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A b s t r a c t  
This paper presents regular hashing functions. Used in conjunction with differential 
computation process, regular hashing functions enable searching time of global state to be 
optimized. After a formal definition of the regular property for hashing functions, we 
propose a characterization of this property. Then the formal definition of differential 
hashing function is given. Next, we show the performance acceleration produced by the 
preeomputed differential computation process applied to three hashing functions 
commonly used. The observed accelerations can be significant because the complexity of 
proposed implementation is independent of key length or respectively of item difference 
contrary to the usual or respectively differential implementations. Last we study the 
performances of precomputed differential hashing computation process on reachability 
graph exploration of distributed systems specified by Petri net using the Bouster tool, and 
on state space exploration of protocols specified by Lotos using the Open/Caesar 
environment. 

1 .  I n t r o d u c t i o n  

Hashing method is a well suited method to achieve state-space exploration for 
verification of distributed systems. Hashing method is used as searching method to 
accelerate the retrieval process of a particular state among large state space under 
exploration. This method enables searching, insertion and suppression operations to 
be done on average at a constant cost in number of comparisons. But the usual 
computation process of the hashing value has the first following drawback : its 
complexity is at least proportional to the key length, and unfortunately, the state 
descriptor, from which the keys are based, is in general very large (several hundreds of 
bytes [Doldi 92, Holzmann 91, Wolper 93]), if accurate modelling is considered. 

Moreover, some of the recent works on state-space exploration made an intensive 
use of hashing functions (bitstate method [Holzmann 88], multihash method [Wolper 
93]) : two hashing function calls in Holzmann's Spin validation environment for each 
newly created state, Wolper recommends 20 calls for each newly created state to 
achieve large coverage of the state-space. These two methods reduce the amount of 
space needed to store the explored state-space but, as Wolper writes, due to the 
intensive function calls, they have the second following drawbacks : "computing 20 
hash functions is quite expensive and will substantially slow down the search". 

In previous work on improvement of state-space exploration we have introduced 
differential hashing functions [Cousin 93]. These hashing functions use differential 
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computation process of the hashing value which replaces the usual computation 
process, and which optimizes their processing time. The proposed optimization is 
based on the following observation: key structure can be viewed as record of items. 
The computation process is called differential, if we can infer the hashing value of a 
key from the hashing value of another key which differs from the previous key in only 
few items. It can be more efficient to deduce the new hashing value knowing the value 
of some few new items rather than to apply the usual computation process on every 
item of the new key. 

In opposition to the usual one, the differential computation process complexity is 
proportional to the difference number, which is the number of modified item between 
two successive keys. In general, studied systems have inherently successive states 
whose keys have few differing items (less than 10%) : the subsystems of a distributed 
system do not evolve simultaneously and at every moment. And our performance 
evaluation of differential computation process for hashing function has showed that it 
enables a substantial processing time improvement for typical distributed systems 
analysis. 

However when the difference ratio is high the improvement can vanish because 
each difference in the key needs to be computed by a so-called mono-differential 
function. Even if the complexity of the mono-differential computation is far less than 
the complexity of the usual computation, the time spent into numerous function calls 
can exceed the gain in complexity. 

This is why in this current work we propose an improvement of the differential 
computation process. ,This improvement is based on the knowledge of the 
mathematical operations which produce the new states. This knowledge enables the 
differential hashing value associated to each transition of the model to be computed 
during the initial loading phase of the model (or during the first firing of each 
transition). Similarly to the transition function associated to each transition which 
enables a new state to be produced from a previous state, the differential hashing value 
enables the hashing value of a new state to be computed from the hashing value of the 
previous state. The precomputed value is obtained from the same items as the original 
differential method : the items which differ. So we called it the differential hashing 
value. 
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Figure 1 - Hashing value computation 

From data point of view, there can be three different manners to implement the same 
hashing function (Figure 1): the usual hashing computation process which is 
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computed from all the items of the new state; the differential hashing computation 
process which uses the previous hashing value and all the items of the previous state 
and of the new state which differ [Cousin 93]; and the precomputed differential hashing 
computation process which uses the previous hashing value and the differential 
hashing value associated with the transition which has produced the new state. 

