Research
461

Study of the
resynchronization of a
communication protocol

Bernard COUSIN, Pascal ESTRAILLIER

Université Pierre et Marie Curie, Laboratoire MASI, Tour 65—66, 4 place Jussieu,
75252 Paris Cedex 05, France

Bernard Cousin, who holds a Doctorate from the University of Paris VI, lectures at the Pro-
gramming Institute of the University of Paris VI. He works in the ‘modelling and parallelism’
team of the MASI laboratory, specializing on the integration of the specification, modelling and
validation phases for distributed systems

Pascal Estraillier, who holds a Doctorate from the University of Paris VI, lectures at the
Programming Institute. He is a member of the ‘modelling and parallelism’ team of the MASI
laboratory, where he is involved in research on design, modelling and validation of robust

communication protocols.

COMMENTARY The modelling of communication protocols forms a particular field of application for
any theory of parallelism. This is due, essentially, to the way in which data are handled
in this class of application. Data travelling through a communication medium are
subject both to heavy synchronization constraints and to minor transformations.
Over a number of years now, researchers such as G. Bethelot, M. Diaz and C. Girault
have demonstrated the value of the use of formal models such as those based on Petri
nets. This article by B. Cousin and P. Estraillier falls within this framework and shows
how precisely predicate nets make it possible to describe and analyse complex
situations.

If the modelling of a system remains part of the ‘engineer’s art’, this type of analysis
could, in the years to come, be assisted by computers. Major projects are developing
in this direction today, in the United States and in Europe, within the framework of
Race or Esprit. In their conclusion, the authors mention the Estelle and Lotos
languages, a clear reference to the Esprit SEDOS projects, due to be completed in 1987,

and which we hope to discuss in greater length in these columns later.
Gerard Memmi

0264—7419/87/060461—-11305.50 Technology and Science of Informatics
©1987 by AFCET—Gauthier-Villars—John Wiley & Sons, Ltd.

RESYNCHRONIZATION OF A PROTOCOL

462
CONTENTS

1. Introduction
2. The functional validation approach

3. Network service
3.1. Description of the network service
3.2. Interface with the transport layer
3.3. Properties of the service

4. Model
4.1. Service representation structures
4.2. Predicate Petri nets
4.3. Description of the model
4.4. Initial marking

5. Evaluation of the model
5.1. Properties of the model
5.2. Checking the properties of the model
5.3. Functional validation

6. Conclusion

References

1. Introduction

Much research work is taking place on the modelling of
communication protocols [Berthelot 83, Azema 85,
Estraillier 86]. The complexity of their operating
mechanisms makes it difficult and often cumbersome to
build up modes of parallel systems, since such models
require detailed and complete studies of the mechanisms
used. Modelling must incorporate all the (often very
numerous) functions implemented. A partial analysis of
these systems and the introduction of simplifying
assumptions are unlikely to be satisfactory unless the
simplifications can be fully justified.

In this article, we propose an original approach to
modelling, without attempting an exhaustive analysis of
the internal mechanisms implemented, but based instead
on methodic construction of abstractions allowing incor-
poration of various functionalities of the system studied.
This method highlights the properties of the model and
allowing functional validation of the properties of the
system. It is particularly appropriate for a study of
systems structured in hierarchical layers, as it flows
directly from work on standardization of telecommunica-
tion protocols [Iso-7498 83]. Our approach sets out to
implement a local study of each of the layers taking into
account, when characterizing its execution environment,
only interfaces with adjacent layers. This kind of study is
of fundamental importance when examining complex
systems, since the system environment is completely
represented (i.e. without making simplifying assump-
tions) and in a concise way.

We apply this approach to modelling, by means of
predicate Petri nets [Brams 82], of services provided by
the network layer (ISO level 3) during the data transfer
stage. We are particularly interested in handling
breakdowns on network stations, and in describing the
resynchronization mechanism for transmission. We
therefore provide a complete model of the loss of data
packets following the breakdown of the station, the
detection of this event and the transmission by the net-

work layer of particular packets (reinitialization packets)
allowing the transport layer to be warned of a failure.

After describing the various steps in our approach, we
describe our model of the services provided by the net-
work layer for data transfer [Iso-8348 84]. We then
validate this model functionally by showing that the pro-
perties corresponding to it conform to the properties
defining a service.

Such a model can then be used for studies of the upper
layer (Transport [Is0-8072 84, Iso-8073 84]) which also
incorporates, in a very reduced form, the services of the
network layer [Cousin 87]. In this way, our study pro-
vides a precise and complete description of protocols
without going into implementation details.

2. The functional validation approach

Any study of a system can give rise to several different
models differing in their form, accuracy and their fidelity
to the system being modelled. To validate the model pro-
posed, it is therefore necessary to evaluate its conformity
to the system description. The approach that we propose
is divided into four stages (Fig. 1).

1. Specification of the properties of the system that we
are setting out to model, based on a study of the
way it operates. Such a study will identify external
properties characterizing its operations.

2. Modelling of external mechanisms forming the
system, in order to obtain a model which is an
abstraction of the system characteristics and not a
description of its internal mechanisms. In this way
we can build up a model independent of any par-
ticular implementation, since it is based only on the
properties of the system.

For our model, we use predicate nets which are a
restricted form of Petri nets. This is a good tool for
producing concise behavioural descriptions, of
complex parallel systems. Note, however, that our
approach does not require any particular type of
model, and a choice can be made based on the pro-
perties to validate.

