 is in fact 2001:db8:0003::/40 and not

2001:db8:0300::/40

istic

Is it enough for the future?

Concepts

Facts on Addresses

Notation

Addressing scheme Address Format Kind of addresses

Protoco

Associated Protocols & Mechanisms

IPv6 & DNS

- Address length
 - About 3.4x10³⁸ addresses
 - 60 000 trillion trillion addresses per inhabitant on earth
 - Addresses for every grain of sands in the world
 - IPv4: 6 addresses per US inhabitant, 1 in Europe, 0.01 in China and 0.001 in India
- Justification of a fixed-length address

Warning:

- An address for everything on the network and not an address for everything
- No addresses for the whole life:
 - Depends on your position on the network
 - ISP Renumbering may be possible

istic Is it enough for the future?

Concepts

Facts on Addresses

Addresse

Addressing scheme Address Format Kind of addresses

Protoco

Associated Protocols & Mechanisms

IPv6 & DNS

Hop Limit:

- Should not be a problem
- Count the number of routers used to reach a destination
- Growth will be in-width more than in-depth
- Payload Length
 - 64 Ko is not a current hard limit
 - Ethernet is limited to 1.5 Ko, evolution can use until 9Ko.
 - Use Jumbogram for specific cases

Addresses
Addressing scheme

Stic Addressing scheme

Concepts

Facts on Addresses

Addresses

Addressing scheme

Address Format Kind of addresses

Protoco

Associated Protocols & Mechanisms

IPv6 & DNS

• RFC 4291 defines current IPv6 addresses

• loopback (::1)

• link local (fe80::/10)

global unicast (2000::/3)

multicast (ff00::/8)

Use CIDR principles:

Prefix / prefix length notation

• 2001:db8:face::/48

• 2001:db8:face:bed:cafe:deca:dead:beef/64

Interfaces have several IPv6 addresses

 at least a link-local, and one or more global unicast addresses

Concepts

Facts on Addresses

Addresses

Addressing

Address Format
Kind of addresses

Protocol

-101000

Associated Protocols & Mechanisms

```
2000::/3 Global Unicast [RFC4291]
```


Concepts

Facts on Addresses

Addresses

Addressing

scheme

Address Format Kind of addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

```
0000::/8 Reserved by IETF [RFC4291]
0100::/8 Reserved by IETF [RFC4291]
0200::/8 Reserved by IETF [RFC4291]
0800::/8 Reserved by IETF [RFC4291]
0800::/8 Reserved by IETF [RFC4291]
0000::/3 Global Unicast [RFC4291]
0000::/3 Reserved by IETF [RFC4291]
0000::/3 Reserved by IETF [RFC4291]
0000::/8 Reserved by IETF [RFC4291]
```

fe80::/10 Link Local Unicast [RFC4291]

```
ff00::/8 Multicast [RFC4291]
```


Concepts

Facts on Addresses

Addresses

Notation Addressing

scheme Address Format

Address Format Kind of addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

```
0000::/8 Reserved by IETF [RFC4291]
01001:/8 Reserved by IETF [RFC4291]
0200::/7 Reserved by IETF [RFC4291]
0800::/5 Reserved by IETF [RFC4291]
0800::/5 Reserved by IETF [RFC4291]
10001::/4 Reserved by IETF [RFC4291]
10001::/3 Reserved by IETF [RFC4291]
10001:/3 Reserved by IETF [RFC4291]
10001:/3 Reserved by IETF [RFC4291]
10001:/3 Reserved by IETF [RFC4291]
10001:/5 Reserved by IETF [RFC4291]
10001:/6 Reserved by IETF [RFC4291]
```

fe80::/10 Link Local Unicast [RFC4291]

ff00::/8 Multicast [RFC4291]

Concepts

Facts on Addresses

Addresses

Addressing

Address Format
Kind of addresses

Protoco

rotoco

Associated Protocols & Mechanisms

IPv6 & DNS

```
0000::/8 Reserved by IETF [RFC4291]
0100::/8 Reserved by IETF [RFC4291]
0200::/7 Reserved by IETF [RFC4048]
0400::/6 Reserved by IETF [RFC4981]
0800::/8 Reserved by IETF [RFC4291]
1000::/3 Global Unicast [RFC4291]
4000::/3 Reserved by IETF [RFC4291]
6000::/3 Reserved by IETF [RFC4291]
8000::/3 Reserved by IETF [RFC4291]
0000::/3 Reserved by IETF [RFC4291]
0000::/3 Reserved by IETF [RFC4291]
0000::/4 Reserved by IETF [RFC4291]
0000::/6 Reserved by IETF [RFC4291]
F8000::/6 Reserved by IETF [RFC4291]
```

fe80::/10 Link Local Unicast [RFC4291] fec0::/10 Reserved by IETF [RFC3879] ff00::/8 Multicast [RFC4291]

Concepts

Facts on Addresses

Addresses

Addressing

scheme Address Format Kind of addresses

Protoco

Associated Protocols & Mechanisms

IPv6 & DNS

```
0000::/8 Reserved by IETF [RFC4291]
01001:/8 Reserved by IETF [RFC4291]
02001:/7 Reserved by IETF [RFC4291]
08001:/6 Reserved by IETF [RFC4291]
08001:/8 Reserved by IETF [RFC4291]
20001:/3 Global Unicast [RFC4291]
40001:/3 Reserved by IETF [RFC4291]
80001:/3 Reserved by IETF [RFC4291]
80001:/3 Reserved by IETF [RFC4291]
0001:/3 Reserved by IETF [RFC4291]
```

fc00::/7 Unique Local Unicast [RFC4193]

fe80::/10 Link Local Unicast [RFC4291] fec0::/10 Reserved by IETF [RFC3879] ff00::/8 Multicast [RFC4291]

....

Concepts

Facts on 0000::/8 Reserved by IETF [RFC4291] Addresses 0100::/8 Reserved by IETF [RFC4291] 0200::/7 Reserved by IETF [RFC4048] Addresses 0400::/6 Reserved by IETF [RFC4291] Notation 0800::/5 Reserved by IETF [RFC4291] Addressing 1000::/4 Reserved by IETF [RFC4291] scheme 2000::/3 Global Unicast [RFC4291] Address Format Kind of addresses 4000::/3 Reserved by IETF [RFC4291] 6000::/3 Reserved by IETF [RFC4291] 8000::/3 Reserved by IETF [RFC4291] a000::/3 Reserved by IETF [RFC4291] Associated

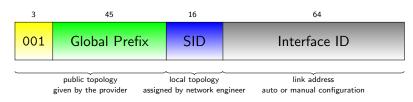
Protocols & Mechanisms

```
2000::/3 Global Unicast [RFC4291]
4000::/3 Reserved by IETF [RFC4291]
6000::/3 Reserved by IETF [RFC4291]
8000::/3 Reserved by IETF [RFC4291]
8000::/3 Reserved by IETF [RFC4291]
a000::/3 Reserved by IETF [RFC4291]
c000::/4 Reserved by IETF [RFC4291]
f000::/5 Reserved by IETF [RFC4291]
f000::/6 Reserved by IETF [RFC4291]
F800::/6 Reserved by IETF [RFC4291]
fe00::/9 Reserved by IETF [RFC4291]
fe00::/10 Link Local Unicast [RFC4193]
fe00::/10 Link Local Unicast [RFC4291]
fe00::/10 Reserved by IETF [RFC3879]
ff00::/8 Multicast [RFC4291]
```


Addresses Address Format

Facts on Addresses

Addresses Notation Addressing


Address Format

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

Global Unicast Address:

Link-Local Address:

link address auto-configuration

istic Global Unicast Addresses

Concepts

Facts on Addresses

Addresses Notation Addressing

Address Format
Kind of addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

Used for communication between hosts of the IPv6 Internet (\approx public IPv4 addresses)

Composed by 2 parts

- a 64-bit **Global Prefix**, identifying the network of the host
- a 64-bit Interface ID, identifying the host in the network

The **Global Prefix** is defined by network topology.

The **Interface ID** can be selected by the host itself.

Note: The 64-bit border is hard-coded!

