ISSN 1166-8687

PUBLICATION
INTERNE
N° 1493

OQ\Q/
&
&
9
%
(2
S

A
R
%)
E

A SIMULATOR FOR MULTICAST ROUTING OVER AN MPLS
NETWORK

ALl BOUDANI, CHADI JAWHAR, BERNARD COUSIN AND MAHMOUD
DOUGHAN

 |RISA

CAMPUS UNIVERSITAIRE DE BEAULIEU - 35042 RENNES CEDEX - FRANCE

INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES
» Campus de Beaulieu — 35042 Rennes Cedex — France

I R I S A Tél. : (33) 02 99 84 71 00 — Fax : (33) 02 99 84 71 71

http://www.irisa.fr

A Simulator for Multicast Routing over an MPLS
Network

Ali Boudani, Chadi Jawhar, Bernard Cousin and Mahmoud Doughan>|<

Theme 1 — Réseaux et systemes
Projet Armor

Publication interne n ° 1493 — October 2002 — 29 pages

Abstract: Multicast and MPLS are two complementary technologies. Merging these two
technologies where multicast trees are constructed over MPLS networks will enhance perfor-
mance and present an efficient solution for multicast scalability and control overhead problems.

In this paper , we present a simulator for multicast routing over an MPLS network. We
briefly discuss MPLS, multicast, benefits resulting from merging the MPLS and the multicas-
t technologies and, existing MPLS network simulator. We present finally our simulator for
multicast routing over MPLS network where we choose PIM-SM (source specific tree) as the
multicast routing protocol. Our basic idea is to preserve the existing code for unicast trans-
mission simulation using the MPLS networks simulator (MNS). Unicast label distribution, LSP
construction and L2 switching still functioning the same.

A simulator for multicast routing over MPLS network is an original idea since this kind of
simulator never existed before and it will help researchers to simulate and evaluate their MPLS
multicast related techniques.

Key-words: MPLS, PIM-SM, NS, Multicast

(Résumé : tsvp)

* { Ali.Boudani}{Bernard.Cousin}@irisa.fr,{ Chadi.Jawhar } {mdoughan }@ul.edu.lb
™ This work has been supported by the franco-lebanese program CEDRE

ks @

Centre National de la Recherche Scientifigue Institut National de Recherche en Informatique
(urrEssA 6074) Université de Rennes 1 — Insa de Rennes et en Automatique — unité de recherche de Rennes

Un simulateur pour le routage multicast dans un réseau

MPLS

Résumé : Multicast et MPLS sont deux technologies complémentaires. La combinaison de
ces deux technologies o des arbres multicast sont construits dans des réseaux MPLS présente
une solution efficace pour la scalabilité multicast. Dans cet article, nous présentons un simu-
lateur pour le routage multicast dans un réseau MPLS. Nous discutons brievement de MPLS,
du multicast, des avantages résultants de la combinaison de MPLS et du multicast et, du simu-
lateur existant de MPLS (MNS). Nous présentons finalement notre simulateur pour le routage
multicast dans un réseau MPLS et nous choisissons PIM-SM (arbre spécifique a une source)
comme protocole de routage multicast. Notre idée fondamentale est de préserver le code ex-
istant pour la simulation de transmission unicast du simulateur de réseaux MPLS (MNS). La
distribution de label unicast, la construction des LSP et la commutation de label de niveau 2
ont le méme fonctionnement.

Un simulateur pour le routage multicast dans un réseau MPLS est une idée originale car ce
genre de simulateur n’a jamais existé avant et ce simulateur peut aider les chercheurs a simuler
et évaluer leurs techniques combinant le multicast et MPLS.

Mots clés : MPLS, PIM-SM, NS, Multicast

A Simulator for Multicast Routing over an MPLS Network 3
Contents
1 Introduction 4
1.1 Multicast L oL 4
1.2 Multi-Protocol Label Switching 5
1.3 Related Work o 6
1.4 PIM-SM Implementation in MPLS 7
2 How MPLS is Implemented in NS 8
2.1 Label Distribution 9
2.2 Releasing and Withdrawing an LSPo o000 9
2.3 MPLS Label Switching 10
3 MPLS Simulation 10
3.1 Topology Creation/Generation Commands 10
3.2 Label distribution and LSP releasing commands 11
3.3 Tracing commandso e 11
3.4 Utility commands Lo 12
3.5 Simulation Example 12
3.6 Simulation Results o o 12
4 Implementing the simulator for multicast routing in MPLS networks 13
4.1 Information tables of MPLS nodes. 14
4.2 Multicast packet transmissiono o Lo Lo 15
4.3 Join and prune Label distribution and releasing 15
4.4 Simulation Scenario Lo 16
4.5 Simulator Evaluationo oo 17
5 Conclusion 18
6 Appendix 20

PIn°1493

4 A. Boudani, C. Jawhar, B. Cousin and M. Doughan

1 Introduction

Several evolving applications like WWW/, video/audio on-demand services, and teleconferencing
consume a large amount of network bandwidth. Multicasting is a useful operation for supporting
such applications. Using the multicast services, data can be sent from a source to several
destinations by sharing the link bandwidth.

But multicast suffers from the scalability problem. Indeed, a multicast router should keep
forwarding state for every multicast tree passing through it. The number of forwarding states
grows with the number of groups.

Besides, Multi-protocol label switching (MPLS) [1] has emerged as an elegant solution to
meet the bandwidth-management and service requirements for next generation Internet proto-
col (IP) based backbone networks. We think that Multicast and MPLS are two complementary
technologies, and merging these two technologies, where multicast trees are constructed in M-
PLS networks will enhance performance and present an efficient solution for multicast scalability
and control overhead problems.

This paper proposes a simulator for multicast routing over an MPLS network by extending
MPLS Network Simulator (MNS) [2].

NS [3] is a network simulator intended for studying the dynamic behaviour of flows and
congestion schemes in a network. The simulator takes as input a scenario, which is a description
of network topology, protocols, workload and control parameters. The simulation results from
NS may be shown with Graphic User Interface (GUI) that is called Network Animation (NAM)
[4]. NAM is an animation tool for viewing network simulation traces and real world packet
traces. It supports topology layout, packet level animation, and various data inspection tools.

MPLS is implemented in NS (the MPLS network simulator (MNS) [2]) with all its features,
from the label distribution to the layer two switching data transmission. Besides, many mul-
ticast routing protocols (PIM-SM [5], PIM-DM [6], etc.) are also implemented in NS. In the
current NS implementation, every MPLS node or multicast node has its own specific classifier
to process respectively labeled packets or multicast packets. Therefore, when a node is defined
as an MPLS-capable node, it cannot be configured also as multicast-capable node. As a result,
modifications to the MPLS simulation code in NS are needed so that an MPLS-capable node
can understand and manage multicast traffic.

The remainder of this paper is organized as follows. In this Section, we present multicast,
MPLS, related work and PIM-SM implementation in MPLS. Section 2 descibes how MPLS
is implemented in NS. We explain how LDP protocol [7] is defined in NS, and how the L2
switching is executed. Section 3 describes the commands needed for simulation examples. We
finally present in Section 4 our implementation of multicast routing over an MPLS network
with PIM-SM (source specific mode only) as the multicast routing protocol. Section 5 is a
summary followed by appendixes and a list of references.

1.1 Multicast

Multicast has become increasingly important with the emergence of network-based applica-
tions such as IP telephony, video conferencing, distributed interactive simulation and software
upgrading.