3. Analysis of the model makes it possible to test that
it has the required properties.

In this example, we principally use the assertions
method to check the properties of the model. The
principle underlying this method is to check that a
statement is satisfied for every state of the model.
Here again, there is no obligation to select a

Model Analysis ~
of layer o v

Properties
of model
layer

Functional
validation

Properties
of layer

Description

Specification
of layer — .

Fig. 1.—Functional validation.

Technology and Science of Informatics

Research

463

particular process for determining the properties of
the model. Properties can be selected according to
the types of results required and the complexity of
the model.

4. Functional validation of the model shows whether
or not the properties of the model correspond to
those of the system being studied. This stage gives
a formal demonstration that the properties obtained
in the model analysis stage imply the system proper-
ties specified in the first stage. The model emerging
from the second stage is therefore an equivalent
abstraction, from the functional point of view, of
the system studied.

In the framework of a hierarchical system, and in par-
ticular of a communication system, or approach allows
local study of the behaviour of any layer, to give a model
of it that has been functionally validated and is therefore
reusable for an overall study.

3. Network service

Standardization in computer interconnection is based
on a seven-layer architecture [Zimmermann 80]. In this
architecture, each layer is described by distinguishing a
protocol, which specifies message exchange mechanisms,
and a service which characterizes the functions provided
to the layer above.

We start by describing the service provided by the net-
work layer for handling breakdowns during the data
transfer stage, and then characterize it by means of four
properties. Our study will be based on the standard for
networks of the TRANSPAC type [Transpac 79].

3.1. DESCRIPTION OF THE NETWORK SERVICE

During data transfer on a network connection (called
the virtual circuit), the network layer establishes a two-
way link between two subscribers. It permits despatch,
over the virtual circuit, of data structured into packets.
The two paths on the virtual circuit are independent.

The network service, as opposed to the network pro-
tocol, is simply an external view of the functionalities of
the network layer. Consequently, it gives no description
of internal mechanisms (routing, retransmitting, window
management, etc.).

At the level of the virtual circuit, several types of situa-
tions may occur;

(a) Normal operations: ‘
On each pathway, packets transmitted by a
subscriber are taken over by the network service
and, having moved over the virtual circuit, are
delivered to the destination subscriber.

(b) Operation in a failing environment:
During the transfer stage, an incident (station
breakdown, inconsistent state of the protocol, etc.)
may perturb packet transfer (loss, degradation,
etc.). Three stages can then be observed:

(i) Desynchronization: An element on the virtual
circuit fails; it is then desynchronized with
respect to other elements. Packets which it is
handling may then contain inconsistent
information.

vol. 6, no 6, 1987

(i) Loss: The incorrect operation of the desyn-
chronized element leads to loss of particular
packets.

(iii) Resynchronization: The network service
ensures that desynchronization is followed by
resynchronization. This stage allows the two
subscribers to be warned of the occurrence of
a failure. It involves transmitting a reinitializ-
ation packet on each of the communication
paths. This particular type of packet is
handled, at the level of the two subscribers, by
the layer above (the transport layer) which,
having been warned of the incident, sets in
motion a restart procedure.

Note, however, that reinitialization packets
may also be lost due to a further desyn-
chronization. Such a loss is not very damaging
since it leads to the regeneration of a new
reinitialization packet on both communication
paths.

3.2. INTERFACE WITH THE TRANSPORT LAYER

At each layer, particular processes (called entities)
handle all the operations providing the service for the
layer. This section describes the actions executed by these
entities for data transfer management.

Consider two subscribers at the ends of the virtual
circuit. Each path has a transmitting end and a receiving
end. Data transfer between these two ends takes place as
follows:

1. The entity belonging to the transport layer at the
transmitting end issues a transmission request to the
local network entity.

2. The network entity at the transmitting end uses a
network protocol to transmit the data (structured as
a packet) to the network entity at the other end.

3. The network entity at the receiving end tells the
transport entity that a packet has been received.

The interfaces between the transport and network
layers can therefore be reduced to the following three
primitives:

1. N-SDU-Data-Request: The transport layer sends a

data transmission request to the network layer.

2. N-SDU-Data-Indication: The network layer tells
the transport layer that a data packet has been
received.

3. N-SDU-Reset-Indication: the network layer tells the
transport layer that it has received a reinitialization
packet.

The other primitives defined by the standard (notably,
N-SDU-RESET-req) are not involved in the data transfer
stage of the network service.

3.3. PROPERTIES OF THE SERVICE

The following four properties sum up the service
provided by the network layer in the face of desynchron-
izations during data transfer:

SP0: Packets can always be transferred (no irrepairable
blockage takes place).

RESYNCHRONIZATION OF A PROTOCOL

464

SP1: The order of packets is preserved during the
transfer stage (the order of transmission of packets
corresponds to their order of reception).

SP2: The transfer phase will not duplicate packets (every
data packet is either transmitted or lost).

SP3: To handle desynchronizations, the network service
guarantees:

(i) A reinitialization packet is transmitted to each
end of the virtual circuit after any
desynchronization.

(ii) Packets submitted to the network before
reception of a reinitialization packet are either
sent to their destination, or deleted.

(iii) Packets submitted to the network afrer recep-
tion of reinitialization packet are delivered to
the receiving end once it has received the
reinitialization packet.

These four properties of the network service should, in
our approach, be implied by the properties resulting from
analysis of the model proposed in the preceding section.
Our model should therefore be functionally equivalent to
a model of the protocol used by the network layer.

4., Model

In this section, we define the structures to model the
service provided by the network layer for data transfer.
We then give a brief review of predicate Petri nets, before
describing our model.