At storage and computing cost of one differential hashing value for each transition 
of the model, the precomputed and differential method enables the complexity of 
hashing value to be completely independent of the length of the key and the number of 
differences. Unfortunately, a precomputed differential computation process can not be 
associated with every existing hashing function : first, because the hashing function 
has to be differential and it has been shown in our previous work that all hashing 
functions are not differential; second, because the operations used by the hashing 
function have to be compatible with the operations used by the transition function - 
this property is called regularity. 

In the second section, after a formal description of regular functions and of 
differential hashing functions, we produce a characterization of the regular function. 
This characterization can be useful to find a precomputed differential hashing 
computation process because all hashing functions as well as all differential hashing 
functions are not necessarily regular. 

The third section addresses the following question: Are the precomputed differential 
computation processes always more efficient than the differential or usual computation 
processes? We show that this is always the case, and furthermore, the precomputed 
differential implementation, enabling very efficient coding, cuts down the processing 
time significantly. 

The fourth section gives the performances achieved by the precomputed differential 
hashing function used in the Bouster verification tool [Bonafos 90], based on formal 
description of distributed systems by Petri net, and the Open/Caesar verification tool 
[Garavel 90] based on Lotos. These state-space exploration examples allow us to 
exhibit the advantages and the limits of our precomputed differential computation 
process. 

2. Regular functions 
2.1 P r e s e n t a t i o n  

Regular functions are defined in relation to other applications which represent the 
transition functions used to produce the new state. As stated above, the hashing 
functions have to be compatible with the transition functions, to enable the 
precomputation of the differential hashing value. We call this compatibility the 
regular property. 
Definit ion:  regular property 

An application h from A to B is regular for the application f from A to A (h is 
said f-regular) if and only if there exists an application F from B to B such as : 

f o h  = h o F .  (1) 

An example of regular function is given by functions who have a right-inverse i.e. 

there exists h r from B to A such as h o h r = Id where Id is the identity function on A. 

In fact, Vf, taking F = h r o f o h we have h o F = h o h r o f o h = f o h (q.e.d.). 
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2.2 Character izat ion  
We characterize the applications h from A to B which are f-regular. First we 

restrict ourself to surjections, that is to say to applications h such as h(A) = B. 
Theorem : 
A surjection h from A to B is f-regular if, and only if, it satisfies the following 
property: Vx~ A, Vye A, h(x) = h(y) ~ h(f(x)) = h(f(y)). (2) 
Proof  : 

a) the condition (2) is necessary, 
Suppose, by hypothesis, that h is f-regular ; let us assume that Vxe A, Vye A, h(x) = 
h(y). 
According to the definition (1) the f-regular application h respects the following 

property : q F, f o h = h o F. 

Therefore, since F is an application : k/x~ A, Vy~ A, h(x) = h(y) ~ F(h(x)) = F(h(y)). 
According to the definition (1) : Vxe A, ~/yE A, h(x) = h(y) ~ h(f(x)) = h(f(y)), thus 
(2) is satisfied. 

b) The condition is sufficient. 
Let ~. be the equivalence relation on A : x ~. y r h(x) = h(y). 

Let us denote the quotient set A /~  by .~, and, for any xe A, let ~ denote the class of 

x. With the surjection h can be associated the canonical injection h from ,~ to B 

defined by V~e A, h(~) = h(x), where x is a particular element of ~. 

Clearly, h is an application since if x' is another element of ~, we have h(x') -- h(x). 

Similarly h is an injection since h(~) = h~)  ~ h(x) = h(y) where xe x and y~ y, 
~ x ~ . y  
~ ~ = ~ ' .  

Finally, h" is an surjection since h(,~) = h(A) = B. Thus h" is a bijection from ,~ onto 

B. With the application f from A onto A, we associate the relation f from ,~ to ~(,~), 

where ~(~)  denotes the set of subsets of ,~, defined by : V ~ , ~ ,  f(x) = {f(x) such as 

xa ~}. In others words" ~a T(~) r J xe x', 3 ye y', such as f(x)=y. (3) 

Let us show that T is an application from • on to ~. 

