
International Workshop on Dynamic Networks – September 2007

1

Abstract— To prevent from topology changes, failures, or

overloads, network management requires frequently
computation and reconfiguration of established connections.
When the number of established connections in the network is
very large, the optimization of the reconfiguration task is
essential to have short latency. When the communications using
these connections are real-time, traffic interruption is not
acceptable, and thus the scheduling of the reconfiguration tasks
can be difficult. In this paper, we propose a method which
reconfigures unicast connections efficiently and without
connection break. Our simulations show that the reconfiguration
time requires by our algorithm is lower than usual
reconfiguration methods, and scales well with the number of
nodes in the network.

Index Terms— Network, connection management, path
establishment, router configuration, scheduling algorithm.

I. INTRODUCTION
oday's networks have to deal with Qos, load balancing,
survivability. All these enhanced services require close

management of the network and thus frequent
reconfigurations of the network (cf. [1], [11]).

In connection-oriented networks, when an establishment of
a connection is requested, based on the current network
topology, the current load of the network and the domain
policies (i.e. load-balancing policy, path protection policy,
etc.), paths which fit the QoS parameters of the request are
computed (cf. [8]). Once the path computed, the nodes on the
path have to be configured, for instance to update the
forwarding table, to modify the parameters used to control the
queuing discipline or to shape the traffic, etc. Later, because
of changes in the topology, in the network load or even in the
network policies, the paths used by the connections have to be
recomputed and nodes on the new and old paths reconfigured.

The connection management process of a network could be
seen as a control loop between network control entities and
forwarding entities (cf. Fig. 1). The control loop as three
phases: data collection, path computation and router
configuration. Data collection (for instance, topology change
notifications, load measurements, connection requests, etc.)
flows from the network (network nodes or application hosts)
to the control entities. The control entities will react to these

 B. Cousin is with the Department of Computer Science, University of

Rennes 1, France (phone: +33 299 84 73 33; fax: +33 299 84 71 71; e-mail:
Bernard.Cousin@ irisa.fr).

M. Molnar is with INSA Rennes (e-mail: Miklos.Molnar@irisa.fr).

data in computing new paths for some connections. Then the
forwarding entities (the routers) on the new and old paths
have to be reconfigured.

Path computation

Data collection

Router configuration

Fig. 1. Management process of connections

Due to the distributed nature inherent to a network and to

preserve the connection from the source to the destination,
path configuration should be done in a coordinated way. For
instance, appropriated configuration messages have to be sent
from the control entities which have computed the new path
toward all the forwarding entities on the path. In the following
chapter we will introduce in more details the objectives and
the required coordination. But let's give one example of
coordination requirements. For instance as we do not want the
connections to be interrupted, the new path should be setup
before the old path is removed (usually this method is called
make before break). That will lead to an order in the sending
and processing of the configuration messages. Our paper will
address this point, trying to minimize the delay of the
reconfiguration process.

Many protocols have been proposed to establish paths. For

instance for MPLS network, LDP (Label Distributed Protocol)
[2] or RSVP are used to set up LSRs. GSMP (General Switch
Management Protocol) provides switch configuration control
and reporting for ATM, Ethernet, MPLS, TDM or optical
switches [3]. Most of these protocols dictate one special order
in the node configuration, generally the order of the node on
the path (or its reverse order). We will show that the total
order which is induced by these protocols is not optimal.

Anyhow all these protocols do not deal with

reconfiguration (updating of a path) and do not take advantage
of the induced optimization. The usual way they propose to
manage reconfiguration is to tear down the old connection and
to set up a new one. First, due to the restrictive properties of
some network and given in the next paragraph, it's not always
possible to setup the new connection before the old one. So
the traffic is interrupted until the new connection is
established. Second, even if it's possible, this usual way do not

Fast reconfiguration of dynamic networks
Bernard Cousin, and Miklos Molnar

T

International Workshop on Dynamic Networks – September 2007

2

benefit from the fact that some segments of the paths of the
old and new connection could be shared, and thus should not
need to be torn down and then reestablished.

In some kind of networks the connection path could have

some restrictive properties which require close coordination.
For instance, close coordination is required when the packet
forwarding is determined by an ID global over the whole
network (e.g. a destination address). Then, packets on the new
path could not be distinguished from packets on the old path
(they have the same ID). Thus the configuration of a node for
the new path has an impact on the old path. This case happens
in networks, like Internet, where there exists at most one entry
(i.e. one next hop) in the forwarding table for each unicast
destination address.