Facts on Addresses

Notation

Addressing scheme Address Format

Kind of addresses

Protoco

Associated Protocols &

Mechanisms

- 16-bit length up to 65 535 subnets
 - Large enough for most companies
 - Too large for home network ?
 - \bullet May be a /56 or /60 GP will be allocated depending on the ISP
- There is no strict rules to structure SID:
 - sequencial: 1, 2, ...
 - use VLAN number
 - include usage to allow filtering, for instance, for a University:

istic Interface Identifier 🎉

Concepts

Facts on Addresses

Notation Addressing scheme Address Format

Kind of addresses

Protoco

Associated Protocols & Mechanisms

IPv6 & DNS

- Derived from a Layer 2 ID (I.e. MAC address) :
 - for Link Local address
 - for Global Address : plug-and-play hosts
- Assigned manually :
 - to keep same address when Ethernet card or host is changed
 - to remember easily the address
 - 1. 2. 3. ...
 - last digit of the v4 address
 - the IPv4 address (for nostalgic system administrators)
 - ...

istic Interface Identifier

Concepts

Facts on Addresses

Addresses Notation Addressing

Address Format Kind of addresses

Protoco

Associated Protocols & Mechanisms

IPv6 & DNS

- Derived from a Layer 2 ID (I.e. MAC address) :
 - for Link Local address
 - for Global Address : plug-and-play hosts
- Assigned manually :
 - to keep same address when Ethernet card or host is changed
 - to remember easily the address
 - 1. 2. 3. ...
 - last digit of the v4 address
 - the IPv4 address (for nostalgic system administrators)
 - ..

istic Interface Identifier 🎉

Concepts

Facts on Addresses

Addresses Notation Addressing

Address Format Kind of addresses

Protoco

Associated Protocols & Mechanisms

IPv6 & DNS

- Random value :
 - Changed frequently (e.g, every day, per session, at each reboot...) to guarantee anonymity
- Hash of other values (experimental):
 - To link address to other properties
 - Public key
 - List of assigned prefixes
 -

istic Interface Identifier 🎉

Concepts

Facts on Addresses

Addresses Notation Addressing

scheme Address Format

Kind of addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

- Random value :
 - Changed frequently (e.g, every day, per session, at each reboot...) to guarantee anonymity
- Hash of other values (experimental) :
 - To link address to other properties
 - Public key
 - List of assigned prefixes
 - . . .

How to Construct an IID from MAC Address

Concepts

Facts on Addresses

Addresses Notation Addressing

Address Format Kind of addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

- 64 bits is compatible with EUI-64 (i.e. IEEE 1394 FireWire, ...)
- IEEE propose a way to transform a MAC-48 to an EUI-64
- U/L changed for numbering purpose

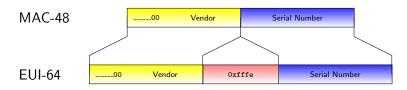
• There is no conflicts if IID are manually numbered: 1, 2, 3, ...

How to Construct an IID from MAC Address

Concepts

Facts on Addresses

Addresses
Notation
Addressing


Address Format Kind of addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

- 64 bits is compatible with EUI-64 (i.e. IEEE 1394 FireWire, ...)
- IEEE propose a way to transform a MAC-48 to an EUI-64
- U/L changed for numbering purpose

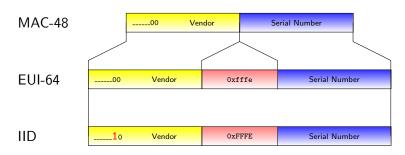
There is no conflicts if IID are manually numbered: 1, 2, 3, ...

How to Construct an IID from MAC Address

Concepts

Facts on Addresses

Addresses Notation Addressing scheme


Address Format Kind of addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

- 64 bits is compatible with EUI-64 (i.e. IEEE 1394 FireWire, ...)
- IEEE propose a way to transform a MAC-48 to an EUI-64
- U/L changed for numbering purpose

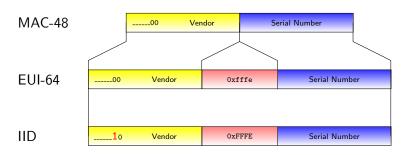
There is no conflicts if IID are manually numbered: 1, 2, 3, ...

How to Construct an IID from MAC Address

Concepts

Facts on Addresses

Addresses Notation Addressing


Address Format Kind of addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

- 64 bits is compatible with EUI-64 (i.e. IEEE 1394 FireWire, ...)
- IEEE propose a way to transform a MAC-48 to an EUI-64
- U/L changed for numbering purpose

• There is no conflicts if IID are manually numbered: 1, 2, 3, ...

istic Example : Mac / Unix 🎉

Concent

Facts on Addresses

Addresses Notation Addressing

Address Format Kind of addresses

Protocol

1 1010001

Associated Protocols & Mechanisms

IPv6 & DNS

```
%ifconfig
```

100: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384

inet6 ::1 prefixlen 128

inet6 fe80::1%lo0 prefixlen 64 scopeid 0x1

inet 127.0.0.1 netmask 0xff000000

en1: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500

inet6 fe80::216:cbff:febe:16b3%en1 prefixlen 64 scopeid 0x5

inet 192.168.2.5 netmask 0xffffff00 broadcast 192.168.2.255

inet6 2001:660:7307:6031:216:cbff:febe:16b3 prefixlen 64
autoconf

autoconi

ether 00:16:cb:be:16:b3

media: autoselect status: active supported media: autoselect

BY-SA

istic Windows 7

Concepts

Facts on Addresses

Addresses

Notation Addressing

scheme
Address Format
Kind of addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

```
Command Prompt
                                                              ::\Users\laurent>
 :\Users\laurent>
:\Users\laurent>
C:\Users\laurent>
C:\Users\laurent>
C:\Users\laurent>ipconfig
Windows IP Configuration
Ethernet adapter Local Area Connection:
   Connection-specific DNS Suffix .:
   IPv6 Address. . . . . . . . : 2001:660:7307:6210:3977:3fff:6900:27c9
   Temporary IPv6 Address. . . . . : 2001:660:7307:6210:383e:7601:455f:1e3f
   Link-local IPv6 Address . . . . : fe80::3977:3fff:6900:27c9x12
   IPv4 Address . . . . . . . . . . . . . . . . . 192.168.2.103
   Subnet Mask . . . . . . . . . : 255.255.255.0
   Default Gateway . . . . . . . : fe80::213:10ff:fe83:d53cz12
                                        192.168.2.1
Tunnel adapter Local Area Connection* 9:
  Media State . . . . . . . : Media disconnected Connection-specific DNS Suffix . :
Tunnel adapter isatap.{77FCA2FF-B18D-466E-93EA-5D7F03856CD1);
  Media State . . . . . . . . . : Media disconnected Connection-specific DNS Suffix . :
Tunnel adapter Teredo Tunneling Pseudo-Interface:
   Connection-specific DNS Suffix .:
   IPv6 Address. . . . . . . . : 2001:0:d5c7:a2d6:849:47e:3f57:fd98
   Link-local IPu6 Address . . . . : fe80::849:47e:3f57:fd98z14
   Default Gateway . . . . . . . . :
C:\Users\laurent>
```

istic Windows 7

Command Prompt

::\Users\laurent>

Concepts

Facts on Addresses

Addresses

Notation Addressing

scheme
Address Format
Kind of addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

```
:\Users\laurent>
:\Users\laurent>
C:\Users\laurent>
C:\Users\laurent>
C:\Users\laurent>ipconfig
Windows IP Configuration
Ethernet adapter Local Area Connection:
  Connection-specific DNS Suffix .
  : fe80::213:10ff:fe83:d53cx12
                               192.168.2.1
Tunnel adapter Local Area Connection* 9:
  Media State : Mesamaiscoffix cted
Tunnel adapter isatap.{77FCA2FF-B18D-466E-93EA-5D7F03856CD1);
  Media State . . . . . . . . . : Media disconnected Connection-specific DNS Suffix . :
Tunnel adapter Teredo Tunneling Pseudo-Interface:
  Connection-specific DNS Suffix .:
  IPv6 Address. . . . . . . . : 2001:0:d5c7:a2d6:849:47e:3f57:fd98
  Link-local IPv6 Address . . . . : fe80::849:47e:3f57:fd98x14
  C:\Users\laurent>
```