Suppose that f has two images ~ and ~" for the same element ~ �9 

~ ~(~) and ~" c ~(~). 
By definition (3) �9 

3 x~ ~, ~ ye ~, such that f(x)=y and ~ x'e ~, B ze ~, such that f(x')=z. 
But x ~. x' and thus h(x) = h(x'). 
By the hypothesis (2) �9 h(x) = h(x') ~ h(f(x)) = h(f(x')); hence f(x) ~ f(x') i.e. y ~, z, 

and thus y = z" (q.e.d.). 

Two images by f of the same element are not distinct, so f is an application. 
Consider the application F from B to B by composition of the previous applications 

via ~ �9 F = ~-1 o ~ o ~ (Figure 2). Finally we show that h o F = f o h. 

Let 9 from A to/~ be the application defined by Vxe A, ~p(x)= ~. We have Vxe A, 
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(f o (p) (x) = q)(f(x)) = fix") = f(~) = f((p(x)) = ((p o f)  (x), and thus f o (p = (p o "~. (4) 

Composing on the right with h : f o 9 o f f  = (p o T o ~ ,  

which can be written : f o (p o ~ = (p o ~'o ~-1 o *f o h . (5) 

But ,  Vxe A, ((p o ~)(x) = ~((p(x)) = ~(~) = h(x), and thus" (p o ~ = h. (6) 

Putting this relation in (5) gives : f o h= h o ~-I o ~ o ~ ,  that is to say 

f o h = h o F by definition of F. (q.e.d.) 

A A 

f ~ -  

9 ~ h ~  B 

Figure 2 - F construction 
The case where h is not a surjection is straightforward. Consider first F' from h(A) to 
h(A) such that f o h = h o F', then extend arbitrarily F' to F from B to B. 

2.3 Examples 

For instance, let I ~  be the application defined as the "exclusive or" between all 

key items. Each item belongs to the same set B. Formally : 
N 

V<Xl ..... xi ..... XN>~ l " I B , ~ ( < X l  ..... xi ..... XN>) = Xl(9... (gxi(9...(gXN with (9 
k=l 

the usual "exclusive Or" operator from B to B. 

The application ~ is regular towards the usual "exclusive Or" operator ((9). 

Proof : 
As the composition of the operators (9 is commutative and associative, similarly the 

composition of the application @ and the operator (9 is commutative and 

associative, and therefore, @ is (9-regular: (9 o @ = @ o (9 (q.e.d.). 

So the precomputed differential hashing function of the hashing function ( ~  for 

the transition function (9 is (9 itself. 

But the application @ is not regular towards the usual addition (+). 
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Proof : 
Counter-example of the characterization property (2): 
Let be N --3, x 1 = 1, x 2 = 2, x 3 = 3. 

(~(<1,2,3>) = (~(<1,3,2>) = 0 but 1~(<1,3,2+1>) ~ (~(<1,2,3+1>) because 

t~(<1,3,2+1>)=1~3~(2+1)=1~3~3=1 and l~ (<  1,2,3+1>)= lq~2~(3+ 1)= 1 @2~4=7 

(q.e.d.). 
This example explains the important of the choice of good hashing functions 

which are regular towards the transition function, all the more the hashing functions 
has to be differential. 

2.4 Differential  funct ions  

Hashing function is an application with N variables from a product of  sets 

N 
I 'IAk to a set B. We denote h(<x 1 ..... xi ..... XN> ) the hashing value of the key 

k=l 
<Xl,...,xi .... ,XN>. 
Definition : mono-differential computation function 

The hashing function h has a mono-differential computation function of the 
hashing value for its i th item if and only if it exists a function Fi from BxAixAi to B 
such that : 

N 
V<Xl ..... xi ..... XN>e r I A k ,  V y i e  A i ,  F i ( h ( < x l  . . . . .  Yi, . . . .  XN>), Yi, xi) = 

k=l 
h(<x I ..... x i ..... XN> ). (7) 