The burden and the complexity of the configuration must

not be neglected. Configuration could be done on a very
frequent basis. The number of messages sent between control
and forwarding entities could be large and become larger as
the network size and number of connections increases (cf.
[5]). Furthermore, one well known problem in network
management (like in any close loop control system) may arise.
This problem happens because, when new paths are computed
and reconfigured, the computation is based on data gathered
from past network status but the path will be set up after a
certain inevitable delay (data gathering, path computation,
configuration message transmission, etc). If the behavior of
the network changes faster than the reconfiguration delay the
setting could be dramatically out of phase. One way to solve
the swinging is to reduce the latency between the events
which have launched the computation of a new path and the
effective configuration of the nodes on the new computed
path. To have an efficient reconfiguration process will enable
low latency and better network resource utilization.

Not every network is connection oriented, nevertheless

there is a tendency to introduce in many networks the notion
of (pseudo-)connection. This connection notion is required to
add new services like VPN, QoS, route protection and explicit
routing. For instance, when you want to deal with QoS, or to
give some guarantee about the data transmission service or to
make some efficient traffic engineering you have to manage at
least soft-states into the network nodes. One actual way to
offer QoS management (traffic separation) at IP level is to use
an under-layering network like MPLS [4]. MPLS uses the
concept of connection; they are called LSPs (label switch
paths). For another instance, IP through RSVP uses soft-
states. And packet scheduling in RSVP routers should be
configured in accordance with the QoS policies and the path
selected at the edge route of the RSVP domain.

Our work could be applied to all kinds of network: WDM

or optic networks use light paths; IPV6 with its labels
introduces soft-connection into Internet routing level; MPLS
(and its generalization GMPLS) uses LPSs.

However if we make a closer look we could see that the

same node could belong to the old and the new paths but
having different next hops (downstream nodes) or having
different upstream nodes. This node has to be configured
before some of the nodes and after some others, thus a strict
scheduling for node reconfiguration is needed.

II. RECONFIGURATION METHOD

A. Objectives
We assume that in the network there is a connection from

the source S to the destination D. This connection uses a path
Old. The configuration process swaps the path Old for path
New. The objectives of the reconfiguration process are two
folds:

- The reconfiguration process should not interrupt the
connection,

- The reconfiguration process should be as fast as
possible.

To reduce the duration of the reconfiguration process we
can try to reduce either the number of nodes to be
reconfigured, or the delay for each node configuration, or the
number of steps in the reconfiguration process. The minimal
list of nodes to be reconfigured is easy to determine. It is the
union of the nodes in Old and New paths minus the nodes
which have the same next hop on the two paths. Thus we
cannot reduce this more. The delay for each node
configuration includes the transmission delay of the
configuration message between the control entity and the node
to be configured, the duration of the reconfiguration itself at
the node, and the transmission of the acknowledgment
message. We suppose that none of these delays can be
reduced, because they depend on the characteristics of the
network and of the processor of the node. In consequence the
only way to reduce the duration of the reconfiguration process
is to regroup several node configurations into one
reconfiguration step. All the node configurations belonging to
the same step are executed in parallel. And the steps are
scheduled in a sequential manner, one after the other.

In consequence, an optimal reconfiguration method will
produce a minimal number of reconfiguration steps where
each step contains a set of nodes, and if each node of the
minimal list of nodes belongs to only one reconfiguration step.
The list of steps determined the order when the configuration
of the nodes has to happen. This order assures that no
interruption of the connection happens during the overall
reconfiguration process.

B. Upstream configuration
One obvious reconfiguration method is to start the

reconfiguration from the destination D, following the New
path upstream, configuring all the nodes on the New path one
reconfiguration step after the other, each step containing
exactly one node. A last step is added to configure all the
nodes of the Old path which do not belong to the New path. It

International Workshop on Dynamic Networks – September 2007

3

is easy to prove this upstream method does not interrupt the
connection: at each step, there always exists a path between
the source and the destination. The number of steps of this
upstream method is equal to the number of nodes into the New
path, minus one because it is never required to configure the
destination node, plus one for the last step (which will
configure the remaining nodes).