Using multicast service, a single transmission is needed for sending a packet to n destina-
tions, while n independent transmissions would be required using unicast service. A multi-
cast routing protocol should be simple to implement, scalable, robust, use minimal network

Irisa

A Simulator for Multicast Routing over an MPLS Network 5

overhead, consume minimal memory resources, and inter-operate with other multicast routing
protocols [8].

Many multicast protocols have been proposed and are in use today on the Internet. They
include (but not limited to) DVMRP, MOSPF, PIM-SM, PIM-DM, CBT, BGMP (see [8] for
more details about these protocols). The differences between these protocols lies mainly in the
type of multicast routing trees they build. DVMRP, MOSPF, and PIM-DM build multicast
spanning trees that use shortest paths from every source to any destination. PIM-SM, CBT
build spanning trees that are shortest path from a known central core, also called rendez-vous
point (RP), where all sources in the session share the same spanning tree. PIM-SM is the
most widely implemented protocol. It is a complicated protocol that at times builds source-
rooted shortest path trees. An IP group address range has been designated for source-specific
multicast (SSM [9]) applications and protocols and should support source-only trees (source
specific mode), precluding the requirement of an RP and a shared tree.

1.2 Multi-Protocol Label Switching

MPLS is a versatile solution to address the problems faced by present day networks (speed,
scalability, quality-of-service (QoS) management, and traffic engineering). MPLS is Multi-
protocol because it can be applied with any layer 3 network protocol, although almost all of the
interest is in using it with IP traffic. MPLS is about gluing connectionless IP to connection-
oriented networks. It is something between Layer 2 and Layer 3 that makes them fit better.
MPLS is an advanced forwarding scheme that extend routing with respect to packet forwarding
and path controlling. Packets are classified easily at domain entry, and rerouted faster (in the
case of link failures) and explicite routes are easy to construct.

An MPLS domain is a contiguous set of routers which operate MPLS routing and forwarding
and which are also in one routing or administrative domain [1]. An MPLS capable router is
called LSR (label switching router).

MPLS domain

 [ul

[Poul3]label1]L2] go[PDULL3 labei2[L2]
!

B,

2 .
EqressLSR Receiver

1 |sr2

RLMPLS Routing table R2 MPL8ROwing table R3 MPLS Routing table
Destination | Port| Label Hreoming | Outgeing.
Ry ety | Ol
prefix forR4] 2_|labell 1 [1abei1] 2 jaba?) [1 [lebd2] Re |
Iabeil PDU: Packet Data Unit, L3: IP level3, L2: IPlevel2, Label: MPLS header
@ Router & MPLS capable router

Figure 1: MPLS forwarding scheme

At the ingress LSR of an MPLS domain, IP packets are classified and routed in FECs
(forwarding equivalence class) based on a combination of the information carried in the IP
header of these packets and local routing information maintained by the LSR. Once a packet
is assigned to a FEC, no further header analysis is done by subsequent routers in the same
MPLS domain. An MPLS header, called label, is inserted for each packet within an MPLS
domain, an LSR will use the label as the index to look up the forwarding table of the LSR. The
packet is processed as specified by the forwarding table entry. The incoming label is replaced

PIn"°1493

6 A. Boudani, C. Jawhar, B. Cousin and M. Doughan

by an outgoing label, and the packet is switched toward the next LSR. Before a packet leaves
an MPLS domain, its MPLS header is removed [11]. The paths between the ingress LSRs and
egress LSRs are called label-switched paths (LSPs). MPLS uses some signaling protocol such
as Resource Reservation Protocol (RSVP) [10] or Label Distribution Protocol (LDP) [7] to set
up LSPs. The forwarding process is shown in Fig.1.

MPLS shows a number of advantages over conventional network layer forwarding:

e MPLS forwarding can be done by switches which are only capable of doing label lookup
and replacement, but not necessary being capable of analyzing the network layer headers,
or analyzing the network layer headers at adequate speed.

e Since a packet is assigned to a FEC when it enters the network, the ingress router may
use, in determining the assignment, any information it has about the packet, even if
that information cannot be gleaned from the network layer header. For example, packets
arriving on different ports may be assigned to different FECs. Conventional forwarding, on
the other hand, can only consider information in the packet header. The considerations
that determine how a packet is assigned to a FEC can become ever more and more
complicated without any impact at all on LSR that merely forward labeled packets.

e Sometimes it is desirable to force a packet to follow a particular route which is explicitly
chosen at or before the time the packet enters the network, rather than being chosen
by the normal dynamic routing algorithm as the packet travels through the network.
This may be done as a matter of policy, or to support traffic engineering. In conventional
forwarding, this requires the packet to carry an encoding of its route along with it (”source
routing”). In MPLS, a label can be used to represent the route, so that the identity of
the explicit route need not be carried with the packet.

From this point of view, and focusing on the advantages of the layer two switching protocol,
Multicasting over MPLS networks can benefit from the multicast reduce of traffic on one hand,
and MPLS flexibility, speed and quality of service on the other hand.

1.3 Related Work

A framework for MPLS multicast traffic engineering proposed by Ooms et al [12] gives an
overview about the application of MPLS techniques to IP multicast. Another study about
MPLS and multicast proposed by Farinacci et al. [13] explains how to use PIM to distribute
MPLS labels for multicast routes. A piggy-backing method is suggested to assign and distribute
labels for multicast traffic for sparse-mode trees. Another proposal is aggregated multicast [14].
The key idea of aggregated multicast is that, instead of constructing a tree for each individual
multicast session in the core network, one can have multiple multicast sessions sharing a single
aggregated tree to reduce multicast state and, correspondingly, tree maintenance overhead at
network core.

A new approach to construct multicast trees in MPLS networks [15] was proposed recently.
In that approach, MPLS LSPs are used between multicast tree branching node routers in order
to reduce forwarding states and enhance scalability. Only routers that are acting as multicast
tree branching nodes for a group need to keep forwarding states for that group. All other
non-branching node routers simply forward data packets over traffic engineered unicast routes
using MPLS LSPs.

Irisa

A Simulator for Multicast Routing over an MPLS Network 7

1.4 PIM-SM Implementation in MPLS

The implementation of the PIM-SM protocol over MPLS networks is done in a very simple
manner. The idea is that in the branching routers, instead of mapping the <incoming Label,
incoming Interface> to one <outgoing Label, outgoing Interface>, the mapping is done to
several outgoing interfaces according to the distribution of the group members. When a data
packet arrives, instead of doing only one label switching, the data packet is replicated, and
for each copy a label switching is done. These copies are transmitted then to the convenient
outgoing interfaces.

Fig.2 shows 2 group members (R6 and R9) that want to join the (S1, G1) session where
S1 is the source at R1 and G1 is the group address. When R6 joins first the session, labeling
will be similar to the one used in unicast with only one difference: the allocated labels are
associated to an (S1, G1) entry. The labeling is done from the downstream member up to the
source. When R9 joins the same session, the labeling will be done in the same manner from
the member toward the source. When the labeling message reaches a tree node (a node with
an (S1, G1) entry), it will not forwarded anymore and the node becomes a branching node. A
branching node contains one <incoming label, incoming interface> mapped to more than one
<outgoing label, outgoing interface>. The upstream labeling is done from the new member
R9 until reaching the router R3. The router R3 is already a tree node for the (S1, G1) session,
and therefore no further upstream labeling is done. The R3 becomes then a branching node
for the (S1, G1) session.