The mono-differential function (Fi) enables the computation of the hashing value 
of a key (<Xl ..... xi ..... XN>: called so n k ey )  from the hashing value of another key 
(<Xl ..... Yi ..... XN>: called father_key) having in common with the previous key every 
items but one (i: called modified item). Knowing the old value of the modified item of 
the father_key (Yi), the new value that this modified item must have in the son_key 
(xi), and the hashing value computed from the father_key (h(<xl ..... Yi ..... XN>)), the 
mono-differential function associated with the modified item enables the computation 
of the hashing value associated with the son_key (h(<xl ..... xi ..... XN>)). 
Definition : differential hashing function 

If for every item of the keys of the hashing function h studied there exists one 
mono-differential computation function, then the set of these mono-differential 
functions constitutes a complete differential computation function family. If a hashing 
function has a complete differential computation function family, we shall say that it 
is differential. 

2.5 Character izat ion  
We can characterize the hashing functions which are differential, that is, which 

admit a complete differential computation function family. 
Not every hashing function admits differential computation functions. For 

instance, the hashing function "| built over a binary set product and defined as the 
binary operator "logical And" is not differential. In fact, no mono-differential 
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computation function can be established: F1(0,0,1) can be equal either to 
FI(|174 or to FI(|174 which contradicts 
the image unicity property. 
Theorem : 

The hashing functions which admit a mono-differential computation function for 
their i th item are characterized by the following property: 

N N 
V<xl ..... xi ..... XN>~ I-IAk, V<yl  ..... Yi ..... YN>~ I-IAk, h(<xl ..... xi ..... XN>) = 

k=l k=l 
h(<yl ..... xi ..... yN >) r h(<xl ..... Yi ..... XN>) -- h(<yl ..... Yi ..... yN>). (8) 

The proof that the property (8) is a necessary and sufficient condition in order that 
the hashing functions admit a Complete differential computation function family can 
be found in [Cousin 93b]. 

2.6 Example 

Consider the same hashing function ( ~ ,  defined previously as the "exclusive or" 

between all the key items, each item belonging to the same set B. 

The mono-differential hashing computation functions Fi can be defined as 

Fi((~(<Xl ..... Yi ..... XN>), Yi, xi) = ~ ( < X l  ..... Yi ..... XN>)~yi~xi 

The proof that the hashing function ( ~  has a complete mono-differential 

computation functions (Vi~ [1,N], 3 Fi ) can be found in [Cousin 93]. 

3. P e r f o r m a n c e  s tudy 
3.1 Presentation 

In this section, we address the issue of performance improvement achieved by the 
precomputed differential computation process. For that purpose, we compare the 
performances obtained by hashing functions using precomputed differential 
computation process to usual or differential ones. 

Due to the reduction of the image definition domain, hashing functions can 
associate several keys with one unique hashing value. Hashing methods associate 
specific functions with hashing functions to resolve collisions. As the precomputed 
and differential computation processes return exactly the same value than the usual 
computation process, the observed performance improvements are independent of the 
performance of the collision resolution function, and thus, are entirely preserved. So 
our study focuses on performances of hashing functions without studying the collision 
resolution functions. Nevertheless, previous studies have shown that the distribution 
of the three following hashing functions are good to very good. So, the preconceived 
idea according to which regular and differential properties induce inefficient hashing 
functions, is not well founded. 

Three hashing functions have been chosen among those found in the literature. 
This sample does not cover all existing hashing functions, but these three functions 
have the advantage to be regular and differential. Besides this advantage, the fact that 
these functions are widely used and the good performance provided by their coding 
simplicity have also been taken in consideration as a criterion of choice. A simple 
algorithm with short code is often faster than a complex and long algorithm. Further 



371 

studies are undertaken to search differential algorithms of other hashing functions, in 
order to increase the study spectrum. 

The proposed hashing functions use the following basic operators: 
division/product, modulo, addition/subtraction, folding [Knott 75]. Other operators can 
been used: power/root, radix transformation, polynomial computation, etc [Lum 71] : 
since they have long computation time, we choose not to use them. 