Let assume the network describes in Fig. 2. Suppose that
the Old path is <S, 2, 3, 4, 5, 6, 7, D>, and the New path is <S,
9, 10, 4, 3, 2, 11, 12, 7, D>. The list of the reconfiguration
steps produced by the upstream reconfiguration method is:
<{7], {12}, {11}, {2}, {3}, {4}, {10}, {9}, {S}, {5, 6}>.

2 3 4

10S

11 5

612

d

d

d

d

d

dd

d

d

d
9

y

7

d d

d d
dd

d

Fig. 2. A network with an old and a new path

C. Optimized upstream configuration
The previous method can be optimized, if we introduce the

notion of latch. A latch is a node belonging to the two paths
but which next hops are different on the two paths. For
instance S, 2, 3, and 4 are all the latches of the previous
example.

This optimized method proposes to reconfigure in a first
step all the nodes which are only on the New path. Then the
latches on the New path are reconfigured moving upstream
from the destination, one latch after the other. Finally all the
remaining nodes are reconfigured in a last step.

If we assume the previous example, the reconfigurations
steps are: <{9, 10, 11, 12}, {2}, {3}, {4}, {S}, {5, 6}>. We
should notice that some nodes do not need to be reconfigured
because they belong to the two paths and have the same next
hop (e.g. node 7) or have no next hop (e.g. D). We call Old
(resp. New) the Old path (resp. New path) restricted to the
nodes which need to be configured.

D. Our reconfiguration method
We introduce another concept: isolated nodes. A node is

isolated during a given step of the reconfiguration process of a
connection iff the node does not belong to the path used
during this step (a complete path from the source to the
destination should exist at each step because it should not
have connection interruption). Since isolated nodes are not
used for the transmission of data, all isolated nodes during a
step can be reconfigured during that step. Let us notice that,

first a node can be isolated for some steps of the
reconfiguration process and not isolated during some others,
second an isolated node can be a latch.

For instance using the previous network example, before
the first reconfiguration step the nodes 9, 10, 11, 12 are
isolated; after the last step they are not isolated.

We can describe the problem to solve with a graph as in
Fig. 3. It is an example of synthetic graph where only latches
are listed. It illustrates the overlapping of the latches which
makes difficult first the scheduling of the configuration steps
and, second the computation of the latches which could be set
in parallel for each step.

Fig. 3. Dependence graph with overlapping latches

Our reconfiguration method is turn based, and runs until all
the nodes are configured. At each turn at least one node is
configured, thus the algorithm stops. Each turn has two steps:
the first step search for isolated nodes, the second step looks
for one appropriate latch. It can be described as:

Until there exists some nodes to be configured

<First step> Configure simultaneously all the isolated nodes with one
parallel step.

<Second step> Configure any appropriate latch in one another step.
End

A latch j is appropriate when
 old(j) < old(suc(j)). (1)

After the second step, any node on Old between exclusively
j and suc(j) becomes isolated. old(j) is the position of the node
j in the list of the not yet configured nodes in the Old path,
starting from the source. By definition, old(S) = 0. suc(j) is the
first non configured latch which is the successor of j on New.
By assumption suc(j) = D, if j has no non configured latch
successor on New.

To accelerate the computation, in our implementation we
select the first non configured latch moving upstream on New
from the destination. By construction this latch is appropriate.

Our algorithm utilizes the following sets and variable:
- A is the list of all the connected nodes (I.e. non

isolated nodes) to be configured. Initially A=Old.
- B is the list of all isolated nodes to be configured.

Initially B=New-Old.
- C is the configuration list. Initially, C={}.
- n is the latch which has been most recently configured.

Initially n =D.
Until A is not empty, we progress upstream on the New path

using n as path location indicator.
If we assume the previous example, our algorithm produces

International Workshop on Dynamic Networks – September 2007

4

the following states at the end of each step:
0- A=<S, 2, 3, 4, 5, 6>, B=<9, 10, 11, 12>, C=<>, n=D
1- A=<S, 2, 3, 4, 5, 6>, B=<>, C=<{9, 10, 11, 12}>
2- A=<S>, B=< 3, 4, 5, 6>, C=<{9, 10, 11, 12},{2}>, n=2
3- A=<S>, B=<>, C=<{9, 10, 11, 12},{2},{3, 4, 5, 6}>
4- A=<>, B=<>, C=<{9, 10, 11, 12},{2},{3, 4, 5, 6}, {S}>, n=S

III. EVALUATION
We compare our reconfiguration method versus the

upstream reconfiguration method and the optimized
reconfiguration method. We used a same set of paths and
parameters to compare the three methods. In our simulator, a
path generator produces two paths: an old path and a new
path. The length of the paths, the rate of node reutilization
and, the number of latches shared by the paths can be
controlled. By default the rate of node reutilization between
the old path and the new one is equal to 0.5.