istic Windows 7

Facts on Addresses

Addresses

Notation

Addressing

Address Format Kind of addresses

Protocol

Associated

```
Protocols &
Mechanisms
IPv6 & DNS
```

```
Command Prompt
::\Users\laurent>
 :\Users\laurent>
:\Users\laurent>
                                          Random IID (permanent)
C:\Users\laurent>
C:\Users\laurent>
:\Users\laurent\ipconfig
Windows IP Configuration
Ethernet adapter Local Area Connection:
  Connection-specific DNS Suffix
  IPv6 Address. . . . . . . . . . : 2001:660:7307:6210:3977:3fff:6900:27c9
  Temporary IPu6 Address. . . . . : 2001:660:7307:6210:383e:7601:455f:1e3f
  Link-local IPv6 Address
                          . . . : 192.168.2.103
  IPv4 Address. .
  : fe80::213:10ff:fe83:d53cx12
  Default Gateway . . . . . . .
                                 192.168.2.1
Tunnel adapter Local Area Connection* 9:
  Tunnel adapter isatap.{77FCA2FF-B18D-466E-93EA-5D7F03856CD1);
  Media State . . . . . . . . . : Media disconnected Connection-specific DNS Suffix . :
Tunnel adapter Teredo Tunneling Pseudo-Interface:
  Connection-specific DNS Suffix .:
  IPv6 Address. . . . . . . . . : 2001:0:d5c7:a2d6:849:47e:3f57:fd98
  Link-local IPv6 Address . . . . : fe80::849:47e:3f57:fd98x14
  C:\Users\laurent>
```

Addresses Kind of addresses

Link-Local Scoped Addresses

Facts on Addresses Addresses

Notation Addressing Kind of addresses

Associated Protocols & Mechanisms

IPv6 & DNS

- Global Address, the prefix designates the exit interface
- Link-Local address, the prefix is always fe80::/10
 - The exit interface is not defined
 - A %iface, can be added at the end of the address to avoid ambiguity
- Example:

Routing tables

Internet6:

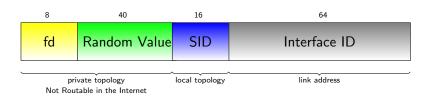
Destination Gateway Flags Netif Expire fe80::213:c4ff:fe69:5f49%en0 default UGSc en0

istic Other kind of addresses: ULA (RFC 4193)

Concepts

Facts on Addresses

Notation Addressing scheme Address Format


Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

- Equivalent to the private addresses in IPv4
- But try to avoid same prefixes on two different sites:
 - avoid renumbering if two company merge
 - avoid ambiguities when VPN are used
- These prefixes are not routable on the Internet

Unique Local IPv6 Unicast Addresses:

Whttp://www.sixxs.net/tools/grh/ula/ to create your own ULA prefix.

istic Multicast

Facts on Addresses

Notation

Addressing

Kind of addresses

Associated Protocols & Mechanisms

IPv6 & DNS

Generic Format:

- T (Transient) 0: well known address 1: temporary address
- P (Prefix) 1: assigned from a network prefix (T must be set to 1)
- R (Rendez Vous Point) 1: contains the RP address (P & T set to 1)
- Scope :
 - 1 interface-local
 - 2 link-local
 - 3 reserved
 - 4 admin-local
 - 5 site-local
 - 8 organisation-local
 - e global
 - f reserved

Some Well Known Multicast Addresses

Concepts

Facts on Addresses

Addresses

Addressing scheme Address Format

Address Format Kind of addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

```
8 4 4 112

ff 0 scope Group ID
```

 $\textbf{W}_{\text{http://www.iana.org/assignments/ipv6-multicast-addresses}}$

Some Well Known Multicast Addresses

Concepts

Facts on Addresses

Addresses

Addressing scheme

Kind of addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

```
8 4 4 1112

ff 0 scope Group ID
```

```
ff02:0:0:0:0:0:0:1 All Nodes Address (link-local scop ff02:0:0:0:0:0:0:2 All Routers Address ff02:0:0:0:0:0:0:5 OSPFIGP ff02:0:0:0:0:0:0:6 OSPFIGP Designated Routers ff02:0:0:0:0:0:0:9 RIP Routers ff02:0:0:0:0:0:0:0:fb mDNSv6 ff02:0:0:0:0:0:1:2 All-dhcp-agents ff02:0:0:0:0:1:ffxx:xxxx Solicited-Node Address ff05:0:0:0:0:0:1:3 All-dhcp-servers (site-local scope
```

 $\textbf{W} \\ \textbf{http://www.iana.org/assignments/ipv6-multicast-addresses} \\$

Solicited Multicast Addresses

Facts on Addresses

Addresses

Notation Addressing

Kind of addresses

Protocol

Associated

Protocols & Mechanisms

IPv6 & DNS

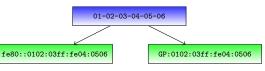
- Derive a Multicast Address from a Unicast Address.
 - Widely used for stateless auto-configuration
 - Avoid the use of broadcast

01-02-03-04-05-06

Solicited Multicast Addresses

Facts on Addresses

Addresses Notation Addressing


Address Format Kind of addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

- Derive a Multicast Address from a Unicast Address.
 - Widely used for stateless auto-configuration
 - Avoid the use of broadcast

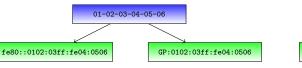
Solicited Multicast Addresses

Facts on Addresses

Addresses

Notation Addressing

Address Format Kind of addresses


Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

Derive a Multicast Address from a Unicast Address

- Widely used for stateless auto-configuration
- Avoid the use of broadcast

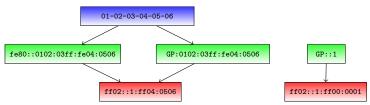
GP::1

Solicited Multicast Addresses

Facts on Addresses

Addresses Notation

Addressing


Address Format Kind of addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

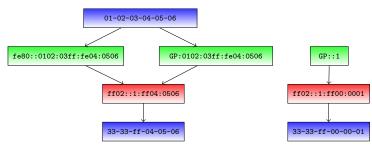
- Derive a Multicast Address from a Unicast Address
 - Widely used for stateless auto-configuration
 - Avoid the use of broadcast

Solicited Multicast Addresses

Facts on Addresses

Addresses Notation

Addressing


Address Format Kind of addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

- Derive a Multicast Address from a Unicast Address
 - Widely used for stateless auto-configuration
 - Avoid the use of broadcast


```
Concepts
```

Facts on Addresses

Addresses

Addressing scheme Address Format

Kind of addresses

Protocol

Associated

Protocols & Mechanisms

IPv6 & DNS

```
Vlan5 is up, line protocol is up
IPv6 is enabled, link-local address is fe80::203:fdff:fed6:d400
Description: reseau C5
Global unicast address(es):
2001:660:7301:1:203:fdff:fed6:d400, subnet is 2001:660:7301:1::/64
Joined group address(es):
```

ff02::1 <- All nodes ff02::2 <- All routers

ff02::9 <- RIP

```
Concent
```

Facts on Addresses

Addresses

Notation

Addressing scheme Address Format

Kind of addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

```
Vlan5 is up, line protocol is up
IPv6 is enabled, link-local address is fe80::203:fdff:fed6:d400
Description: reseau C5
Global unicast address(es):
   2001:660:7301:1:203:fdff:fed6:d400, subnet is 2001:660:7301:1::/64
```

Joined group address(es):
 ff02::1 <- All nodes
 ff02::2 <- All routers</pre>

ff02::9 <- RIP

```
Concont
```

Facts on Addresses

Addresses

Notation Addressing scheme Address Format

Kind of addresses

Protocol

Associated Protocols &

Mechanisms

IPv6 & DNS

```
Vlan5 is up, line protocol is up
IPv6 is enabled, link-local address is fe80::203:fdff:fed6:d400
Description: reseau C5
Global unicast address(es):
2001:660:7301:1:203:fdff:fed6:d400, subnet is 2001:660:7301:1::/64
```

```
Joined group address(es):

ff02::1 <- All nodes

ff02::2 <- All routers

ff02::9 <- RIP
```