s1
| l.L=-1, I.I.=-1|O.L.=3, O.|.=R2| (S1, Gl)l R1 I.L. : Incoming Label
I.I. : Incoming Interface
[1L=3,11.=R1 O.L.=5, O.1.=R3 [(S1, G1)| R2 O.L. : outgoing Label
0.L.=6, 0.1.=R4 R3 O.1. : Outgoing Interface
I.L=5, 1.1.=R2 (S1, G1)
0.L.=4, 0.1.=R§
[IL=6,11=R3]0L=4, 01.=R5 [(S1, G1)| R4 R8 [I.L=4, 11=R3 [0.L.=2, 0 .1=R9[(SL, G1)
[1.L=4,1.1=R4 |0.L.=5, 0.1.=R6 [(S1, G1)| R5
[TL.=5, 11=R5 J0.L.=1,0.1=-1] (5L, G1J [LL=2 11=R8 joL =-1,0..=-1] (51, G1)
R6 R7 R9

Figure 2: MPLS multicast routing table entries for (S1, G1) session

Data forwarding is done similarly as in unicast mode. When the source S1 wishes to transmit
data to the group G1, it will lookup in its information base, find the label corresponding to the
(S1, G1) session, and label the data packets and transmit them toward the outgoing interface.
All intermediate routers have only to switch the label, and forward the packets, exactly as
in unicast. In case of a branching node, it replicates the packet as many times as there are
outgoing labels associated with input label in its information base, and for each packet copy it
will do the label swapping and transmit it on the respective outgoing interface. The pruning is
done also from the pruned member up toward the source. At each node a label deallocation is
done until reaching either the source or a branching node. If it reaches a branching node, only
the corresponding <outgoing interface, outgoing label> is removed and the branching node will
become a tree node.

PIn°1493

8 A. Boudani, C. Jawhar, B. Cousin and M. Doughan

2 How MPLS is Implemented in NS

This section describes the design and the implementation of the MPLS protocol in the network
simulator NS. MNS [16] (MPLS network simulator), supports two main functions:

e LDP Label Distribution Protocol.
e MPLS Label Switching.

NS is an IP based simulator where a node consists of classifiers and agents. An agent is the
sender /receiver object, while the classifier is the object that is responsible for classifying the
arrived packets and then either forwarding them to the convenient nodes or delivering them to
the local agent if the receiving node is the packet destination. Therefore, in order to construct
an MPLS node, a new classifier, called the MPLS classifier, should be created in order to be
able to classify the received packets, determines whether they are labeled or not, and treat
them correspondingly. Also, a new agent, the LDP agent, must be also inserted in the IP node
in order to distribute labels to other MPLS nodes and construct the LSP paths (see Fig. 3).

Pakes
Duuuuuuuqu

L3 Forwarding

J(
another
L2 Switching n(jae

Figure 3: MPLS node architecture in NS

An MPLS node has three tables to manage the information related to the LSP and the
label distribution; Partial Forwarding Table (PFT), Label Information Base (LIB), and Explicit
Routing information Base (ERB). PFT table is a subset of forwarding table and consists of
FEC, PHB (Per-Hop-Behavior), and LIBptr fields. LIB table has information for LSP, and
ERB table has information for ER-LSP. Figure 4 shows the structure of these tables and gives
indication about the forwarding process. The LIBptr in each table is a pointer to an LIB entry.

The LIB table is constructed and used to map the <Incoming Label, Incoming interface> to
the <Outgoing Label, Outgoing interface>. It is then used when L2 operation is to be executed:
when a labeled packet is received and a label swap is to be done or when an unlabeled packet
is received and a label push is required.

The PFT table is used when an unlabeled packet arrives. The MPLS node will search this
table for an entry where the FEC is the packet’s destination address. The entry could either
point to an entry in the LIB table to perform the convenient label push operation or point to
NULL and as a result ordinary L3 forwarding is being done.

The ERB table is used only to keep the information for explicitly routed LSP (ER-LSP).
So, it doesn’t participate in packet forwarding. If it is needed to map a flow into a previously
established ER-LSP, a new entry which has the same LIBptr as that of its ERB entry should
be inserted into PFT table.

Irisa

A Simulator for Multicast Routing over an MPLS Network 9

A packet arrived

Labeled\ No
- -> |FEC|PHB|LIBptr ; | PFT

lookup .
Push operation
lookup Yes
Swap / Pop operation

incoming | incoming| outgoing| outgoing| LIBptr

[ingoriog | g | pueing] ptgong] LIS | | Lie
A

|LspiD| Fec| Liptr | | ERB Push operation

Figure 4: Structure of tables for MPLS packet switching

2.1 Label Distribution

In MNS, the distribution of labels and the construction of LSPs is done by exchanging LDP
messages between the LDP agents of LSR nodes. MNS offers three modes of label distribution:

e Control Driven
e Data Driven
e Explicit Routing

Control driven mode relies on distributing LDP messages between all LDP agents even if
there is no data to be transmitted. LSPs are constructed for each FEC and this is done by
sending mapping messages from each LDP agent to all the others, containing the FEC along
with the label that should be used later for the data transmission. At the end, all LIB tables
of all MPLS nodes are filled and different LSPs are assigned for all FECs.

Data driven mode distributes LDP messages and constructs LSPs only for FECs which
are the destinations of source agents which desire to transmit data. Therefore, when a node
wishes to transmit data it sends a request message to the FEC. The first packets transmitted
are forwarded as layer 3 packets until the LSP is constructed, then L2 switching can be done.
When the FEC receives the request message, it sends a mapping message upstream toward the
source and each router in the way receives a mapping message, handles it, creates a new LDP
message and transmits it to the nexthop toward the source. In this way an LSP is constructed
from the source toward the destination.

In the explicit routing labeling, LSPs are constructed in a simple way. The user needs
to insert the successive nodes of the explicit route which data packets will follow. Mapping
messages are distributed only along this path and then construct the LSP for this FEC.

2.2 Releasing and Withdrawing an LSP

Releasing an LSP is used when an explicit route has been set up and there is no need for it
anymore. Also, another need of releasing an LSP is when a node, in data driven mode, need
to temporary transmit data to a certain destination. So it must construct a temporary LSP
which must be released after the transmission ends. A node will clear the entries corresponding
to the FEC (and corresponding to the LSPid when deleting an explicit routed LSP) from the

PIn"°1493

10 A. Boudani, C. Jawhar, B. Cousin and M. Doughan

information base tables, and will send a release message to the nexthop node which is on the
corresponding outgoing interface. When this nexthop receives this release message containing
the FEC and the LSPid, it will clear its entries and in turn sends a release message toward its
own outgoing interface until reaching the FEC or a non LSR node. In this manner the LSP
will be released and the deallocated labels are now free for future allocation.

Withdrawing an LSP is another method of LSP releasing. Executing this function will
release the LSP set up toward a node corresponding to FEC and LSPid. The node will send a
withdraw messages to all the previous hop nodes which are associated to the incoming interfaces
corresponding to the (FEC, LSPid) and will erase their allocated labels inside their node’s
information base. When the upstream nodes receive the withdraw messages, they will free up
their allocated outgoing labels and run the withdram function. In this way all the upstream
labels and LSPs corresponding to the (FEC, LSPid) will be deleted.

2.3 MPLS Label Switching

When a packet arrives at a certain node, it is handled by the classifier (MPLS classifier) which
classify it, process it, and forward it either to a local agent or to another node. Simply, the
packet process is done as shown in the following algorithm:

e The ingress LSR may not have any label for this packet as it is the first occurrence of this
packet type. It will lookup for the longest prefix match, find the the nexthop router and
initiates a label request toward it. This label request will propagate through the network
from the ingress LSR to the egress LSR. Each intermediate LSR will receive a label from
its downstream LSR, install an entry in its LIB table, and then choose a new label and
transmit it to its upstream LSR.

e The ingress LSR will insert the label and forward the packet to the nexthop LSR.

e Each intermediate LSR, will examine the label in the received packet, replace it with the
outgoing label and forward it based on their LIB table.

e When the packet reaches the egress LER, it will remove the label because the packet is
departing from an MPLS domain and forward it toward to the destination.