We have evaluated the number of runs needs to achieve a
certain level of confidence. We have computed the mean
number of steps over 10, 100, 1000, and 5000 runs on 32-
nodes paths. Mean values computed over 100 runs produce a
computed error percentage of 1.02 %, whereas 10 runs
produce an error of 8.01 %. All our following results will be
based on means computed over 100 runs.

Fig.3. Average number of reconfiguration steps versus path length, the
number of latches is 8.

Fig.4. Average number of reconfiguration versus path length, the number of
latches is 60.

Figures 3, 4 give strong indications that our reconfiguration

method is better than the upstream methods for any path
length and any number of latches. The two paths have the
same length which varies on the horizontal axis. The vertical
axis is the average number of reconfiguration steps. The
improvement can be very important. For instance for 32-node
paths having 8 latches, our method requires in average 6.48
steps which is an improvement of 45 % versus the optimized
upstream method and 80 % versus the upstream method.

Fig. 5. Average number of reconfiguration steps versus the ratio of the new
path length over the old path length.

Fig. 6. Average number of reconfiguration steps versus the rate of node
reutilization between old and new node.

Figure 5 shows that when we fix the length of the old path
(e.g. to 54 nodes) and the number of latches (e.g. to 10
latches) as the length of the new path increases the low
performance of the upstream method improves (from 108
reconfiguration steps to 18), the performance of the optimized
method is constant (12 steps), and the performance of our

International Workshop on Dynamic Networks – September 2007

5

method slightly improves (from 6.4 steps to 3.771).

Figure 6 shows the impact of the node reutilization rate.

This parameter has no influence on the upstream
reconfiguration methods. The performance of our method
improves for high reutilization rates.

ACKNOWLEDGMENT
We want to thank Alexandre Guitton which has participated

in the initial conception of the algorithm, and Ziad Eid for his
implementation of the algorithm and simulations results.

REFERENCES
[1] N. Geary, N. Parnis, A. Antonopoulos, E. Drakopoulos, J. O'Reilly, "The

benefits of reconfiguration in optical networks", 10th International
Telecommunication Network Strategy and Planning Symposium, 2002.

[2] B. Jamoussi, et al., “Constraint-based LSP setup using LDP,” Internet
RFC 3212, January 2002.

[3] A. Doria, F. Hellstrand, K. Sundell, and T. Worster, “General Switch
Management Protocol (GSMP) V3,” Internet RFC 3292, June 2002.

[4] E. Rosen, A. Viswanathan, R. Callon, "Multiprotocol Label Switching
Architecture", Internet RFC 3031, January 2001.

[5] N. Fea mster, H. Balakrihnan, J. Rexford, A. Shaikh, J. Van der Merwe,
"The case for separating routing from routers", ACM workshop
SIGCOMM, 2004.

[6] R. Mahalati, R. Dutta, "Reconfiguration of traffic grooming optical
networks", First international conference on Broadband Networks,
October 2004.

[7] Z.K.G. Patronico, P.R. Teixera, G.R. Mateus, "Traffic grooming and
reconfiguration for incremental traffic in WDM optical networks",
International Network Optimization Conference, October 2003.

[8] B. Jeager, D. Tipper, "Prioritized traffic restoration in connection
oriented QoS based networks", Computer Communications, vol. 26, pp.
2025-2036, 2003.

[9] I. Baldine, G.N. Rouskas, "Traffic adaptative WDM networks: a study of
reconfiguration issues", Journal of Lightwave, vol. 19, pp. 433-455,
April 2001.

[10] S. Tak, P. Prathombutr, E.K. Park, "An efficient technique for a series of
virtual toplogy reconfigurations in WDM optical networks", Computer
Communications, vol. 30, pp. 1301-1314, December 2006..

[11] H. Abbu, H. Luffiyya, M.A. Bauer, "A framework for determining
efficient management configurations", Computer Nettork, vol. 46,
November 2004.