Facts on Addresses

Addresses Notation

Addressing Address Format Kind of addresses

Protocol

Associated Protocols &

Mechanisms

IPv6 & DNS

```
Vlan5 is up, line protocol is up
IPv6 is enabled, link-local address is fe80::203:fdff:fed6:d400
Description: reseau C5
Global unicast address(es):
  2001:660:7301:1:203:fdff:fed6:d400, subnet is 2001:660:7301:1::/64
```

```
Joined group address(es):
 ff02::1 <- All nodes
 ff02::2 <- All routers
 ff02::9 <- RIP
```

Facts on Addresses

Addresses

Notation Addressing scheme Address Format

Kind of addresses

Protocol

Associated Protocols &

Protocols & Mechanisms

IPv6 & DNS

```
Vlan5 is up, line protocol is up
IPv6 is enabled, link-local address is fe80::203:fdff:fed6:d400
Description: reseau C5
Global unicast address(es):
2001:660:7301:1:203:fdff:fed6:d400, subnet is 2001:660:7301:1::/64
```

```
Joined group address(es):
ff02::1 <- All nodes
ff02::2 <- All routers
ff02::9 <- RIP
```

Protocol IPv6 Header

istic IPv6 Packet : Simpler 🌠

Facts on Addresses

Addresses

IPv6 Header

IPv6 Header IPv6 Extensions

Associated Protocols &

IPv6 & DNS

Definition

- IPv6 header follows the same IPv4 principle:
 - fixed address size ... but 4 times larger
 - alignment on 64 bit words (instead of 32)
- Features not used in IPv4 are removed
- Minimum MTU 1280 Bytes
 - If L2 cannot carry 1280 Bytes, then add an adaptation layer such as AAL5 for ATM or 6LoWPAN (RFC 4944) for IEEE 802.15.4.

Goal:

- Forward packet as fast as possible
- Less processing in routers
- More features at both ends

Concepts

Facts on Addresses

Addresses

Protocol

IPv6 Header IPv6 Header IPv6 Extensions ICMPv6

Associated Protocols & Mechanisms

IPv6 & DNS

0715							
Ver.	IHL	DiffServ	Packet Length				
Identifier			flag	Offset			
T	ΓL	Protocol	Checksum				
Source Address							
Destination Address							
Options							
Layer 4							

Concepts

Facts on Addresses

Addresses

Protocol

IPv6 Header IPv6 Header IPv6 Extensions ICMPv6

Associated Protocols & Mechanisms

IPv6 & DNS

0	7	15.					
Ver.	IHL	DiffServ	Packet Length				
Identifier			flag	Offset			
T	TL	Protocol	Checksum				
Source Address							
Destination Address							
Options							
Layer 4							

Concepts

Facts on Addresses

Addresses

Protocol IPv6 Header

IPv6 Header IPv6 Extensions ICMPv6

Associated Protocols & Mechanisms

IPv6 & DNS

0	7	15.		31			
Ver.		DiffServ	Packet Length				
Identifier			flag	Offset			
TTL		Protocol	Checksum				
Source Address							
Destination Address							

Concepts

Facts on Addresses

Addresses

Protocol IPv6 Header

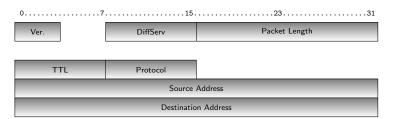
IPv6 Header IPv6 Extensions ICMPv6

Associated Protocols & Mechanisms

IPv6 & DNS

Concepts

Facts on Addresses


Addresses

Protocol

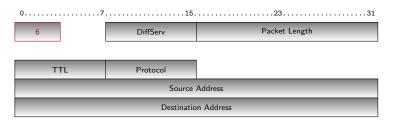
IPv6 Header IPv6 Header IPv6 Extensions ICMPv6

Associated Protocols & Mechanisms

IPv6 & DNS

Concepts

Facts on Addresses


Addresses

Protocol IPv6 Header

IPv6 Header IPv6 Extensions ICMPv6

Associated Protocols & Mechanisms

IPv6 & DNS

Concepts

Facts on Addresses


Addresses

Protocol

IPv6 Header IPv6 Header IPv6 Extensions ICMPv6

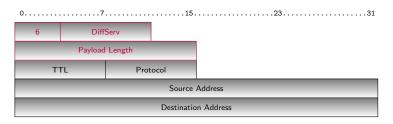
Associated Protocols & Mechanisms

IPv6 & DNS

Layer 4

Concepts

Facts on Addresses


Addresses

Protocol

IPv6 Header IPv6 Header IPv6 Extensions ICMPv6

Associated Protocols & Mechanisms

IPv6 & DNS

Layer 4

Concepts

Facts on Addresses

Addresses

Protocol

IPv6 Header IPv6 Header IPv6 Extensions ICMPv6

Associated Protocols & Mechanisms

IPv6 & DNS

Layer 4 or extensions

Concepts

Facts on Addresses

Addresses

Protocol

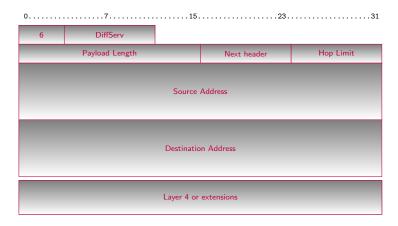
IPv6 Header IPv6 Header IPv6 Extensions ICMPv6

Associated Protocols & Mechanisms

IPv6 & DNS

Layer 4 or extensions

Concepts


Facts on Addresses

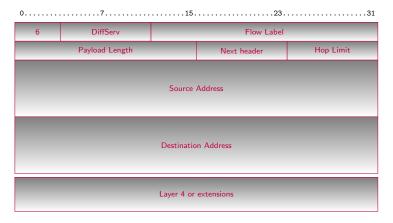
Addresses

Protocol

IPv6 Header IPv6 Header IPv6 Extensions ICMPv6

Associated Protocols & Mechanisms

Concents


Facts on Addresses

Addresses

Protocol

IPv6 Header IPv6 Header IPv6 Extensions ICMPv6

Associated Protocols & Mechanisms

Protocol IPv6 Extensions

stic Extensions

Concepts

Facts on Addresses

Addresses

IPv6 Header IPv6 Header IPv6 Extensions

Associated Protocols &

IPv6 & DNS

Seen as a L4 protocol

Processed only by destination

- Except Hop-by-Hop processed by every router
- Equivalent of option field in IPv4
- No size limitation
- Several extensions can be linked to reach L4 protocol
- Processed only by destination
 - Destination (mobility)
 - Routing (loose source routing, mobility)
 - Fragmentation
 - Authentication (AH)
 - Security (ESP)

istic Extensions in packets

Concepts

Facts on Addresses

Addresses

Protocol IPv6 Header IPv6 Header

IPv6 Extensions

Associated Protocols & Mechanisms

istic Extensions in packets

Concepts

Facts on Addresses

Addresses

Protocol
IPv6 Header
IPv6 Header
IPv6 Extension

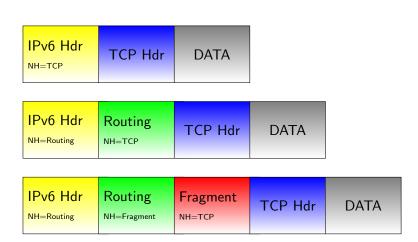
IPv6 Extensions ICMPv6

Associated Protocols & Mechanisms

IPv6 Hdr	Routing	TCP Hdr	DATA
NH=Routing	NH=TCP		

istic Extensions in packets

Concepts


Facts on Addresses

Addresses

Protocol
IPv6 Header
IPv6 Header
IPv6 Extension

IPv6 Extensions

Associated Protocols & Mechanisms

Protocol ICMPv6

Concepts

Facts on Addresses

Addresses

Protocol
IPv6 Header
IPv6 Header
IPv6 Extensions
ICMPv6

Associated Protocols & Mechanisms

IPv6 & DNS

- ICMPv6 is different from ICMP for IPv4 (RFC 4443)
 - IPv6 (or extension): 58
- Features are extended and better organized
- Never filter ICMPv6 messages blindly, be careful to what you do (see RFC 4890)