3 MPLS Simulation

This section describes the commands used in order to simulate an MPLS topolgy in our sim-
ulation followed by a simulation example. To simulate MPLS networks one should know the
commands used to define an MPLS node, execute different modes of label distribution, release
LSPs, trace MPLS and LDP packets, and finally use utility commands.

3.1 Topology Creation/Generation Commands

e Creation of an MPLS node: (Say LSRO)

$ns node-config -MPLS ON
set LSRO [$ns node]
$ns node-config -MPLS OFF

Irisa

A Simulator for Multicast Routing over an MPLS Network 11

or
set LSRO [$ns MPLSnodel

e Configuration of LDP agents on all MPLS nodes: (say n nodes whose names are LSRIi, i
is an integer)

for {set i 0} {$i < n} {incr i} {

set a LSR$i

for {set j [expr $i+1]1} {$j < 5} {incr j} {
set b LSR$j
eval $ns LDP-peer $$a $$b

}

set m [eval $$a get-module "MPLS"]

$m enable-reroute '"new"

3

or

$ns configure-ldp-on-all-mpls-nodes

3.2 Label distribution and LSP releasing commands

e Choice of a unique mode of label distribution for all MPLS nodes (note that by default
the data driven mode is taken):

$ns enable-control-driven or classifier/Addr/MPLS set control_driven_ 1
$ns enable-data-driven or classifier/Addr/MPLS enable-data-driven
$ns enable-on-demand or classifier/Addr/MPLS enable-on-demand

$ns enable-ordered-control or classifier/Addr/MPLS enable-ordered-control

e Choice of a distribution mode on a certain node (say MPLSnode):

[$MPLSnode get-module "MPLS"] enable-control-driven

[$MPLSnode get-module "MPLS"] enable-data-driven

[$MPLSnode get-module "MPLS"] enable-on-demand

[$MPLSnode get-module "MPLS"] enable-ordered-control

[$MPLSnode get-module "MPLS"] make-explicit-route fec er LSPid rc
[$MPLSnode get-module "MPLS"] ldp-trigger-by-release fec LSPid

3.3 Tracing commands
e Packet trace for an MPLS node (say MPLSnode): :

[$MPLSnode get-module "MPLS"] trace-mpls
[$MPLSnode get-module "MPLS"] trace-1ldp

e Displaying information tables managed by an MPLS node (say MPLSnode):

[$MPLSnode get-module "MPLS"] pft-dump
[$MPLSnode get-module "MPLS"] lib-dump
[$MPLSnode get-module "MPLS"] erb-dump

PIn"’1493

12 A. Boudani, C. Jawhar, B. Cousin and M. Doughan

3.4 Utility commands
Color settings for different types of LDP packets:

$ns 1ldp-request-color $color
$ns ldp-mapping-color $color
$ns ldp-withdraw-color $color
$ns ldp-release-color $color
$ns ldp-notification-color $color

3.5 Simulation Example

The topology example is shown in figure 5, where MPLS nodes are LSR1 to LSR7 forming an
MPLS domain, and Node0O, Node7, and Node8 are not MPLS-capable nodes. In this example
we select the control mode on all the defined MPLS nodes as label distribution protocol.

Node7

LSR2 LSR3 LSRG

[Node8

‘ Router
&) MPLS capable router

Figure 5: Structures of tables for MPLS packet switching

3.6 Simulation Results

The simulation results collected are mainly two types: the nam file showing graphically all
packet transmissions between the created nodes, and the trace file which shows the trace of
the MPLS, LDP and DV packets, and a display of the labeling tables at each node. We focus
our interrest on the second type only. The trace of LDP packets (LDP packets means all the
mapping, request, withdraw and release messages used for label distribution and LSP release)
at node LSRI1 is as follows:

0.074218 1: 2 (Mapping 1) 2 0 *_2 [-1 %] [-1 % -1]
0.07421830807: <mapping-msg> 2 -> 1 : fec(2), label(0) 2
0.07421830810 1(1->4): U -1 L3 -1 -1 -1 0

Also, the MPLS packets could be traced using the trace-mpls command. This trace shows
the push (L3 to L2), Swap (.2 to L.2) and Pop (L2 to L3) label operations :

0.567850000000001 1(0->7): U -1 Push(ingress) 2 6 32 4
0.571600000000001 1(0->7): U -1 Push(ingress) 2 6 32 4
0.575350000000001 1(0->7): U -1 Push(ingress) 2 6 32 4

Irisa

A Simulator for Multicast Routing over an MPLS Network 13

The information tables of LSR5 are shown in the next tables. These labels have been
distributed based on the control mode that is chosen to be executed at LSR5 (ERB table is an
empty table since there is no explicit routes defined).

__PFT dump___ [LSR: 5]

FEC PHB LIBptr AltanativePath
4 -1 0 -1

0 -1 1 -1

1 -1 2 -1

6 -1 3 -1

7 -1 4 -1

8 -1 5 -1

2 -1 6 -1

3 -1 7 -1

___LIB dump___ [LSR: 5]

iIface iLabel oIface oLabel LIBptr
0: -1 1 4 0 -1
1: -1 2 4 1 -1
2: -1 3 4 2 -1
3: -1 4 6 0 -1
4: -1 5 6 0 -1
5: -1 6 6 0 -1
6: -1 7 4 5 -1
7: -1 8 6 1 -1

___ERB dump___ [LSR: 5]

FEC LSPid LIBptr

4 Implementing the simulator for multicast routing in
MPLS networks

Multicasting over MPLS networks can benefit from the multicast reduction of traffic on one
hand, and MPLS flexibility, speed and quality of service on the other hand. Many protocols
have been proposed and are in use today on the Internet. The implementation of multicasting
over MPLS networks must be done for each one of these multicast protocols.

PIM-SM is the most widely implemented protocol. It is a complicated protocol that at times
builds source-rooted shortest path trees. An IP group address range has been designated for
source specific multicast (SSM) applications and protocols and should support source oriented
trees (source specific mode), precluding the requirement of an RP and a shared tree. This
work focuses on the study of the PIM-SM protocol (source specific mode) over MPLS networks
but it can be adapted to other protocols as well. This simulator is based on the piggybacking
proposition [13] where a label is piggybacked by the join message in PIM-SM protocol.

MPLS code in NS does not work with multicast routing, particularly because (1) there is
no label setup mechanism for multicast groups, (2) there is no multicast replicator to cooperate

PIn"°1493

14 A. Boudani, C. Jawhar, B. Cousin and M. Doughan

with MPLS classifier, and (3) MPLS header contains pointers, which do not work with multicast
replicator. In this section, we describe the modifications needed to allow multicast packet
transmission in MPLS networks without implementing a new protocol. Three main points are
to be considered: information tables of MPLS nodes, multicast packet transmission and, join
and prune label distribution and releasing. Our major objectif was implementing the simulation
with NS of PIM-SM in MPLS networks without major modifications of the unicast MPLS code
in NS assuring compatibility between nodes.

4.1 Information tables of MPLS nodes

As mentioned in Section 2, an MPLS node contains three information tables: LIB, PFT, and
ERB. To apply the PIM-MPLS proposition, a mapping of the (S, G) session and the <incoming
label, incoming interface> on one hand, and a mapping of the <incoming label, incoming
interface> to more than one <outgoing label, outgoing interface>, on the other hand, are
needed. The information base at the MPLS nodes must be modified.