4.1. SERVICE REPRESENTATION STRUCTURES

Our task, taking the network specification as starting
point, is to build up a model whose properties correspond
to those of the service we wish to model. To do so, we
propose a structure on which a functional representation
of the service will be built. This structure is not used to
describe operations actually carried out by the network
layer (i.e. the protocol) but allows construction of the
model for validation.

This section considers the structures on which the
model of the network service will be based. We describe
information managed by the transport layer, and then
describe the solution adopted to represent the virtual
circuit.

4.1.1. Representation of the transport layer

The network service only perceives the transport layer
in the form of packets transferred from one subscriber to
the other. As information contained in packets is
transparent to the network layer, there is no need to
represent it in our study. However, certain properties of
the network service (SP1 concerning preservation of
order and SP2 concerning avoidance of duplication)
require some knowledge of the information. To validate
our model, it was therefore necessary to identify packets
transmitted by the transport entities corresponding to the
transmitting ends of the circuit; we decided to number
them. We therefore defined a counter for each of the
transmission pathways. These counters are built into the
model to characterize the environment of our represen-
tation of the network service. They are only used to

validate the model without disturbing its operations.
Counters are initialized to zero. Every time a transmis-
sion is sent over a transmission path, the corresponding
counter is incremented.

Characteristics of a data item for transfer

For our model, the data item contained in a packet is
assimilated to the number assigned to the packet. A data
item transmitted at the level of the transport layer by one
end of the circuit can then be characterized by the pair
{ data, direction) where:

1. data: value of the transmission counter.
2. direction: transmission path represented.

4.1.2. Representation of the virtual circuit

The virtual circuit is formed of several elements
(stations, connection devices, etc.) which contribute to
forwarding packets. Functionally, there is no need to
distinguish these various elements. We can then see each
path in the virtual circuit as a set of locations, each of
which corresponds to a packet storage zone. A location
can therefore be empty or contain a packet. To represent
the chronology of packet arrivals on a communication
pathway, this set has to be organized into a queue. The
size of the queue (QUEUESIZE) corresponds to the
maximum number of packets that can be travelling
simultaneously over the connection. The first location
(number 1) is therefore associated with the transmitting
end and the last (number QUEUESIZE) is associated
with the receiving end. Intermediate locations correspond
to packets being transferred.

Figure 2 shows the two queues used to represent the
two pathways in the virtual circuit. An element of each
circuit is represented using a pair of locations, each of
which belongs to a different queue. On each pathway,
locations are numbered in increasing order starting from
the transmitting end. The numbers corresponding to the
locations in a pair are therefore complementary.

Location management

The operations carried out on locations allow a
representation of actions carried out by the network ser-
vice on packets. The nature of these operations depends
on the state of the circuit. We shall therefore return to the
situations described in section 3.1. and interpret them
from the point of view of location management.

(a) Normal operations
The two queues are managed independently.
Management of the location merely means organiz-
ing the movement of packets, ensuring that they
travel through the queue.

Transit: for a packet to be transferred to a loca-
tion, that location must be empty. By virtue of the
way the queue is constructed, the packet to store
comes from the location with immediately lower
number.

(b) Operation in a failing environment
To integrate the failed situation into the model, we
have to manage the pair of locations representing
an element of the virtual circuit.
Desynchronization. locations belonging to the pair

Technology and Science of Informatics

Research

Transmitting

Locations
end of N
N
path 1 — .
Path 1 [1 & i
Path2 || n | L oe—lne -
Receiving
end of
path 2

465
E!ement§ of. Receiving
vrrtua/!&fcwt end of
£ \\\\ path 1
1+1 & 1N)
n-i— ., ’
Transmitting
end of
path 2

Fig. 2.—Representation of the virtual circuit.

associated with a failed element become desyn-
chronized. The packets contained in these locations
are not damaged.

Loss: the packet contained in a desynchronized
location is lost. The location becomes empty. At
the level of a pair of locations, the loss is observed
independently.

Resynchronization: the locations belonging to a
pair involved in failure handling are synchronized
again. Processing involves generating reinitializa-
tion packets in these locations.

After this procedure, locations are again in a
normal state (synchronized). The synchronization
packet then moves through the queue in the same
way as a data packet.

Characteristics of a location

A location can be defined by a quadruplet {(ne,info,
state,direction) so as to conform with all the operations
affecting a location, as follows:

location number (the rank number in
the queue);

information contained in the location
(nothing or a data packet or
reinitialization packet);

state of the location (synchronized or
desynchronized);

(iv) direction: transmission pathway represented

(i) mno:

(ii) info:

(iii) state:

4.2. PREDICATE PETRI NETS

Predicate Petri nets are an abbreviation of traditional
Petri nets. They allow complex systems to be modelled in
a particularly concise form. Our definition is based on
that given in [Genrich 79].

A predicate Petri net is a sextuplet (P, T, C, V, A, L)
such that:

(i) P is a finite set of places.
@i) T is a finite set of transitions.

vol. 6, no 6, 1987

(iii) C is a finite set of constants.

(iv) V is a finite set of variables with values drawn
from C.

(v) A is a set of arcs forming a two-part graph
between P and T; arcs are labelled by the
formal sums of the n-tuplets formed from
variables of V.

(vi) L is a set of labels which are logical expressions
in variables V.

To cross a transition in the network, we have to
substitute each occurrence of a variable V on one of the
arcs linked to a transition with the same value of C.