Let F~i denotes the differential hashing function for the i th item of the hashing 

function h x, F x denotes the precomputed differential function over the transition 
function f, and 8f denotes the set of different items for the transition function f : 8f = 
{xi such that xi*f(xi)}. 

The first function (h 1) uses the folding method based on the logical operator 
"exclusive or", as previously described : 

h l (<xl  ..... xi ..... XN> = { ~ N  i---1 x i '  

F 1 1 (hl(<xl  ..... xi ..... XN>), xi, Yi) = hl (<xl  ..... xi ..... XN>)$yi(gxi,  

F l (h l<x l  ..... xi ..... XN>, f) = hl(<xl ..... xi ..... XN>) �9 ( ~ x i ~  8f (f(xi)(gxi)). 

The second function (h 2) is a sum of the key items weighted by the power of the 
prime constant p: 

N 

h2(<Xl ..... xi ..... XN> = Z xi 'p( i ' l ) ,  
i=l 

F2 (h2(<Xl ..... xi ..... XN>), xi, Yi) = h2(<Xl ..... xi ..... XN>) + (yi-xi).p (i-l) , 

F2(h2<xl ..... xi ..... XN>, f) = h2(<Xl ..... xi ..... XN>) + ~ (f(xi)-xi).p (i-l) . 
xi~ 6f 

The last function (h3), which can be found in [Knuth 73], combines multiple 
precision integer arithmetic and modulo operation, b is equal to the number of bits 
needed to code every item. K is a prime number. In short, the whole key is interpreted 
as multiple precision integer. 

N 

h3(<Xl ..... xi ..... XN> = ( Z xi'2(i-1)'b ) mod K ,  
i=l 

F 3 1 (h3(<Xl ..... xi ..... XN>), xi, Yi) = (h3(<Xl ..... xi ..... XN>)+(yi-xi).2(i-1).b)mod K, 

F3(h3<xl ..... xi ..... XN>, f) = (h3(<Xl ..... x i ..... XN>) + ~(f(xi)--xi).2(i-1).b)mod K. 
xi~ 8f 

The performances of the three hashing functions are displayed in two graphs. In 
both graphs, the time unit is 1/60.10 -6 second. 

The first graph shows the performance results of the usual algorithm and 
differential algorithm for various key lengths [Figure 3]. The codes of the mono- 
differential and precomputed processes are similar so their processing times are almost 
equal : to facilitate the graph reading, only the differential values are drawn. As the 
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processing times can depend on the modified item, we use the following process to 
obtain meaningful results : we compute the mean of several processing time based on 
random drawings of the modified item. 

1 0  6 . - Usual  h3 - 

10 5 , 

10 4 , 

10 3 , 

10 2 "~ 

1 

10 6 

Usual h2 

Usual hl 
Diff h3 

Diffh2 
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i = = = I " ~  

1 0 1 00 1000  Key length 10000  
F i m t r e  3 - U s u a l  o r  d i f fe ren t i a l  n r o c e s s e s  

10 5 

10 4 

10 3 , 
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1 
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The second graph shows the processing time obtained by the usual algorithm, the 
differential algorithm and the precomputed differential algorithm [Figure 4]. In this 
case the key length is fixed and equal to 128. We compute the processing time for 
various numbers of  simultaneous modified items. 
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3.2 Preliminary discussion 
Before going inside the comparison of hashing function computation processes 

(usual, differential or precomputed), it is worth to discuss some facts concerning the 
functions themselves. First, we observe that all the functions have an usual 
computation process which increases in time depending on the length of the key 
(Figure 3). In fact, to be efficient, hashing functions must use all the key items, if 
they are significant, to compute a hashing value [Knuth 73]. So the usual 
computation processes have similar behavior : their computation time increases 
according to the key length. 

Recall that the displayed times do not show the overall performance times of 
hashing methods, because hashing methods are based on hashing/collision resolution 
function pair. We emphasize that an inadequate hashing function can generate 
numerous collisions which will degrade considerably the overall performance of the 
hashing method. However, we should not conclude that the obtained results on 
hashing computation time are not significant. In fact, the time due to resolution 
collision is independent of key length, so it becomes negligible for long keys 
compared to the computation time of the hashing functions [Deudon 92]. Furthermore 
experiments show that the three previous hashing functions are rather good scattering 
functions. 