A packet arrived
No Multicast
Labelef)i - - Destination
packet? Address
Yes
incoming | jncomin
Yes ! |s| G| interfaceghabg g|LSG|FEC|PHB|LIBptr PFT

If One S_Neﬁp/Pop Push operation
the multicast ~2Peratio
abel exist:

» | incoming | jncoming| outgoing| outgoing| LIBptr
Reptitive Swap/Pop '|interf |a6a g| intg?acg| i) g| = | LIB
Operation
[LsPiD| FEC| LIBptr | ERB Push operation

Figure 6: MPLS multicast routing table entries for (S1, G1)

For the first mapping, the Label for Source and Group table (LSG) is defined. This table
includes four fields: Incoming label, Incoming interface, Source, and Group. When a new
member joins an (S,G) session, and new labels are being allocated upstream, this table is filled
at each node. As for the second mapping, where one <incoming label, incoming interface> may
be mapped to more than one <outgoing label, outgoing interface> in a branching node, there
is no need to create a new table. The LIB table could be filled more than one time with the
same <incoming label, incoming interface> but different <outgoing label, outgoing interface>.

In order to insert, remove, upgrade, access, and read the entries in the LSG table, the
following functions have been specified:

e int MPLSAddressClassifier::LSGinsert(int ilface, int iLabel, int Source, int Group)

This function inserts a new entry in the LSG table. The entry must contain the four fields,
which are the incoming interface, incoming label, source address, and group address. It
is used when a new member joins an (S, G) session.

Irisa

A Simulator for Multicast Routing over an MPLS Network 15

e int MPLSAddressClassifier::LSGdelete(int Source, int Group)

This function deletes the LSG entry for an (S, G) session. It is used when a member
leaves the (S, G) session.

e int MPLSAddressClassifier:: LSGlabellookup(int ilface, int iLabel, int &Source, int &Group)

This function is used to determine if an (S,G) entry exist for a labeled packet. If an entry
exists, then the packet is treated as a multicast packet otherwise it is treated as a unicast
packet.

e int MPLSAddressClassifier: LSGSGlookup(int &ilface, int &iLabel, int Source, int Group)

This function returns the incoming interface and label for an (S,G) session. It is used to
check if the node is a tree node (when a join message has been forwarded to the source).
If it is the case, than the join message forwarding will stop and the node is considered as
a branching one. The incoming interface and label are used to insert another entry in the
LIB table but with a new outgoing interface and label.

e void MPLSAddressClassifier:: LSGdump(const char *id)

This function is used for displaying the contents of the LSG table, when required by the
user.

4.2 Multicast packet transmission

Data is transmitted exactly as in unicast MPLS packets with only one difference at branching
nodes. The procedure is done as follows: When a labeled packet arrives, a search is done in the
LSG for the <incoming label, incoming interface>. If the result is positive, then the labeled
packet is a multicast packet. Note that this checking can be bypassed but in this case the
MPLS unicast code should be changed.

Therefore the node may be a branching one and the LIB table may contain more than
outgoing entry. In this case, instead of accessing the LIB table only one time, there must
be search in it for more than one entry. For each entry, a packet copy is created, and then
label swapped with the corresponding the outgoing label, and then transmitted to the outgoing
interface.

Note that:

e There is no real replicator defined at each node. Instead the packet duplication is done
in a virtual manner. For each outgoing entry in the LIB table (for the same incoming
interface and label), a label swap is done for a copy of that packet, and then this copy is
sent on the the outgoing interface.

e These modifications do not affect the unicast MPLS data forwarding, they are executed
only when multicast packets arrives.

4.3 Join and prune Label distribution and releasing

The join-group and prune-group functions are two functions executed at nodes that wish to
join or to leave an (S,G) session.

The label allocation is done from the joining node toward the source (the join-group function
definition is present in the appendix). The join-group algorithm first checks if the node is an
PIn "’ 1493

16 A. Boudani, C. Jawhar, B. Cousin and M. Doughan

(S, G) session node. If it is, then there is no need to continue the joining process. If not,
the algorithm generates new <incoming interface, incoming label> for this node and seeks for
the nexthop node toward the source. It installs an entry with the corresponding <incoming
interface, incoming label> and associates it with <outgoing interface=-1, outgoing label=-
1> to the LIB table since it is the joining node. It installs also an entry to the LSG table
with the corresponding <incoming interface, incoming label> and associates it with the (S, G)
session. The <incoming interface, incoming label> for this node equals the <outgoing interface,
outgoing label> for the nexthop node toward the source. If this nexthop node is an (S, G)
session node, then the algoritm searches for the <incoming interface, incoming label> in the
LSG table (associated with the (S, G) session) for this nexthop node and inserts an entry to
its LIB table with <incoming interface, incoming label> associated to the <outgoing interface,
outgoing label> already calculated. This process is repeated at each node toward the source. It
should be noted that at the source there is no need for a new incoming interface and incoming
label.

When a node prunes itself from a session, some labels must be deallocated. The label
deallocation (the prune-group function definition is present in the appendix) is processed at all
nodes on the way from the pruned node toward the source. It stops in one of two cases, either
when it reaches the source, or when it reaches a branching node for the (S, G) session. Label
deallocation means deleting the corresponding (S, G) entries from the LSG and LIB tables. At
a branching node, the algorithm deletes the corresponding entry from the LIB table only since
the branching node needs the LSG entry to be able to send data packets to other branches.

4.4 Simulation Scenario

Fig. 7 illustrates a simulation example for the PIM-SM protocol (The Tél file for this example
MPLSPIMSMexample.tcl is presented in the appendix). Let’s take LSR5 as the source and the

® MPLS capable router

LSR1

Figure 7: PIM-SM Simulation Example

group address is Group=8 and suppose that LSR0 and LSR1 join the (S, G) session before the
source starts its transmission. Let’s suppose also that LSR5 is a unicast source at the same
time and sends separately unicast packets to LSRO and LSR2. The MPLS labeling should be
automatically done, and all information tables are filled. At TO the source starts its multicast
and unicast data transmissions. While the source is transmitting its packets, LSRO leaves at
T1 the session by executing the prune-group function, and at T2, LSR2 joins the session. The
source stops sending multicast packets at T3 and restart transmission at T4. As in unicast,
in order to trace the labeling tables, one can use the dump function LSGdump. Note that the
LIB table is used for both unicast and multicast transmissions.

Irisa

A Simulator for Multicast Routing over an MPLS Network 17

4.5 Simulator Evaluation

In order to see how labels are allocated at each node, we will consider the two nodes LSR4
and LSR3, and see how the LIB and LSG tables are filled at each node. At node LSR4, the
LSG is filled with the (S = 5, G = 8) entry where <incoming label=6, incoming interface=5>.
In the LIB table the <incoming label=6, incoming interface=5> points toward the <outgoing
label=6, outgoing interface=3>. This is shown in the next two tables:

___LIB dump___ [LSR: 4]

iIface iLabel oIface oLabel LIBptr
0: -1 1 3 0 -1
1: -1 2 5 0 -1
2: -1 3 3 2 -1
3: -1 4 3 3 -1
4: -1 5 3 4 -1
5: 5 6 3 6 -1

__LSG dump___ [LSR: 4]

iIface iLabel Source Group
0: 5 6 5 8

While for LSR3, which is a branching node, the LSG is filled with the (S=5, G=8) en-
try where <incoming label=6, incoming interface=4>, and the LIB maps the <incoming la-
bel=6, incoming interface=4> entry toward two outputs, one <outgoing label=1, outgoing
interface=1> and one <outgoing label=1, outgoing interface=2>. This is shown in the next
two tables :

___LIB qump___ [LSR: 3]

iIface iLabel oIface oLabel LIBptr
0: -1 1 4 0 -1
1: -1 2 0 0 -1
2: -1 3 1 0 -1
3: -1 4 2 0 -1
4: -1 5 4 2 -1
6: 4 6 1 1 -1
T: 4 6 2 1 -1

__LSG dump___ [LSR: 3]

iIface iLabel Source Group
0: 4 6 5 8

Fig. 8 shows the total used bandwidth (unicast packets for LSRO and LSR1 plus multicast
packets for the session (S, G) received from the source LSR5) on link LSR3-LSRA4.
PIn "’ 1493

18 A. Boudani, C. Jawhar, B. Cousin and M. Doughan

Bandwidth in Mbit/s

1.0 fr w

0.5 / U(\L“
0.0

0.0 5.0 10.0

Timein seconds

Figure 8: Bandwidth (in Mbit/s) used on link LSR3-LSR4

It is clear from this example that our simulator can be useful for researchers to simulate
and evaluate their MPLS multicast and multicasting related techniques.