(i) The transition is firable if the logical expression
associated with the transition is true after substi-
tution and if the entry places contain sufficient
occurrences of the constants as required by valua-
tions of the entry arcs to the transition.

(ii) Firing of a transition removes the entry places
from the transition and adds to the output places
as many occurrences of constants as appear in the
valuations of the output arcs from the transition.

4.3. DESCRIPTION OF THE MODEL

The representation power of predicate Petri nets allows
a particularly simple model to be proposed (Fig. 3), since
all the elements to model have been reduced to the level
of the representation of transition pathways, the state of
elements in the circuit and of locations.

The structure of the model clearly separates elements
belonging to the network layer, from those that are
associated with the transport level and those which are
situated in the interface.

4.3.1. Elements modelling the transport layer

In the transport layer, it is only useful to represent the
generation of data by the transmitting ends of each
transmission pathway.

RESYNCHRONIZATION OF A PROTOCOL

466

l T-Transit

no2=no 1+1
Info 2=EMPTY

(no 1, info 1, state 1, direction 1)

+

{no 2, info 2, state 2, direction 2)

{no, data, state, direction)

{data, direction)
T-lnput g

P-Trans-

mitter
Kdata + 1, direction)no = 1
info = EMPTY

(no 1, info 1, DESYNCHRO, direction 1)
+ /

{(no 2, info 2, DESYNCHRO, direction 2) /

/

(no1,info1,state 1, direction 1)

(no2,info 2, state 2, direction 2)

T-Desynchro

no 1= (queuesize + 1) —no 2
direction 1 # direction 2

{no, info, state, direction)

(no, EMPTY,
state, direction)

state = DESYNCHRO

4 direction 1 = direction 2

(no 1, EMPTY, state 1, direction 1)
+
{(no 2, info 1, state 2, direction 2)

e

P-Queue

{no, info, state, direction)

= =
{(no, EMPTY, state, direction

@ T-Output
>

no = queuesize
info =PACKET

(no 1, info 1, state 1, direction 1)
+
\(no 2, info 2, state 2, direction 2)

{no 1, RE-INIT, SYNCHRO, direction k
+
{no 2, RE-INIT, SYNCHRO, direction 2)

T-Resynchro

no 1 =(queuesize + 1) —no 2
state 1 = state 2 =DESYNCHRO
direction 1 # direction 2

{no, info,
state direction)

Fig. 3.—Model of the network service.

Place P-Transmitter: This place models the transmitting ends of the
virtual circuit. It contains marks defined by the pair (data, direction)
such that:

1. datae N
2. direction € { PATHI1, PATH2}

4.3.2. Elements modelling the network layer

We have to represent locations belonging to two
queues, by presenting the actions which modify them.

Place P-Queue: This place models the two queues represented in the
virtual circuit. It therefore contains as many marks as there are loca-
tions in the queues (i.e. QUEUESIZE 2).

Each mark is defined by the quadruplet (no, info,
state, direction) introduced in the preceding section. The
domain of each component is the following:

e no¢€ {1...QUEUESIZE}
o info ¢ (EMPTY, packet] such that

packet € {RE — INIT, data} and dataeN

e state ¢ {SYNCHRO, DESYNCHRO}
e direction € {PATHI, PATH2}

Transition T-Transit: This transition models the movement of packets.
It requires two markers u;=(no;, info;, state;, direction;) and
1, = {noz, infoy, statey, direction,) in place P-Queue such that:

no> =no, + 1 (i.e. u, is the location following u,)

e info, = EMPTY (i.e. 1, contains no information)

e direction; = direction; (i.e. #; and u» correspond to the
same path).

On input:

On output: info;:= EMPTY (i.e. #; no longer contains information)
e info,:= info, (i.e. the information in u; has been
transferred to u)

Transcription T-Desynchro: This transition models desynchronization
between a pair of locations. It requires two markers #; = {(no,, info,,
state;, direction;) and wu» = (ne,, info,, state;, direction;) in the
P-Queue place such that:

no; = (QUEUESIZE + 1) — no; (i.e. u; and u, form a
pair)

e direction; # direction, (i.e. #; and > do not corres-
pond to the same path)

On input:

On output: state; := state; = DESYNCHRO (i.e. u; and u, are
desynchronized).

Transition T-Lost: This transition models loss of packets. It requires a
marker u = (no, info, state, direction) in place P-Queue such that:

On input: state = DESYNCHRO (i.e. u is desynchronized)
On output: info:= EMPTY (i.e. » contains no information)

Transition T-Resynchro: This transition models resynchronization of a
pair of locations. It implies two markers u; = (no,, info;, state;,
direction;) and u> = (no,, info,, state,, direction,) in place P-Queue
such that:

no; = (QUEUESIZE + 1) — ne; (i.e. u; and u; form a
pair)
e direction; # direction, (i.e. u; and u> do not corres-
pond to the same path)
o state, = state; = DESYNCHRO (i.e. u; and u, are
desynchronized)

On input:

On output: state; .= state;:= SYNCHRO (i.e. v, and u; are
resynchronized)
e info,:= info,:= RE — INIT (i.e. the reinitialization
packet is generated in each location).

Technology and Science of Informatics

Research

4.3.3. Elements modelling the interface

The interface between the network and transport layers
is modelled using transitions representing the primitives
used.

Transition T-Input: This transition models a request for data trans-
mission on a transmission pathway. It implies, on the one hand, a
marker v = (no, info, state, direction) contained in P-Queue, and on
the other hand, a marker v= (data, direction) contained in P-

Transmitter.
The equality, at the marker level, of the direction components deter-

mines the pathway used.