Format:

Precision

type code nature of the message ICMPv6
code specifies the cause of the message ICMPv6
mandatory checksum used to verify the integrity of ICMP packet

istic ICMPv6: Two Functions

Concents

Facts on Addresses

Addresses

Protocol IPv6 Header IPv6 Header IPv6 Extensions ICMPv6

Associated Protocols & Mechanisms

IPv6 & DNS

• Error occurs during forwarding (value < 128)

1	Destination Unreachable
2	Packet Too Big
3	Time Exceeded
4	Parameter Problem

Management Applications (value > 128)

128	Echo Request	
129	Echo Reply	
130	Group Membership Query	
131	Group Membership Report	
132	Group Membership Reduction	
133	Router Solicitation	
134	Router Advertissement	
135	Neighbor Solicitation	
136	Neighbor Advertissement	
137	Redirect	

Associated Protocols & Mechanisms Neighbor Discovery

Concepts

Facts on Addresses

Addresses

Protocol

Associated Protocols &

Mechanisms

Neighbor Discovery

Path MTU discovery DHCPv6

Stateless Configuration DHCPv6 Stateful

Stateless vs Stateful

IPv6 & DNS

IPv6 nodes sharing the same physical medium (link) use Neighbor Discovery (ND) to:

- determine link-layer addresses of their neighbors
 - IPv4 : ARP
 - Address auto-configuration
 - Layer 3 parameters: IPv6 address, default route, MTU and Hop Limit
 - Only for hosts!
 - IPv4: impossible, mandate a centralized DHCP server
- Duplicate Address Detection (DAD)
 - IPv4 : gratuitous ARP
- maintain neighbors reachability information (NUD)
- Mainly uses multicast addresses but also takes into account NBMA Networks (eg., ATM)
- Protocol packets are transported/encapsulated by/in ICMPv6 messages:
 - Router Solicitation: 133; Router Advertisement: 134;
 Neighbor Solicitation: 135; Neighbor Advertisement: 136
 : Redirect: 137

Concepts

Facts on Addresses

Addresses

Protocol

Associated Protocols &

Mechanisms

Neighbor Discovery

Path MTU discovery DHCPv6 DHCPv6 Stateless

DHCPv6 Stateful Configuration Stateless vs

- IPv6 nodes sharing the same physical medium (link) use Neighbor Discovery (ND) to:
 - determine link-layer addresses of their neighbors
 - IPv4 : ARP
 - Address auto-configuration
 - Layer 3 parameters: IPv6 address, default route, MTU and Hop Limit
 - Only for hosts!
 - IPv4: impossible, mandate a centralized DHCP server
 - Duplicate Address Detection (DAD)
 - IPv4 : gratuitous ARP
 - maintain neighbors reachability information (NUD)
- Mainly uses multicast addresses but also takes into account NBMA Networks (eg., ATM)
- Protocol packets are transported/encapsulated by/in ICMPv6 messages:
 - Router Solicitation: 133; Router Advertisement: 134;
 Neighbor Solicitation: 135; Neighbor Advertisement: 136
 ; Redirect: 137

Concepts

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

Neighbor

Discovery Path MTU discovery DHCPv6

DHCPv6 Stateless Configuration DHCPv6 Stateful Configuration Stateless vs

- IPv6 nodes sharing the same physical medium (link) use Neighbor Discovery (ND) to:
 - determine link-layer addresses of their neighbors
 - IPv4 : ARP
 - Address auto-configuration
 - Layer 3 parameters: IPv6 address, default route, MTU and Hop Limit
 - Only for hosts!
 - IPv4 : impossible, mandate a centralized DHCP server
 - Duplicate Address Detection (DAD)
 - IPv4 : gratuitous ARP
 - maintain neighbors reachability information (NUD)
- Mainly uses multicast addresses but also takes into account NBMA Networks (eg., ATM)
- Protocol packets are transported/encapsulated by/in ICMPv6 messages:
 - Router Solicitation: 133; Router Advertisement: 134;
 Neighbor Solicitation: 135; Neighbor Advertisement: 136; Redirect: 137

Concepts

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

Neighbor Discovery

Path MTU discovery DHCPv6 DHCPv6 Stateless Configuration DHCPv6 Stateful Configuration Stateless vs

- IPv6 nodes sharing the same physical medium (link) use Neighbor Discovery (ND) to:
 - determine link-layer addresses of their neighbors
 - IPv4: ARP
 - Address auto-configuration
 - Layer 3 parameters: IPv6 address, default route, MTU and Hop Limit
 - Only for hosts!
 - IPv4 : impossible, mandate a centralized DHCP server
 - Duplicate Address Detection (DAD)
 - IPv4 : gratuitous ARP
 - maintain neighbors reachability information (NUD)
- Mainly uses multicast addresses but also takes into account NBMA Networks (eg., ATM)
- Protocol packets are transported/encapsulated by/in ICMPv6 messages:
 - Router Solicitation: 133; Router Advertisement: 134;
 Neighbor Solicitation: 135; Neighbor Advertisement: 136;
 Redirect: 137

Concepts

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

Neighbor Discovery

Path MTU
discovery
DHCPv6
DHCPv6
Stateless
Configuration
DHCPv6 Stateful
Configuration
Stateless vs

- IPv6 nodes sharing the same physical medium (link) use Neighbor Discovery (ND) to:
 - determine link-layer addresses of their neighbors
 - IPv4: ARP
 - Address auto-configuration
 - Layer 3 parameters: IPv6 address, default route, MTU and Hop Limit
 - Only for hosts!
 - IPv4 : impossible, mandate a centralized DHCP server
 - Duplicate Address Detection (DAD)
 - IPv4 : gratuitous ARP
 - maintain neighbors reachability information (NUD)
- Mainly uses multicast addresses but also takes into account NBMA Networks (eg., ATM)
- Protocol packets are transported/encapsulated by/in ICMPv6 messages:
 - Router Solicitation: 133; Router Advertisement: 134;
 Neighbor Solicitation: 135; Neighbor Advertisement: 136; Redirect: 137

Concepts

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

Neighbor

Discovery Path MTU discovery DHCPv6

DHCPv6 Stateless Configuration DHCPv6 Stateful Configuration Stateless vs

- IPv6 nodes sharing the same physical medium (link) use Neighbor Discovery (ND) to:
 - determine link-layer addresses of their neighbors
 - IPv4: ARP
 - Address auto-configuration
 - Layer 3 parameters: IPv6 address, default route, MTU and Hop Limit
 - Only for hosts!
 - IPv4: impossible, mandate a centralized DHCP server
 - Duplicate Address Detection (DAD)
 - IPv4 : gratuitous ARP
 - maintain neighbors reachability information (NUD)
- Mainly uses multicast addresses but also takes into account NBMA Networks (eg., ATM)
- Protocol packets are transported/encapsulated by/in ICMPv6 messages:
 - Router Solicitation: 133; Router Advertisement: 134;
 Neighbor Solicitation: 135; Neighbor Advertisement: 136
 Redirect: 137

istic Stateless Auto-configuration: Basic Principles

Concepts

Facts on Addresses

Addresses

Protocol

Associated Protocols &

Mechanisms

Neighbor Discovery

Path MTU discovery DHCPv6 DHCPv6 Stateless Configuration DHCPv6 Stateful Configuration Stateless vs

Stateless Auto-configuration: Basic Principles

Concepts

Facts on Addresses

Addresses


Protocol

Associated Protocols &

Mechanisms Neighbor

Discovery Path MTU discovery DHCPv6 DHCPv6 Stateless Configuration DHCPv6 Stateful Configuration

Stateless vs Stateful

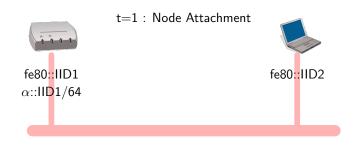
Time t=0: Router is configured with a link-local address and manually configured with a global address (α ::/64 is given by the network administrator)

istic Stateless Auto-configuration: Basic Principles

Concepts

Facts on Addresses

Addresses


Protocol

Associated Protocols &

Mechanisms Neighbor

Discovery
Path MTU
discovery
DHCPv6
DHCPv6
Stateless
Configuration
DHCPv6 Stateful
Configuration
Stateless vs