5 Conclusion

Merging the MPLS technology and the multicast technolgy is very important. Multicasting
over MPLS networks can benefit from the multicast reducing of traffic on one hand, and MPLS
flexibility, speed and quality of service on the other hand. In this paper, we propose a simulator
for multicast routing over an MPLS network by extending MPLS Network Simulator (MNS).
Our basic idea is to preserve the existing code for unicast transmission simulation using the M-
PLS networks simulator (MNS). Unicast label distribution, LSP construction and L2 switching
still functioning the same.

Many multicast protocols have been proposed and are in use today on the Internet. The
implementation of multicasting over MPLS networks must be done for each one of these multi-
cast protocols. This work focuses on the study of the PIM-SM protocol (source specific mode)
over MPLS networks since it is the most widely implemented protocol but our work can be
beneficial to other protocols as well. This simulator is based on the piggybacking proposition
[13] where a label is piggybacked over the join message in PIM-SM protocol.

The implementation of PIM-SM protocol (source specific tree) over an MPLS network is
done with minimum modifications of the unicast MPLS code in NS. A new information table
(LSG) which maps the incoming label to an (S,G) session is created. The structure of the
multicast packet has the structure of a unicast packet but the MPLS node uses its LSG table
to discover from the IP destination address whatever this packet is a multicast packet or not.
The LSG entries of the MPLS nodes in an MPLS network are filled and deleted when new
group members join or leave a multicast (S,G) session.

The LIB table remains the same when an <incoming label, incoming interface> is mapped to
an <outgoing label, outgoing interface>. In branching nodes of multicast trees, an <incoming
label, incoming interface> is mapped to more than one <outgoing label, outgoing interface>.
The L2 switching is done in the same manner as in unicast MPLS transmission, the only
difference is on branching nodes where the MPLS node makes several copies of the packet and

Irisa

A Simulator for Multicast Routing over an MPLS Network 19

swaps the convenient outgoing label and the packet is transmitted to the nexthop which is
associated to the outgoing interface.

There remains a lot more capabilities to be added and extended to the proposed simulator
such other MPLS multicast propositions and protocols, multicast trees construction using ex-
plicit routes and, QoS support on each node. This simulator can efficiently help researchers to
simulate and evaluate their MPLS multicast and multicasting related techniques.

PIn"°1493

20

A. Boudani, C. Jawhar, B. Cousin and M. Doughan

6 Appendix

e MPLS simulation example: file MPLSexample.tcl

set

set
$ns
set
$ns

ns [new Simulator]

nf [open MPLSexample.nam w]
namtrace-all $nf

f0 [open MPLSexample.tr w]
trace-all $£f0

proc finish {} {

$ns

set

$ns
set
set
set
set
set
set
$ns

set
set

$ns
$ns
$ns
$ns
$ns
$ns
$ns
$ns
$ns
$ns

global ns nf f0

$ns flush-trace

close $nf

close $£f0

exec nam MPLSexample.nam &
exit O

rtproto DV
NodeO [$ns node]

node-config -MPLS ON
LSR1 [$ns node]
LSR2 [$ns node]
LSR3 [$ns node]
LSR4 [$ns node]
LSR5 [$ns node]
LSR6 [$ns node]
node-config -MPLS OFF

Node7 [$ns node]
Node8 [$ns node]

duplex-link $NodeO $LSR1 1Mb 10ms DropTail
duplex-link $LSR1 $LSR2 IMb 10ms DropTail
duplex-link $LSR1 $LSR4 IMb 10ms DropTail
duplex-link $LSR2 $LSR3 IMb 10ms DropTail
duplex-link $LSR3 $LSR4 1Mb 10ms DropTail
duplex-link $LSR3 $LSR6 1Mb 10ms DropTail
duplex-link $LSR4 $LSR5 IMb 10ms DropTail
duplex-link $LSR5 $LSR6 IMb 10ms DropTail
duplex-link $LSR6 $Node7 1Mb 10ms DropTail
duplex-link $LSR6 $Node8 1Mb 10ms DropTail

Irisa

A Simulator for Multicast Routing over an MPLS Network

for {set i 1} {$i < 7} {incr i} {

set a LSR$i

for {set j [expr $i+1]1} {$j < 7} {incr j} {
set b LSR$j
eval $ns LDP-peer $$a $$b

}

set m [eval $$a get-module "MPLS"]

$m enable-reroute '"new"

b

$ns 1ldp-request-color blue
$ns ldp-mapping-color red

$ns ldp-withdraw-color magenta
$ns ldp-release-color orange

$ns ldp-notification-color yellow

[$LSR1 get-module "MPLS"] enable-control-driven
[$LSR2 get-module "MPLS"] enable-control-driven
[$LSR3 get-module "MPLS"] enable-control-driven
[$LSR4 get-module "MPLS"] enable-control-driven
[$LSR5 get-module "MPLS"] enable-control-driven
[$LSR6 get-module "MPLS"] enable-control-driven

set Src [new Agent/CBR]

$ns attach-agent $NodeO $Src
$Src set packetSize_ 200
$Src set Interval_ 0.08

set Dst [new Agent/Null]
$ns attach-agent $Node7 $Dst

$ns connect $Src $Dst

$ns at 0.5 "$Src start"
$ns at 1.5 "$Src stop"

[$LSR1 get-module "MPLS"] trace-1dp
[$LSR1 get-module "MPLS"] trace-mpls

$ns at 2.0 "[$LSR1 get-module "MPLS"] pft-dump"
$ns at 2.0 "[$LSR1 get-module "MPLS"] lib-dump"
$ns at 2.0 "[$LSR1 get-module "MPLS"] erb-dump"
$ns at 2.0 "[$LSR2 get-module "MPLS"] pft-dump"
$ns at 2.0 "[$LSR2 get-module "MPLS"] lib-dump"
$ns at 2.0 "[$LSR2 get-module "MPLS"] erb-dump"

PIn°1493

22

A. Boudani, C. Jawhar, B. Cousin and M. Doughan

$ns
$ns
$ns

$ns
$ns
$ns

$ns
$ns
$ns

$ns
$ns
$ns

$ns
$ns

at
at
at

at
at
at

at
at
at

at
at
at

at
run

"[$LSR3 get-module "MPLS"] pft-dump"
"[$LSR3 get-module "MPLS"] lib-dump"
"[$LSR3 get-module "MPLS"] erb-dump"

"[$LSR4 get-module "MPLS"] pft-dump"
"[$LSR4 get-module "MPLS"] lib-dump"
"[$LSR4 get-module "MPLS"] erb-dump"