On input: no =1 (i.e. the deposit takes place in the first location)
e info = EMPTY (i.e. the location is available)

On output: info:= data (i.c. the location contains the data)
e data:=data+ 1 (i.e. the transmission counter has been
incremented)

Transition T-Output: This transition models the data packet reception
or reinitialization indications. It requires a marker u# = (no, info, state,
direction) contained in P-Queue.

On input: no = QUEUESIZE (i.e. we consider the last location in
the queue, corresponding to the receiving end)
e Info = packet (i.e. the location is not empty)

On output: Info:= EMPTY (i.e. the location contains the data)

4.4, INITIAL MARKING

It is helpful to introduce a notation allowing easy
handling of the tuplets in the model. This notation will be
used to define the initial marking and in the valuation of
the model. We define a set of elementary projections
making it possible to reach the component of a tuplet
using simple functions.

Consider the tuplet u; such that u; = {(no;, infe;, state;,
direction;).

e locno(u;): returns the number of the location (mo;) associated
with u;.
@ state(u;): returns the state (state;) associated with u;.

e direction (u;): returns the transmission path (direction;) associated
with Uj.

To handle the component info;, we define two complex
functions:

e packettype(u;): returns the type of packet associated with tuplet u;,
packettype(u;) = if info, = EMPTY then EMPTY
else if info; = RE — INIT then
RE - INIT
else DATA;
e datano(u;): returns the number of the packet associated with tuplet u;
datano(u;) = if packettype (1;) = DATA then info;
else UNDETERMINED

The initial marking corresponds to the state of the
system after the establishment of the virtual circuit. We
write Mo (P) for all the markers contained in place P in
the initial state.

Place P-Transmitter: In the initial state, the counter associated with
each transmission way contains the value zero.

Mo (P-Transmitter) = { (0, PATH1);¢0, PATH2) }

Place P-Queue: In the initial state, all the locations are empty and
synchronized. Their location number and their pathways allow them to
be distinguished.

vol. 6, no 6, 1987

467

e locations are empty:
Yu; € Mo(P-Queue); packettype (u4;) = EMPTY
e locations are synchronized:
Yu; € My(P-Queune); state (1;) = SYNCHRO
e locations are clearly identified:

{locno(ui)/u; € Mo(P-Queue) and direction(u;) = PATHI1) = [1,QUEUESIZE]
{locno(u;)/ui € Mo(P-Queue) and direction(u;) = PATH2} = [1,QUEUESIZE]

5. Evaluation of the model

Our service model for the network layer needs to be
validated, i.e. it has to be shown that it respects the
service properties described in section 3.3.

Below, we prove the theorems establishing these pro-
perties. We then go on to evaluate the conformity of the
service model by showing the correspondence between
properties of the model and those of the service. We can
then conclude that there is a functional equivalence
between our model of the network service and a model of
the network protocol.

5.1. PROPERTIES OF THE MODEL

To validate our model functionally, we have to deter-
mine the properties that it must satisfy.

MPO: The model is lively (there are no blocks). This property corre-
sponds to the usual concept of liveliness.

MP1: When it comes to tuplet management, the model respects the
ordering relation defined on packet numbers (it preserves the
packet sequence).

MP2: The model will not manage more than one tuplet referencing the
same packet (it does not duplicate packets).

MP3: Any crossing sequence describing the loss of a packet is extended
by a sequence representing a resynchronization.

5.2. CHECKING THE PROPERTIES OF THE MODEL

The properties of the model are demonstrated by
means of three theorems. This section describes the proof
method used; complete proofs are given in [Cousin 85].

For our proofs, we have to introduce the following
sets:

1. A: All markings
marking.
2. T: All transitions in the model

accessible from the initial

It is also necessary to introduce functions for handling
tuplets.
Let P be a set of tuplets contained in the P-Queue

place.

Next (u;, P): This function returns the tuplet (belonging to set P) cor-
responding to the first non-empty location whose number is less than
that of the location named by u;.

Let u; € P, ug € P; next (u;P) = uy iff:

e packettype(ux) # EMPTY (i.e. ux contains a packet)

e locno(ux) < locno(u;) (i.e. ux is closer to the transmitter)

e Yu,€P such that packettype(u,) # EMPTY and locno(u,) <
locno(u;) locno(u,) < locno(ug) (i.e. ux is between u, and u;)

RESYNCHRONIZATION OF A PROTOCOL

468

First(P): This function returns the tuplet corresponding to the location
(in the set specified) containing the first packet of data taken into
account. This location is then the closest to the receiving end of all the
non-empty locations in the set.

Let uy € P; First(P) = uy iff:

e packettype(ux) # EMPTY

e Yu, € P such that packettype u, # EMPTY
locno(uk) = locno(uy,) (i.e. uy is the closest to the receiving end)

Last(P): This function returns the tuplet corresponding to the location
(from the specified set) containing the last packet of data taken into

account.
Let ux € P; Last(P) = uy iff:

e packettype(ux) = DATA (i.e. ux contains a data package)
e Vu,€P such that packettype (u,) = DATA
locno(uk) < locno(uy) (i.e. uk is the closest to the transmitting end)

Pathl(P): This function returns the set of tuplets belong to transmis-
sion pathway PATH1 in set P.

Pathl1(P) = {u; € P such that direction(u;) = PATH1}

Path2(P): This function returns the set of tuplets belonging to
transmission pathway PATH2 from set P.