IPv6 & DNS

Host constructs its link-local address based on the interface MAC address

Stateless Auto-configuration: Basic Principles

Concepts

Facts on Addresses

Addresses

Protocol

Associated Protocols &

Mechanisms Neighbor

Discovery
Path MTU
discovery
DHCPv6
DHCPv6
Stateless
Configuration
DHCPv6 Stateful
Configuration
Stateless vs

IPv6 & DNS

Host does a DAD (i.e. sends a Neighbor Solicitation to query resolution of its own address (tentative): no answers means no other host has this value).

istic

Stateless Auto-configuration: Basic Principles

Concepts

Facts on Addresses

Addresses

Protocol

Associated Protocols &

Mechanisms Neighbor

Neignor
Discovery
Path MTU
discovery
DHCPv6
DHCPv6
Stateless
Configuration
DHCPv6 Stateful
Configuration
Stateless vs

IPv6 & DNS

Host sends a Router Solicitation to the Link-Local All-Routers Multicast group using the newly link-local configured address

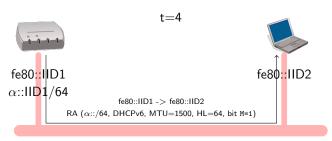
Stateless Auto-configuration: Basic Principles

Concepts

Facts on Addresses

Addresses

Protoco


Associated Protocols &

Mechanisms Neighbor

Discovery Path MTU

discovery
DHCPv6
DHCPv6
Stateless
Configuration
DHCPv6 Stateful
Configuration
Stateless vs

IPv6 & DNS

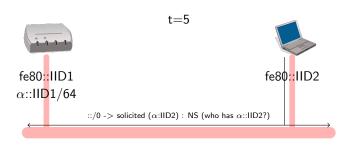
Router directly answers the host using Link-local addresses. The answer may contain a/several prefix(es). Router can also mandate hosts to use DHCPv6 to obtain prefixes (statefull auto-configuration) and/or other parameters (DNS servers...): Bit $\mathtt{M}=1$.

istic Stateless Auto-configuration: Basic Principles

Concepts

Facts on Addresses

Addresses


Protocol

Associated Protocols &

Mechanisms Neighbor

Discovery
Path MTU
discovery
DHCPv6
DHCPv6
Stateless
Configuration
DHCPv6 Stateful
Configuration
Stateless vs

IPv6 & DNS

Host does a DAD (i.e. sends a Neighbor Solicitation to query resolution of its own global address: no answers means no other host as this value).

Stateless Auto-configuration: Basic Principles

Concepts

Facts on Addresses

Addresses

Protocol

Associated Protocols &

Mechanisms Neighbor

Discovery Path MTU discovery DHCPv6 DHCPv6 Stateless

DHCPv6 Stateful Configuration Stateless vs Stateful

IPv6 & DNS

Host sets the global address and takes answering router as the default router

istic Address Lifetime

Concepts

Facts on Addresses

Addresses

Protocol

Associated

Protocols & Mechanisms

Neighbor

Discovery
Path MTU
discovery
DHCPv6
DHCPv6
Stateless
Configuration
DHCPv6 Stateful
Configuration
Stateless vs

Concents

Facts on Addresses

Addresses

Associated Protocols & Mechanisms

Neighbor

Discovery

discovery
DHCPv6
DHCPv6
Stateless
Configuration
DHCPv6 Stateful
Configuration
Stateless vs

```
interface Vlan5
  description reseau C5
  ip address 192.108.119.190 255.255.255.128
...
  ipv6 address 2001:660:7301:1::/64 eui-64
  ipv6 enable
  ipv6 nd ra-interval 10
  ipv6 nd prefix-advertisement 2001:660:7301:1::/64 2592000\
604800 onlink autoconfig
```

Concents

Facts on Addresses

Addresses

1 1010001

Associated Protocols & Mechanisms

Neighbor

Discovery

discovery
DHCPv6
DHCPv6
Stateless
Configuration
DHCPv6 Stateful
Configuration
Stateless vs

```
interface Vlan5
  description reseau C5
  ip address 192.108.119.190 255.255.255.128
...
  ipv6 address 2001:660:7301:1::/64 eui-64
  ipv6 enable
  ipv6 nd ra-interval 10
  ipv6 nd prefix-advertisement 2001:660:7301:1::/64 2592000\
  604800 onlink autoconfig
```

Concents

Facts on Addresses

Addresses

Protocoi

Associated Protocols & Mechanisms

Neighbor

Discovery

discovery
DHCPv6
DHCPv6
Stateless
Configuration
DHCPv6 Stateful
Configuration
Stateless vs

```
interface Vlan5
  description reseau C5
  ip address 192.108.119.190 255.255.255.128
...
  ipv6 address 2001:660:7301:1::/64 eui-64
  ipv6 enable
  ipv6 nd ra-interval 10
  ipv6 nd prefix-advertisement 2001:660:7301:1::/64 2592000\
  604800 onlink autoconfig
```

Concents

Facts on Addresses

Addresses

Associated Protocols & Mechanisms

Neighbor

Discovery

discovery
DHCPv6
DHCPv6
Stateless
Configuration
DHCPv6 Stateful
Configuration

Stateless vs Stateful

```
interface Vlan5
  description reseau C5
  ip address 192.108.119.190 255.255.255.128
...
  ipv6 address 2001:660:7301:1::/64 eui-64
  ipv6 enable
  ipv6 nd ra-interval 10
  ipv6 nd prefix-advertisement 2001:660:7301:1::/64 2592000\
604800 onlink autoconfig
```

Associated Protocols & Mechanisms Path MTU discovery

istic Path MTU discovery for IPv6 (RFC 1981)

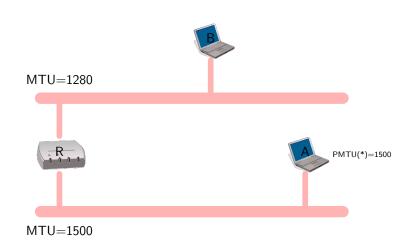
Concepts

Facts on Addresses

Addresses

Protocol

Associated


Protocols & Mechanisms

Neighbor

Discovery

Path MTU discovery

DHCPv6 DHCPv6 Stateless Configuration DHCPv6 Stateful Configuration Stateless vs

Concepts

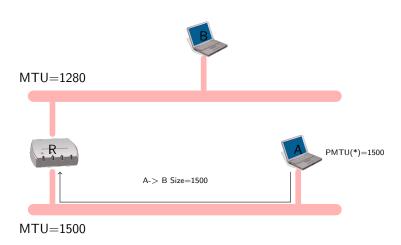
Facts on Addresses

Addresses

Protocol

Associated Protocols &

Mechanisms


Neighbor

Discovery

Path MTU discovery

DHCPv6 DHCPv6 Stateless Configuration DHCPv6 Stateful Configuration

Stateless vs Stateful IPv6 & DNS

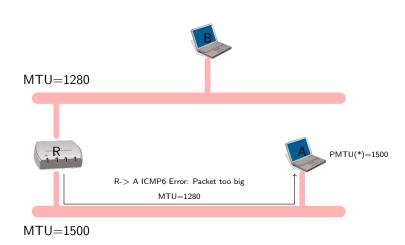
Concepts

Facts on Addresses

Addresses

Protocol

Associated Protocols &


Protocols & Mechanisms

Neighbor

Discovery

Path MTU discovery

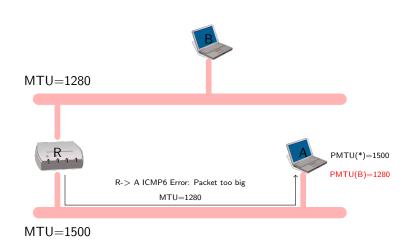
DHCPv6 DHCPv6 Stateless Configuration DHCPv6 Stateful Configuration Stateless vs