"[$LSR5 get-module "MPLS"] pft-dump"
"[$LSR5 get-module "MPLS"] lib-dump"
"[$LSR5 get-module "MPLS"] erb-dump"

"[$LSR6 get-module "MPLS"] pft-dump"
"[$LSR6 get-module "MPLS"] lib-dump"
"[$LSR6 get-module "MPLS"] erb-dump"

"finish"

e The join message algorithm

Check if the joining
node is an (S, G)
session node

nexthop = nexthop toward the source
ilface = nexthop toward the source
iLabel = new incoming label for this node

LSG install (ilface, iLabel, Source, Group)

LIB install (ilface, iLabel, olface=—1, oLabel=-1)

If source is Yes
a session nod

NOV

nexthop.iLabel = new incoming label
Spurce.LSG install (ilface=-1, iLabel, Source, Group)

|

l ‘ iLabel = incoming Label already set for (S, G)

\l

nexthop.ilface = nexthop toward the source
nexthop.iLabel = new incoming label
nexthop.LIBinstall (ilface, iLabel, oLabel, olface)

‘ Source.LIB install (ilface=-1, iLabel, oLabel, olface) ‘

nexthop.LSGinstall(ilface, iLabel, Source, Group)

ilface = incoming interface already set for (S, G)
iLabel = incoming label already set for (S, G)
nexthop.LIBinstall (ilface, iLabel, oLabel, olface)

olface=nexthop
oLabel=iLabel

‘ nexthop=nexthop toward the Source

|

LG

Figure 9: Join-group Algorithm

e The join-group function written in file ns-mpls-node.tcl

RtModule/MPLS instproc join-group { Source Group } {

Irisa

A Simulator for Multicast Routing over an MPLS Network 23

set Sourceid [$Source id]

set nodeid [[$self node] idl

set node [[Simulator instance] get-node-by-id $nodeid]
set checkSG [$self checkSG $Sourceid $Group]

if {$checkSG != -1} {
return ‘-1’
}
set oIface $nodeid
set nexthopid [$self lookup-nexthop $nodeid $Sourceid]
set nexthop [[Simulator instance] get-node-by-id $nexthopid]
set iIface $nexthopid
set ilabel [$self new-incoming-label]
set oLabel $iLabel
$self installLIB $iIface $ilabel -1 -1
$self installLSG $iIface $ilLabel $Sourceid $Group
for {
set nexthopid [$self lookup-nexthop $nodeid $Sourceid]
set nexthop [[Simulator instance] get-node-by-id $nexthopid]
} { $nexthopid != $Sourceid } {
set nexthopid [$self lookup-nexthop $nexthopid $Sourceid]
set nexthop [[Simulator instance] get-node-by-id $nexthopid]
Ao
set iLabel [[$nexthop get-module "MPLS"] get-iLabel-for-SG $Sourceid $Group]
set iIface [[$nexthop get-module "MPLS"] get-ilface-for-SG $Sourceid $Group]
if {$iLabel < 0}
set ilLabel [[$nexthop get-module "MPLS"] new-incoming-label]
set iIface [$self lookup-nexthop $nexthopid $Sourcei
[$nexthop get-module "MPLS"] installLIB $iIface $iLabel $oIface $oLabel
[$nexthop get-module "MPLS"] installLSG $iIface $iLabel $Sourceid $Group
} else {
[$nexthop get-module "MPLS"] installLIB $iIface $iLabel $oIface $oLabel
return
}
set oLabel $iLabel
set oIface $nexthopid
}
if {$nexthopid == $Sourceid } {
set check [[$nexthop get-module "MPLS"] checkSG $Sourceid $Group]
if {$check == -1 } {
set iLabel [[$nexthop get-module "MPLS"] new-incoming-label]
[$nexthop get-module "MPLS"] installLSG -1 $iLabel $Sourceid $Group

} else
set iLabel [[$nexthop get-module "MPLS"] get-iLabel-for-SG $Sourceid $Group]
}

[$nexthop get-module "MPLS"] installLIB -1 $iLabel $oIface $oLabel
PIn"°1493

24

A. Boudani, C. Jawhar, B. Cousin and M. Doughan

return

e The prune message algorithm

check if the
nodeisan (S, G)
session node

No
G

ilface=incoming interface already set for (S, G)
iLabel=incoming label aready set for (S, G)
olface=outgoing interface already set for (S, G)
olabel=outgoing label already set for (S, G)

A

LIBdelete (ilface, iLabel, oLabel, olface)
L SG delete (Source, Group)

ilface=Nexthop incoming interface already set for (S, G)
iLabel=Nexthop incoming label already set for (S, G)
olface=Nexthop outgoing interface already set for (S, G)
ilface=Nexthop incoming interface already st for (S, G) ol abel=outgoing label aready set for (S, G)
iLabel=Nexthop incoming label already set for (S, G) N .

ol face=Nexthop outgoing interface already set for (S, G) ‘ nexthopL |Bdelete (ilface, iLabel, oL abel, olface) ‘
oL abel=outgoing |abel aready set for (S, G)

nexthopL IBdelete(ilface, iLabel, oLabdl, olface) |

‘ Sourcel SGdelete (Source, Group) ‘

L SG delete (Source, Group)

‘ nexthop=nexthop toward the Source ‘

Figure 10: Prune-group Algorithm

e The prune-group function written in file ns-mpls-node.tcl

RtModule/MPLS instproc prune-group { Source Group } {

set Sourceid [$Source id]

set nodeid [[$self node] id]

set node [[Simulator instance] get-node-by-id $nodeid]

set nexthopid [$self lookup-nexthop $nodeid $Sourceid]

set nexthop [[Simulator instance] get-node-by-id $nexthopid]
set checkSG [$self checkSG $Sourceid $Group]

if {$checkSG == -1} {
return "-1"
}
set iLabel [$self get-ilLabel-for-SG $Sourceid $Groupl
set iIface [$self get-iIface-for-SG $Sourceid $Group]
set oLabel [$self get-oLabel-for-SG $Sourceid $Group]

Irisa

A Simulator for Multicast Routing over an MPLS Network 25

set oIface [$self get-oIface-for-SG $Sourceid $Group]
if {$oLabel != -1} {
return "-1"
}
$self LIBdelete $ilabel $oIface
$self LSGdelete $Sourceid $Group

for {

set nexthopid [$self lookup-nexthop $nodeid $Sourceid]

set nexthop [[Simulator instance] get-node-by-id $nexthopid]

} { $nexthopid != $Sourceid } {

set nexthopid [$self lookup-nexthop $nexthopid $Sourceid]

set nexthop [[Simulator instance] get-node-by-id $nexthopid]

A

set iIface [[$nexthop get-module "MPLS"] get-ilface-for-SG $Sourceid $Group]

set iLabel [[$nexthop get-module "MPLS"] get-iLabel-for-SG $Sourceid $Group]

set oLabel [[$nexthop get-module "MPLS"] get-oLabel-for-SG $Sourceid $Group]

set oIface [$self lookup-nexthop $nexthopid $nodeid]

[$nexthop get-module "MPLS"] LIBdelete $iLabel $oIface

set checkbranching [[$nexthop get-module "MPLS"] is-branching $Sourceid $Groupl
if { $checkbranching > 0} {

return "1"
}
$self LSGdelete $Sourceid $Group
}

set iIface [[$nexthop get-module "MPLS"] get-ilface-for-SG $Sourceid $Group]
set ilLabel [[$nexthop get-module "MPLS"] get-iLabel-for-SG $Sourceid $Group]
set oLabel [[$nexthop get-module "MPLS"] get-oLabel-for-SG $Sourceid $Group]
set oIface [$self lookup-nexthop $nexthopid $nodeid]