Path2(P) = {u; € P such that direction (¢;) = PATH2}
Counter(P): This function returns the value of the component (data)

of a mark contained in place P-Transmitter. The marker is determined
according to the pathway associated with tuplets in set P.

5.2.1. Proof of property MPQO

To prove property MPO, we use the following.

theorem:

Theorem TO: the model is lively (any transition in the
model can always be made possible).

vMeA, vieT, 3SeT* suchthat M(St)

We prove the liveliness of the model in two stages. The
first shows that the model has a set S of reception states.
The second stage proves that in any state of § the model
is quasi-lively.

Stage I: The model has a set S of reception states.
We define the set S by the following marking:

1. Tuplets of P-Queue are empty, and their state is
synchronous.

vMeE, vue M(P-Queue);
packettype (u) = EMPTY, state(u) = SYNCHRO

2. The tuplets in P-Transmitter can be of any type.
To prove that 8§ is a reception set, we have to
show that starting from the set A of accessible
states, it is always possible to reach one of the states
of S. According to [Keller 76] a model has a recep-
tion state S, if applying a norm B which assigns a
weighting N to each marking:

(i) the norm is zero for the reception state
(B(S)=0); and

(ii) for every non-zero accessible marking, there
exists a firing sequence which makes the norm
decrease (VM € A if B(M) # 0 then

3S e 7% such that M(S) > M’
and B(M) > B(M")).

We define our norm as follows:
VMeA, Yue M(P-Transmitter)B (1) = 0;
Vu € M(P-Queue)

B(u) = B(locno(u))*(B (packettype(u))
+ B(state(u))

with

B(no) = no; B;(PACKET) = 1;
B(EMPTY)=0
B(DESYNCHRO) =2;
B(SYNCHRO) =0.

Note that in the initial state the norm is zero.

The rest of the demonstration takes place in two sub-
stages: we show that the model allows, on the one hand,
resynchronization of all the stations, and, on the other
hand, movement of data packets and reinitialization.

Sub-stage 1: 1t is possible to resynchronize desynchronized locations
from place P-Quene.

The idea is to eliminate desynchronized locations from place
P-Queue. We therefore require:

vu € M(P-Queue); state(u) = SYNCHRO
For the demonstration, we need the following lemma:

Lemma LO: The paired tuplets for the representation of an element in
a virtual circuit are always in the same state.

vMeA, Vu; € Pathli(M(P-Queue)),

v uy € Path2(M(P-Queue)),
if locno u; = (QUEUESIZE + 1) — locno(uy) then
state(u;) = state(uy).

According to this lemma, tuplets associated with each
of the two queues can be considered separately, as they
always have the same state.

Let path be the set of tuplets in P-Queue belonging to
one or other of the transmission pathways.

While 3u € Path; state (1) # SYNCHRO (P-Queue contains at least one
packet)

Trigger T-Resynchro (a packet RE-INIT is generated in the location
which returns to the SYNCHRO state. The net-
work then contains at least one desynchronized
location).

End

Sub-stage 2: It is possible to provide the receiver with all the packets
present in place P-Queue (the locations then become empty).

The idea is to empty locations in place P-Queue. We therefore
require:

Vu € M(P-Queue); packettype(u) = EMPTY

To do so, we can consider the tuplets associated with each of the
queues separately. All the transitions that have to be fired (T-Transit
and T-Output) affect only one transmission path. We therefore have the
following actions to carry out:

While 3p € M(P-Queue); p = First (M(P-Queue)) (P-Queue contains
at least one packet)

While locno(p) # QUEUESIZE (i.e. p does not correspond to the
receiving end)

Technology and Science of Informatics

Research

469

(this is always possible, since by their con-
struction locations between locno(p) and
QUEUESIZE are empty. The packet
moves on one location)

e p = First(M(P-Queue)) (the packet nonetheless retains its status as
First)

e Trigger T-Transit

End
Trigger T-Output (now possible since conditions are satisfied. One

packet at least is present on the network).
End

We have shown that the actions carried out lead to our
obtaining tuplets characterizing empty and synchronized
locations, which shows that set S is indeed a reception set.
It is now necessary to prove that the actions described can
always be executed, by showing that the model is quasi-
lively.

Stage 2: In any state of the reception set of S, the
model is quasi-lively.

To prove this property, we have to cross all the trans-
itions in the model in turn.

In any state of the set of reception states, the P-Queue
place contains only empty locations.

(i) The transition T-Input is crossable and generates
a data packet in the first location of a queue.

(i) The transition T-Desynchro is always crossable.
We cross if for the first location in the preceding
queue. This location then becomes desynchro-
nized (as well as the location associated with it in
the other queue).

(iii) The transition T-Loss can always be crossed and
the data packet contained in this desynchronized
location is lost. The location becomes empty.

(iv) The transition T-Resynchro is crossable; it
generates a reinitialization packet in each location
of the desynchronized pair.

(v) The transition T-Tramsit then allows the
reinitialization packet to travel through the net-
work, to the receiving end.

(vi) The transition T-Qutput then becomes crossable.