Concepts

Facts on Addresses

Addresses

Protocol


Associated Protocols &

Mechanisms

Neighbor Discovery

Path MTU discovery

DHCPv6 DHCPv6 Stateless Configuration DHCPv6 Stateful Configuration Stateless vs

Concepts

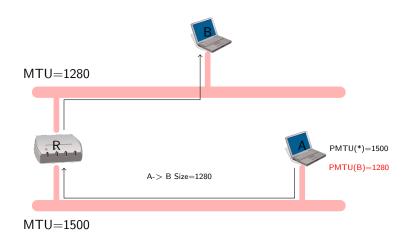
Facts on Addresses

Addresses

Protocol

Associated Protocols &

Mechanisms


Neighbor

Discovery

Path MTU discovery

DHCPv6 DHCPv6 Stateless

DHCPv6 Stateful Configuration Stateless vs

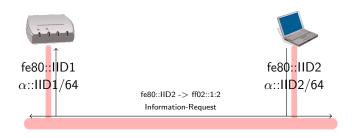
Associated Protocols & Mechanisms DHCPv6

Concepts

Facts on Addresses

Addresses

Protocol


Associated Protocols &

Mechanisms Neighbor Discovery Path MTU discovery

DHCPv6 DHCPv6 Stateless Configuration

DHCPv6 Stateful Configuration Stateless vs Stateful

IPv6 & DNS

Host needs only static parameters (DNS, NTP,...). It sends an Information-Request message to All_DHCP_Agents multicast group. The scope of this address is link-local.

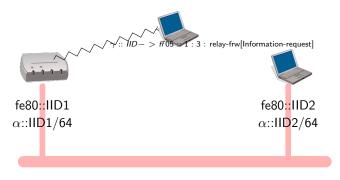
Concepts

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms


Neighbor Discovery Path MTU

Path MTI discovery DHCPv6

Stateless Configuration DHCPv6 Stateful

Configuratio Stateless vs Stateful

IPv6 & DNS

A relay (generally the router) encapsulates the request into a Forward message and sends it either to the All_DHCP_Servers site-local multicast group or to a list of pre-defined unicast addresses.

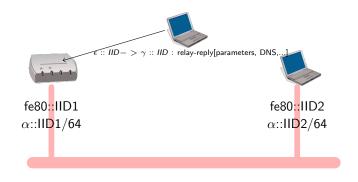
Concepts

Facts on Addresses

Addresses

Protocol

Associated Protocols &


Protocols & Mechanisms

Neighbor Discovery Path MTU discovery DHCPv6

DHCPv6 Stateless Configuration

DHCPv6 Stateful Configuration Stateless vs Stateful

IPv6 & DNS

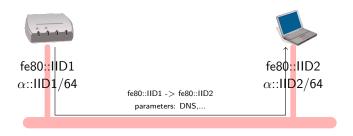
The server responds to the relay

Concepts

Facts on Addresses

Addresses

Protocol


Associated Protocols & Mechanisms

Neighbor Discovery Path MTU discovery

DHCPv6 DHCPv6 Stateless Configuration

DHCPv6 Stateful Configuration Stateless vs Stateful

IPv6 & DNS

The router extracts information from the message to create answer and sends information to the host

Concepts

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

Neighbor Discovery Path MTU discovery

discovery DHCPv6 DHCPv6

Stateless Configuration DHCPv6 Stateful

Configuratio Stateless vs Stateful

IPv6 & DNS

Host is now configured to resolve domain names through the DNS

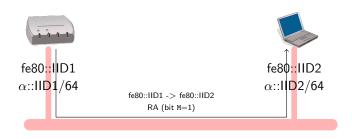
istic DHCPv6: Stateful Auto-Configuration

Concepts

Facts on Addresses

Addresses

Protocol


Associated Protocols & Mechanisms

Neighbor Discovery Path MTU discovery DHCPv6 DHCPv6 Stateless

Stateless Configuration DHCPv6 Stateful Configuration

Stateless vs Stateful

IPv6 & DNS

Router responds to RS with a RA message with bit ${\tt M}$ set to 1. Host should request its IPv6 address from a DHCPv6 server.

istic DHCPv6 : Prefix Delegation

Concepts

Facts on Addresses

Addresses

Protocol

Associated Protocols &

Mechanisms Neighbor

Path MTU discovery DHCPv6 DHCPv6

Stateless Configuration DHCPv6 Stateful

Configuration Stateless vs

IPv6 & DNS

• Dynamic configuration for routers

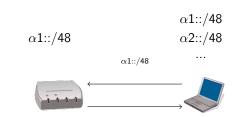
ISP solution to delegate prefixes over the network

istic DHCPv6 : Prefix Delegation

Concepts

Facts on Addresses

Addresses


Protocol

Associated Protocols & Mechanisms

Neighbor Discovery Path MTU discovery DHCPv6 DHCPv6 Stateless

DHCPv6 Stateful Configuration Stateless vs Stateful

- Dynamic configuration for routers
- ISP solution to delegate prefixes over the network

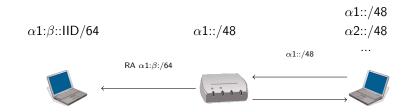
istic DHCPv6 : Prefix Delegation

Concepts

Facts on Addresses

Addresses

Protocol


Associated Protocols & Mechanisms

Neighbor Discovery Path MTU discovery DHCPv6

DHCPv6 Stateless Configuration DHCPv6 Stateful Configuration

Stateless vs Stateful

- Dynamic configuration for routers
- ISP solution to delegate prefixes over the network

istic DHCPv6 Full Features

Concepts

Facts on Addresses

Addresses

Associated Protocols &

Mechanisms Neighbor

Discovery
Path MTU
discovery
DHCPv6
DHCPv6
Stateless
Configuration
DHCPv6 Stateful
Configuration
Stateless vs
Stateful

- For address or prefix allocation information from only one
 DHCPv6 must be taken into account. Four message exchange :
 - Solicit: send by clients to locate servers
 - Advertise : send by servers to indicate services available
 - Request: send by client to a specific server (could be through relays)
 - Reply: send by server with parameters requested
- Addresses or Prefixes are allocated for certain period of time
 - Renew: Send by the client tells the server to extend lifetime
 - Rebind: If no answer from renew, the client use rebind to extend lifetime of addresses and update other configuration parameters
 - Reconfigure: Server informs availability of new or update information. Clients can send renew or Information-request
 - Release: Send by the client tells the server the client does not need any longer addresses or prefixes.
 - Decline: to inform server that allocated addresses are already in use on the link

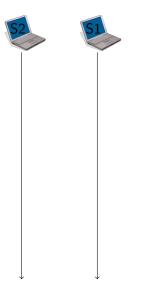
Facts on Addresses

Addresses

Protocol

Associated Protocols &

Mechanisms


Neighbor Discovery Path MTU

discovery DHCPv6

DHCPv6 Stateless

Configuration
DHCPv6 Stateful
Configuration

Stateless vs Stateful

Facts on Addresses

Addresses

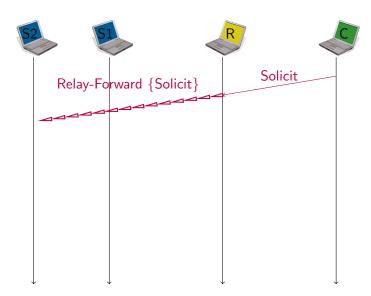
Protocol

Associated

Protocols & Mechanisms

Neighbor Discovery

Path MTU


discovery DHCPv6

DHCPv6

Stateless Configura

DHCPv6 Stateful Configuration

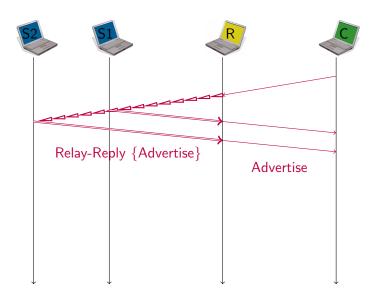
Stateless vs Stateful

oncents

Facts on Addresses

Addresses

Protocol


Associated

Protocols & Mechanisms

Neighbor Discovery Path MTU discovery DHCPv6

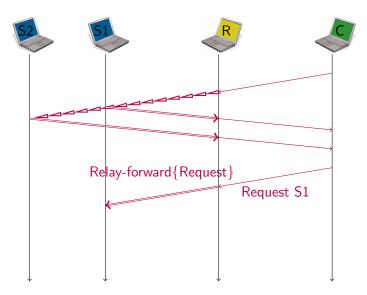
DHCPv6 Stateless Configuration DHCPv6 Stateful