[$nexthop get-module "MPLS"] LIBdelete $ilLabel $oIface

set checksourcebranching [[$nexthop get-module "MPLS"]
is-branching $Sourceid $Groupl
if { $checksourcebranching > 0} {
return "1"
}
[$nexthop get-module "MPLS"] LSGdelete $Sourceid $Group
}

e MPLS PIM-SM simulation example: file MPLSPIMSMexample.tcl

set ns [new Simulator]

set nf [open MM10.nam w]

$ns namtrace-all $nf

set f0 [open MM10.tr w]
PIn-° 1493

A. Boudani, C. Jawhar, B. Cousin and M. Doughan

$ns trace-all $£f0

proc finish {3} {
global ns nf £fO0
$ns flush-trace
close $nf
close $£f0
exec nam MM10.nam &
exit O

$ns rtproto DV

$ns node-config -MPLS ON
set LSRO [$ns node]
set LSR1 [$ns nodel
set LSR2 [$ns node]
set LSR3 [$ns node]
set LSR4 [$ns node]
set LSR5 [$ns node]
$ns node-config -MPLS OFF

$ns duplex-link $LSRO $LSR3 1Mb 10ms DropTail
$ns duplex-link $LSR1 $LSR3 1Mb 10ms DropTail
$ns duplex-link $LSR2 $LSR3 1Mb 10ms DropTail
$ns duplex-link $LSR3 $LSR4 1Mb 10ms DropTail
$ns duplex-link $LSR4 $LSR5 1Mb 10ms DropTail

for {set i 0} {$i < 6} {incr i} {

set a LSR$i

for {set j [expr $i+1]} {$j < 6} {incr j} {
set b LSR$j
eval $ns LDP-peer $$a $$b

}

set m [eval $$a get-module "MPLS"]

$m enable-reroute '"new"

}

$ns ldp-request-color blue
$ns ldp-mapping-color red

$ns ldp-withdraw-color magenta
$ns ldp-release-color orange

$ns ldp-notification-color yellow

[$LSRO get-module "MPLS"] enable-control-driven
[$LSR1 get-module "MPLS"] enable-control-driven

Irisa

A Simulator for Multicast Routing over an MPLS Network

27

[$LSR2 get-module
[$LSR3 get-module
[$LSR4 get-module
[$LSR5 get-module

set Group 8

"MPLS"] enable-control-driven
"MPLS"] enable-control-driven
"MPLS"] enable-control-driven
"MPLS"] enable-control-driven

set Src [new Agent/CBR]
$ns attach-agent $LSR5 $Src
$Src set packetSize_ 200

$Src set Interval_
$Src set dst_addr_
$Src set dst_port_

$ns at 0.5 "[$LSRO

0.08
$Group
0

get-module "MPLS"] join-group $LSR5 $Group"

$ns at 0.5 "[$LSR1 get-module "MPLS"] join-group $LSR5 $Group"
$ns at 1.0 "$Src start"

$ns at 1.2 "[$LSRO get-module "MPLS"] prune-group $LSR5 $Group"
$ns at 1.3 "[$LSR2 get-module "MPLS"] join-group $LSR5 $Group"
$ns at 1.5 "$Src stop"

$ns at 2.5 "[$LSRO get-module "MPLS"] pft-dump"

$ns at 2.5 "[$LSRO get-module "MPLS"] lib-dump"

$ns at 2.5 "[$LSRO

$ns at 2.5 "[$LSR1
$ns at 2.5 "[$LSR1
$ns at 2.5 "[$LSR1

$ns at 2.5 "[$LSR2
$ns at 2.5 "[$LSR2
$ns at 2.5 "[$LSR2

$ns at 2.5 "[$LSR3
$ns at 2.5 "[$LSR3
$ns at 2.5 "[$LSR3

$ns at 2.5 "[$LSR4
$ns at 2.5 "[$LSR4
$ns at 2.5 "[$LSR4

$ns at 2.5 "[$LSR5

$ns at 2.5 "[$LSR5
$ns at 2.5 "[$LSR5

PIn"°1493

get-module "MPLS"] lsg-dump"

get-module "MPLS"] pft-dump"
get-module "MPLS"] lib-dump"
get-module "MPLS"] lsg-dump"

get-module "MPLS"] pft-dump"
get-module "MPLS"] lib-dump"
get-module "MPLS"] lsg-dump"

get-module "MPLS"] pft-dump"
get-module "MPLS"] lib-dump"
get-module "MPLS"] lsg-dump"

get-module "MPLS"] pft-dump"
get-module "MPLS"] lib-dump"
get-module "MPLS"] lsg-dump"

get-module "MPLS"] pft-dump"
get-module "MPLS"] lib-dump"
get-module "MPLS"] lsg-dump"

28

A. Boudani, C. Jawhar, B. Cousin and M. Doughan

$ns at 3.0 "finish"
$ns run

References

1]

2]

[10]

[11]

[12]

[13]

[14]

[15]

E. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label switching architecture.
IETF RFC3031, January 2001.

G. ahn and W. Chun. Overview of MPLS network simulator: Design and implementation.
Chungnam National University, Korea,http://flower.ce.cnu.ac.kr/ fogl/mns.

K. Fall. and K. Varadhan. The NS Manual. UC Berkeley, LBL, USC/ISI, and Xerox
PARC, January 2001.

UCB/LBNL/VINT. Network animator. URL: http://www.isi.edu/nsnam /nam.

D. Estrin et al. Protocol Independent Multicast-Sparse Mode (PIM-SM): Protocol Speci-
fication. IETF RFC 2362, 1998.

S. Deering et al. Protocol Independent Multicast version 2-Dense Mode Specification.
IETF Internet Draft, http://catarina.usc.edu/pim/pimdm /pim-dm-06.txt, 1997.

L. Andersson, P. Doolan, N. Feldman, A. Fredette, and B. Thomas. LDP specification.
IETF RFC3036, Januray 2001.

M. Ramalho. Intra- and Inter-domain multicast routing protocols: A survey and taxonomy.
IEEE Communications Surveys and Tutorials, 3(1):2-25, First Quarter 2000.

H. Holbrook and B. Cain. Source-Specific Multicast for IP (SSM). IETF Internet draft,
2001.

D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow. RSVP-TE: Exten-
sions to RSVP for LSP tunnels. IETF RFC3209, December 2001.

X. Xiao, A. Hannan, B. Bailey, and L. Ni. Traffic engineering with MPLS in the Internet.
IEEE Network, 14(2):28-33, March/April 2000.

D. Ooms, W. Livens, A. Acharya, F. Griffoul, and F. Ansari. Framework for IP multicast
in MPLS. IETF Internet draft, January 2002.

D. Farinacci, Y. Rekhter, and E. Rosen. Using PIM to distribute MPLS labels for multicast
routes. IETF Internet draft, November 2000.

A. Fei, J. Cui, M. Gerla, and M. Faloutsos. Aggregated multicast: An approach to reduce
multicast state. In Proceedings of the Third International COST264 Workshop (NGC
2001) UCL. London, number 2233 in LNCS, pages 172-188, november 2001.

A. Boudani and B. Cousin. A new approach to construct multicast trees in mpls networks.
In Seventh IEEE Symposium on Computers and Communications, pages 913-919, 2002.

Irisa

A Simulator for Multicast Routing over an MPLS Network 29

[16] G. Ahn and W. Chun. Design and implementation of mpls network simulator supporting
ldp and cr-1dp. In IEEE International Conference on Networks (ICON’00), 2000.

PIn"°1493