5.2.2. Proof of properties MP1 and MP2

Properties MP1 and MP2 concern sequentiality and

the absence of packet duplication.
To prove these properties, we shall use the following

theorem:
Theorem T1: the model does not duplicate packets and

maintains their sequence.
Consider two distinct locations, on the same path and

containing data packets:

1. The packets are different.

2. The packet closer to the receiver (i.e. contained in
the location whose number is greater) is the packet
that was transmitted earlier (the packet number is

lower).
VMEeA,

v path € {Pathl1(M(P-QUEUE)),
Path2 (M(P-QUEUE))}

Vu; € Path; vui € {Path u;}

vol. 6, no 6, 1987

such that packettype (u;) = packettype (ux) = DATA
if locno(u;) > locno(ux)
then datano(u;) < datano(ux)

We prove this theorem in two stages: we start by show-
ing that it is possible to restrict the model and to
assimulate it to a simple FIFO queue, which gives us the
properties we require. We then show that these properties
are conserved in desynchronization management.

Stage I1: Assimilation of the model to that of a FIFQ
queue.

In transitions T-Input, T-Transit and T-Output, the
components {state) and {direction) are not referenced in
the triggering conditions, nor assigned in the output arc
valuations. We can therefore map the tuplets of the
model, restricted to these transitions, onto the tuplet
{(no, infe). This therefore gives us the traditional model
of a FIFO queue without loss [Berthelot 81]. It has been
shown that this model has the properties of sequentiality
(no desequencing of information carried) and non-
duplication. Our model, restricted to these transitions,
therefore also has these properties.

Stage 2: Conservation of properties in desynchron-
ization management.

The properties of sequentiality and non-duplication are
expressed by the components (mo) and (info) of the
tuplets.

(i) The transition T-Desynchro only modifies the
(state) component of the tuplets; the other com-
ponents are therefore not affected and the proper-
ties are conserved.

(ii) The transition T-Loss deletes the contents of the
packet but does not modify the location number.
The packet therefore becomes empty and no
lIonger involved in the theorem.

(iii) The transition T-Resynchro replaces the infor-
mation contained by a reinitialization packet
without modifying the location number. Here
again, the packet is no longer involved in the
theorem.

5.2.3. Proof of property MP3

Property MP3 concerns handling desynchronization.
To prove it, we use theorem T2.

Theorem T2: Any desynchronization is correctly
detected.

Consider a location containing a data packet.

If there is a location on the same path which:

(a) is closer to the transmitter, and

(b) contains a data packet whose number is not con-
secutive (a loss has taken place between the rwo
packets)

then:

(1) either there exists a reinitialization packet in one of
the locations of lower number (closer to the trans-
mitter), or

(i) one of the lower number locations is desynchronized.

VMeA,

vPath € { Path1(M(P-Queue)), Path2(M(P-Queue))}

Vu; € Path; such that packettype(u;) = DATA

RESYNCHRONIZATION OF A PROTOCOL

470

if 3uy € {Path — u;} such that next (#;, Path) = ux and
packettype (un) = DATA
and datanumber(x;) > datanumber(ug) + 1
then:
e 721: 3u, € {Path — u;} such that:

locno(u,) < locno(u;) and packettype(u,) = RE — INIT
e T22: qun € {Path — u;} such that:

locno(u,) < locno(u;) and state(u,) = DESYNCHRO

To prove that this theorem is an invariant of the
model, we prove that it is satisfied in the initial state M,
(which is trivial), and then that any transition crossing
conserves the theorem.

For our demonstration, we need to introduce the
following lemma:

Lemma L1: Any desynchronization affecting the last
packet transmitted is detected.

Consider the packet closest to the transmitter, if it has
not just been transmitted (its number does not corres-
pond to the value of the transmitter counter decremented
by 1) then:

(i) either there is a reinitialization packet between it

and the transmitter, or

(ii) there is a location between it and the transmitter

which is the desynchronization state.

VMEeA,

v Path € {Pathl(M(P-Queue)),
Path2(M(P-Queue))}

if 3u; € Path; such that last (Path) = #; and then
datanumber(u;) < Counter(Path) — 1

let.L11: 3uy, € {Path — u;} such that:
locno(u,) < locno(u;) and packettype(u,) = RE — INIT
let L12: 3u, € {Path — u;} such that:

locno(u,) < locno(u;) and state(u,) = DESYNCHRO

To prove the theorem, we study the behaviour of each
transition:

1. Before crossing transition T-Imput, on either path,
there exists a last packet transmitted. According to
lemma L1, any desynchronization concerning it will
be detected. In the event of desynchronization, a
location between it and the transmitter contains a
reinitialization packet or is in the desynchronized
state.

The transition T-Imput generates a packet for
which the data corresponds to the value of the
transmission counter. After crossing, theorem 72
is therefore satisfied. The packet consequently
becomes the final packet transmitted, its de-
synchronization is detected and we return to the
situation above.

Transition T-Transit causes packets to advance
by transferring them into empty locations. Given
that:

(i) T-Transit modifies neither the information
contained in the packets that are moving, nor
the state of location;

(ii) Empty locations are not taken into account by
theorem 72;

(iii) Every location number identifies its carrier
tuplet uniquely.
We can conclude that the transition T-
Transit conserves theorem 72.

2. Transitions T-Output and T-Loss deletes packets by
exchanging them for empty locations with the same
number. As empty locations are not taken into
account by theorem 72, it remains true.

3. Crossing of transition T-Desynchro takes a location
from each transmission path to the desynchronized
state, Consequently, this location satisfies, by con-
struction, property 722 of theorem 72.

4. Crossing of transition T-Resynchro replaces a
location in the desynchronized state on each transi-
tion path, by a synchronized location containing a
reinitialization packet.

Before triggering the transition, property 722
and, after crossing, property 721 are satisfied.

Theorem 72 is therefore satisfied for each transition in
the model.