We have made these performance tests over numerous versions of the hashing 
functions: word length variation (1, 2, 4 bytes item), modification of the overflow 
treatment, table extraction or computation of the computational factor, etc. The 
previous and following described behaviors have been maintained, even if some local 
optimizations have been noted. 

3.3 Results 
If we compare the results obtained from the differential algorithm to those from 

the usual algorithm, we observe that the processing time of the differential algorithm 
is, on the one hand, shorter than the processing time of the usual algorithm, and on 
the other hand, constant with respect to key length, with the exception of the hashing 
function number 3 (Figure 3). In fact, the implementation of the differential algorithm 
of the third hashing function uses multiple precision integer arithmetic. So the 
processing time increases according to key length. 

The influence of the modified item location can be observed over all the hashing 
functions and their differential algorithms, but this influence is very low over all the 
functions except the number 3 hashing function, as established in the previous 
paragraph. The other two functions, although their absolute duration is short, have 
some erratic variations. In fact, theses variations are generated by either the 
coincidence or not coincidence of the modified item location with some constants used 
during differential computation process. 

We recall that the previous results have been established by algorithms based on 
mono-differential functions. In case of multiple differences (case where the sonkey 
differs from the father key by more than one item) the processing time can be deduced 
from the mono-differential result : it is equal to the product of this value and the 
number of differences. So the duration is proportional to the number of different items 
between the two keys. 

The Figure 4 exhibits the following behaviors: the processing times of the usual 
or precomputed algorithms are constant : they are independent of the number of 
simultaneous modified items; even though the processing time of differential 
algorithm is proportional to the number of simultaneous modified items. As stated in 
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our previous work, the processing time of differential algorithm is shorter than the 
one of usual algorithm, only if the number of modified item is low (>10%). Previous 
experiments have pointed out that this condition is verified in practice, and accordingly 
differential algorithm improves the processing time of state space exploration process. 

Nonetheless the current measurements show real improvement of the processing 
time using the precomputed differential algorithm compared with the two other 
algorithms. Shorter are the processing time for usual or differential algorithm, shorter 
are the precomputed algorithm, for a ratio from 20/I to more than 100/1. 

4. Application to state space exploration 
Usual state spaces can be very large. In fact, the graph size and the number of 

states depend on parallelism and accuracy of the modelized system. Previous studies 
lead to establish that real distributed system or protocol models have states whose size 
is significant: 1916 bytes for P-channel protocol [Doldi 92]; hundreds of bytes for 
Holzmann [Holzmann 91]; or from our own experiments several hundred of bytes 
(Transport class 4 protocol). 

Large state space exploration raises two main problems : very huge storage and 
very long computation time. Precomputed differential computation process only 
address the second problem, but many methods, trying to reduce the storage 
requirement, increase their processing time (it is the usual time/space trade-off). 
Several of these methods make intensive use of hashing functions [Holzmann 88, 
Wolper 93]. In this case our proposition can be very effective if it can be combined 
with these methods : under those circumstances, state space exploration requires less 
storage space and shorter processing time. 

An intensive performance test campaign has been carried out using either the 
Bouster validation tool [Campergue 91] or the Open/Caesar verification environment 
[Garavel 90] on a set of several distributed system models. These models had various 
number of places (2 to 50000), various numbers of transitions (I to 50000), various 
numbers of arcs (10 to 100000) and they produce several hundred thousand states. 
These models either have been obtained from an automatic tool which generates 
models with specific or symmetrical topologies, either have been found in literature, 
or have been provided by the package of the tool itself. 

Using the Unix profiler tool, our study established that the hashing function, the 
collision resolution and access function, the transition selection function and the 
compare function are the most time consumer functions: each of these functions 
consume on average 15 to 40 % of the processor time in user mode depending on the 
distributed system studied, and in various order. The order and the utilization time of 
these functions are variable because they depend on the collision rate which itself 
depends on the hashing function, the size of the hashing table and the model 
characteristics. All the other functions without exception used less than 10% of the 
processor time (most of them significantly less). Some specific methods, like bitstate 
method, can raise the processor utilization rate of hashing function to more than 50%, 
if the collision rate is kept low (i.e. hashing table size is close to explored state space 
size). 