Configuration Stateless vs

Concepts

Facts on Addresses

Addresses


Protocol

Associated

Protocols & Mechanisms

Neighbor Discovery Path MTU discovery DHCPv6 DHCPv6 Stateless Configuration

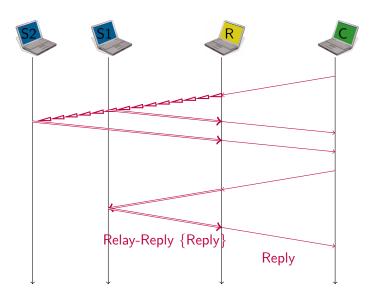
DHCPv6 Stateful Configuration Stateless vs

oncents

Facts on Addresses

Addresses

Protocol


Associated

Protocols & Mechanisms

Neighbor Discovery Path MTU discovery DHCPv6 DHCPv6 Stateless

Stateless Configuration DHCPv6 Stateful

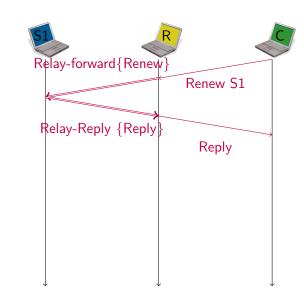
Configuration Stateless vs

Facts on Addresses

Addresses

Protocol

Associated


Protocols & Mechanisms

Neighbor Discovery Path MTU discovery DHCPv6

DHCPv6 Stateless Configuration

DHCPv6 Stateful Configuration

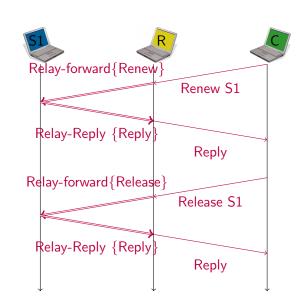
Stateless vs Stateful

Concents

Facts on Addresses

Addresses

Protocol


Associated Protocols &

Mechanisms

Neighbor Discovery Path MTU discovery DHCPv6 DHCPv6 Stateless Configuration

DHCPv6 Stateful Configuration Stateless vs

Stateful

istic DHCPv6 Identifiers

Concepts

Facts on Addresses

Addresses

Associated

Protocols & Mechanisms Neighbor Discovery Path MTU discovery DHCPv6 DHCPv6 Stateless Configuration DHCPv6 Stateful

Configuration Stateless vs Stateful

IPv6 & DNS

- DHCPv6 defines several stable identifiers
- After a reboot, the host can get the same information.
- DUID (DHCPv6 Unique IDentifier) :
 - Identify the client
 - Variable length:
 - Link-layer address plus time
 - Vendor-assigned unique ID based on Enterprise Number
 - Link-layer address
- For instance:

>od -x /var/db/dhcp6c_duid
0000000 000e 0100 0100 5d0a 5233 0400 9e76 0467

istic DHCPv6 Identifier: IA and IA_PD

Concepts

Facts on Addresses

Addresses

Associated

Protocols & Mechanisms

Discovery
Path MTU
discovery
DHCPv6
DHCPv6
Stateless
Configuration
DHCPv6 Stateful
Configuration

Stateless vs Stateful

- IA and IA_PD are used to link Request and Reply
 - IA is used for Address Allocation and is linked to an Interface
 - IA_PD is used for Prefix Delegation and can be shared among interfaces
- They must be stable (e.g. defined in the configuration file)

Associated Protocols & Mechanisms Stateless vs Stateful

istic Auto-configuration: Stateless vs. Stateful

Concepts

Facts on Addresses

Addresses

Protoco

Associated Protocols & Mechanisms Neighbor

Discovery
Path MTU
discovery
DHCPv6
DHCPv6
Stateless
Configuration
DHCPv6 Stateful
Configuration
Stateless vs

Stateful IPv6 & DNS

Stateless

Pro:

- Reduce manual configuration
- No server, no state (the router provides all information)

Cons:

- Non-obvious addresses
- No control on addresses on the LAN

Stateful (DHCPv6)

Pro:

- Control of addresses on the LAN
- Control of address format

Cons:

- Requires an extra server
- Still needs RA mechanism
- Clients to be deployed
- Stateless: Typically, for Plug-and-Play networks (Home Network)
- Stateful: Typically, for administrated networks (enterprise, institution)

istic Reminder: The two faces of the DNS

Concepts

Facts on Addresse

Addresses

Protocoi

Associated Protocols & Mechanisms

IPv6 & DNS

The DNS seen as a TCP/IP application

- The service is accessible in either transport modes (UDP/TCP) and over either IP versions (v4/v6)
- If IPv6 transport is not supported yet, then it's highly time!
- Caution: Information given over either IP version MUST BE CONSISTENT!

The DNS seen as a database

- Stores different types of resource records (RR), including those related to IPv4 and IPv6 addresses: SOA, NS, A, AAAA, MX, PTR, TXT
- IPv6 nodes & services become visible as soon as their related resources are published in the DNS database
- Caution: DNS database is IP transport version agnostic!

istic

DNS Extensions for IPv6 Support (RFC 3596)

Facts on Addresses

Addresses

Associated Protocols & Mechanisms

IPv6 & DNS

Forward lookup ('Name \rightarrow IPv6 Address')

- A new Resource Record (RR) : AAAA
- The "AAAA" RR is for IPv6 what the "A" RR is for IPv4

Example: www.afnic.fr. TN 192.134.4.20 TN AAAA 2001:660:3003:2::4:20

Reverse lookup ('IPv6 Address → Name')

- A new and dedicated reverse tree: ip6.arpa
- The IPv6 equivalent to the IPv4 dedicated in-addr.arpa tree
- PTRs labels follow a nibble-boundary (4 bits)

Example: 0.2.0.0.4.0.0.0.0.0.0.0.0.0.0.0.0.2.0.0.0.3.0.0.3.0.6.6.0.1.0.0.2.ip6.arpa. PTR www.afnic.fr.

Recursive Name Servers Information Discovery

Concents

Facts on Addresses

Addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

A Stub Resolver needs a Recursive Name Server **address** to which it sends **name resolution** queries

In the IPv4 world, this DNS information is:

- Either configured manually in the stub resolver (e.g. /etc/resolv.conf for Unix stations)
- Or discovered via DHCPv4

In the IPv6 world: RFC 4339 (IPv6 Host Configuration of DNS Server Information Approaches)

- Via stateful DHCPv6: RFC 3315
- Via stateless DHCPv6: RFC 3736, "DHCPv6-light"
- RA-based: RFC 6106 ("IPv6 Router Advertisement Options for DNS Configuration", obsoletes RFC 5006)
- Manual configuration as for IPv4
- If IPv4 is supported, than run a DHCPv4 client

DNSv6 Operational Requirements, Recommendations & Issues

Concepts

Facts on Addresse

Addresses

Protocol

Associated Protocols & Mechanisms

IPv6 & DNS

RFC 3901: "DNS IPv6 Transport Operational Guidelines"

- For DNS service continuity across a mixture of v4/v6 networks: Recursive Name Servers SHOULD be dual-stack → Use dual-stack forwarders if necessary
- DNS zones SHOULD be served by at least one v4-reachable Authoritative Name Server → Avoid v6-only servers

Bear in mind

 During the long v4-v6 transition period: some systems will stay v4-only, others will be dual-stack and others v6-only

RFC 4472 "Operational Considerations and Issues with IPv6", among others:

- Misbehavior of some DNS servers and Load-balancers
- Handling special (e.g. limited-scope) IPv6-addresses (published vs reachable)
- Service name vs Node name
- IPv6 and Dynamic DNS Update (RFC 2136)