5.3. FUNCTIONAL VALIDATION

The functional validation of the model involves verify-
ing that the properties of the model imply those of the
service being modelled. Clearly, the complexity of this
approach depends on the quality of the properties we
have been able to derive from a model. In our example,
functional validation is easy for the first three properties
of the service, as we determined the properties of the
model as a function of them.

Consequently, we can demonstrate trivially the follow-
ing correspondences:

1. Model property MPO (liveliness of the model)
corresponds directly to service property SPO (no
irrecoverable blockage).

2. Model property MP1 (conservation of sequentiality
of the packets) implies service property 8P1 (no
desequencing of packets).

3. Model property MP2 (no duplication of packets)
corresponds precisely to service property SP2.

The proof of correspondence between property MP3
(handling of desynchronizations) and service property
SP3 requires the use of additional lemmas.

Lemma L2: Any loss of a packet is determined by the
presence of a desynchronized location;
vMe A, if M(T-Loss) then 3u; € M(P-Queue)
such that state(y;) = DESYNCHRO
Lemma L3: Any resynchronization stage is concretely

expressed by the transmission, on each transmission
path, of a resynchronization packet.

VMEe A,

if M(T-Resynchro) then 3u; € Pathl{(M(P-Queue))
such that packettype(u;) = RE - INIT

and 3u; € Path2(M(P-Quetue))

such that packettype(u») = RE — INIT

Property SP3 characterizes the behaviour of a network
service in the presence of desynchronizations. We can

Technology and Science of Informatics

Research

471

prove, using lemmas 22 and L3 and theorems 77 and 72
that the model conforms to its specification:

1. From lemma L2, the transition T-Loss is only
crossable if one of the locations is desynchronized.

2. According to lemma L3, the resynchronization
stage (T-Resynchro transition) inserts a packet in
each transmission path.

3. Theorem T2 states that these insertions are made
after every desynchronization.

4. The order of packets is conserved until they are
delivered to the receiving end, and this takes place
without duplication (theorem 77).

All these points allow us to establish that property SP3
is satisfied, starting from the properties of the model.

6. Conclusion

In this article we have proposed a model for resynchro-
nization services in the data transfer phase of the network
layer. The model obtained is minimal as it brings together
the required properties in a very reduced form. It is func-
tionally equivalent to a protocol model describing all the
internal mechanisms.

Our model can then be integrated with the model for
the transport layer. Assertions relating to the network
layer model are conserved in the transport layer model.
These assertions can therefore be used for the demonstra-
tion of transport layer properties.

The functional validation approach for our model can
be generalized to the characterization of any other hierar-
chical execution medium. The joint development of
- specification and validation models will make it possible
in the near future to make tools available for specifica-
tion, modelling and validation in a rigorous and easy
way.

REFERENCES
[Ayache 85] J. M. AYACHE, J. P. COURTIAT, M. Diaz, G.

JUANOLE: Utilisation des reseaux de petri pour la
modelisation et la validation de protocoles (Use of

vol. 6, no 6, 1987

Petri nets for modelling and validating protcols); TSI,
4(1) January—February, 1985 (French edition).

[Azema 85] P. AZEMA: Protocol analysis by using Petri nets;
IFIP 1985—Workshop on Protocol Specification
Testing and Verification, 1985.

[Berthelot 81] G. BERTHELOT, R. TERRAT: Pelri nets theory
Jor correctness of protocols; IEEE Transactions on
Communications, COM 30 (12), 1981.

[Berthelot 811 G. BERTHELOT: Transformation et analyse de
R.d.P: application aux protocoles (Transformation
and analysis of Petri nets: application to protocols);
Higher doctorate, University of Paris VI, June, 1983.

[Brams 82] G. W. BRAMS: Reseau de petri: theorie et pratique,
(Petri nets: theory and practice); Vols. 1 and II,
Masson 1982.

[Cousin 85] B. CoUsIN, P. ESTRAILLIER: Validation JSonction-
nelle de reseaux et predicats: Application au modele
d’un protocole de communications (Functional vali-
dation of networks and predicates: application to a
model for a communications protocol); MASI
publication, Paris, 1985.

[Cousin 87] B. COUSIN: Modelisation et Validation de
systemes structures en couches (Modelling and vali-
dation of systems structured in layers); Doctoral
Thesis, University of Paris VI, April 1987.

[Estraillier 86] P. ESTRAILLIER: Conception de protocoles
d’interconnexion robustes, (Design of robust intercon-
nection protocols); Doctoral Thesis, University of
Paris VI, 1986.

[Genrich 79] H. J. GENRICH, K. LAUTENBACH: The analysis
of distributed Systems by means of
predicate|Transitions nets; Lectures notes in Com-
puter Sciences No 70, Springer-Verlag, 1979.

[ISO-7498 83] ISO STANDARD: Basic reference model on
open systems interconnection; 1SO/Dis 7498, 1983.

[ISO-8072 84] ISO STANDARD: OSI—T. ransport service
definitions; I1SO/Dis 8072, 1984.

[ISO-8073 84] ISO STANDARD: OSI—Transport protocol
specification; ISO-Dis 8073, 1984.

[ISO-8348 84] ISO STANDARD: OSI—Network service
definition; 1SO/Dis 8348, 1984,

[Transpac 79] TRANSPAC: Transpace caracteristiques tech-
niques d’utilisation des services—STUR, (Transpac
technical characteristics for use of services—ST UR);
1979.

[Zimmermann 80] M. ZIMMERMANN: OSJ reference model—
the I1SO model of architecture for open systems inter-
connection; IEEE Transactions on Communications,
COM 28, 1980.