We have built three versions for both verification tools using the h 2 function 
which is faster than the h 3 function and has better distribution than the h 1 function. 
The first version uses the usual computation process, the second version the 
differential computation process, the third one the precomputed differential 
computation process. Let us recall that the first tool (Bouster) uses Petri net as 
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description language, while the second one (Caesar) uses Lotos. We have selected 
some significant results (Table 5). 

First, all the measurements show an hashing function speed-up produced by the 
precomputed differential computation process compared with the usual computation 
process from 100/1 to 70/1, so our technic is rather efficient. Second, in contrast with 
the differential speed-up which varies with the studied system, the precomputed speed- 
up is quite constant and independent of the context. Third, the results show that the 
acceleration is independent of the description language and of the verification method 
used. 

TP4 protocol (P. net) 
alternate bit protocol (P. net) 
alternate bit protocol (Lotos) 

symmetrical rin~ (P. net) 
symmetrical ring (Lotos) 

Total time !usual comp. diff. comp. 
2064.6 621.5 147.8 
880.3 367.1 67.5 

2357.0 1043.4 

preeomp, proc. 
18.9 
7.3 

214.4 40.5 
5040.6 2405.3 1070.1 23.6 
14867.1 8655.4 4367.2 96.3 

Table 5 - processing time 
These results exhibit at the same time the importance and the limits of the gain 

which can likely be achieved with the precomputed differential process. In fact, on 
average the processor spends about 40% in the average of its user mode time in tho 
code of the hashing function and collision resolution function. A fast hashing 
function, judicious and balanced, should enable this processing time to be reduced, 
decreasing the collision rate and hashing value computation time. Nevertheless, the 
performance increase due to a differential technique can not magically reduce the 
inherent complexity of the system studied, in particular the huge number of states that 
we sometimes need to generate. Other methods like data densification, partial 
exploration, on the fly verification, etc can be combined to advantage with our 
method. 

These promising results must not hide an important phenomena already raised by 
numerous performance researchers: the influence of the virtual memory mechanism on 
execution time. In fact, a considerable slow down is noticed as soon as the data 
application can not longer be kept in core memory. Nevertheless the direct access 
technique offered by the hashing method as long as the collision rate is kept low, 
favors this method against all other proposed methods because it reduces the inputs 
and outputs between secondary and main memory. 

5. Conclusion 
The results show that differential hashing speed-up increases with key length. In 

fact, typical hashing functions use all key items (this process is recommended to 
enable the hashing value distribution to be balanced); hence the usual algorithm 
complexity is proportional to the key length. In the context of many applications 
(large graph, very numerous states) long key lengths are generated, as corroborated by 
several examples. If the differential algorithm complexity is proportional to the 
modified item number between the original key and the new key, on the contrary, 
precomputed differential algorithm complexity is fixed, and its processing time is 
comparable to the processing time of one function call of the mono-differential 
algorithm, which is very short. 

The differential hashing functions are not a general answer to all the computation 
time problems: they do not always exist, and when they exist, they are not always the 
most efficient. But our previous work establishes that, first, numerous hashing 
functions can be associated with a complete mono-differential function set (i.e. they 
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are differential); second, for the majority of differential computation processes 
processing time is shorter than for the usual ones; third, differential techniques require 
applications where the modified items can be obtained at low cost (no need of modified 
item searching). The proposed application (state space exploration) has all these 
prerequisite characteristics, and consequently enables a substantial improvement of 
performances. 

The current work shows that, if the hashing function is regular for the transition 
functions and if the hashing function is differential then its coding produces drastic 
improvements in processing time. In conjunction with state space compression 
methods the precomputed differential implementation of hashing functions have 
shown their great efficiency �9 reducing of both storage and processing time 
requirements to achieve the verification of distributed systems. 
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