
Performance Improvement of State Space Exploration
by Regular & Differential Hashing Functions

B e r n a r d Cous in
Jean-miche l H61ary

IRISA - Universitd de RennesJ
Campus tmiversitaire de Beaulieu

35042 - Rennes cddex
FRANCE

phone : (33) 99.84.73.33
fax : (33) 99.38.38.32

E-mail : bcousin@irisa.fr

A b s t r a c t
This paper presents regular hashing functions. Used in conjunction with differential
computation process, regular hashing functions enable searching time of global state to be
optimized. After a formal definition of the regular property for hashing functions, we
propose a characterization of this property. Then the formal definition of differential
hashing function is given. Next, we show the performance acceleration produced by the
preeomputed differential computation process applied to three hashing functions
commonly used. The observed accelerations can be significant because the complexity of
proposed implementation is independent of key length or respectively of item difference
contrary to the usual or respectively differential implementations. Last we study the
performances of precomputed differential hashing computation process on reachability
graph exploration of distributed systems specified by Petri net using the Bouster tool, and
on state space exploration of protocols specified by Lotos using the Open/Caesar
environment.

1 . I n t r o d u c t i o n

Hashing method is a well suited method to achieve state-space exploration for
verification of distributed systems. Hashing method is used as searching method to
accelerate the retrieval process of a particular state among large state space under
exploration. This method enables searching, insertion and suppression operations to
be done on average at a constant cost in number of comparisons. But the usual
computation process of the hashing value has the first following drawback : its
complexity is at least proportional to the key length, and unfortunately, the state
descriptor, from which the keys are based, is in general very large (several hundreds of
bytes [Doldi 92, Holzmann 91, Wolper 93]), if accurate modelling is considered.

Moreover, some of the recent works on state-space exploration made an intensive
use of hashing functions (bitstate method [Holzmann 88], multihash method [Wolper
93]) : two hashing function calls in Holzmann's Spin validation environment for each
newly created state, Wolper recommends 20 calls for each newly created state to
achieve large coverage of the state-space. These two methods reduce the amount of
space needed to store the explored state-space but, as Wolper writes, due to the
intensive function calls, they have the second following drawbacks : "computing 20
hash functions is quite expensive and will substantially slow down the search".

In previous work on improvement of state-space exploration we have introduced
differential hashing functions [Cousin 93]. These hashing functions use differential

365

computation process of the hashing value which replaces the usual computation
process, and which optimizes their processing time. The proposed optimization is
based on the following observation: key structure can be viewed as record of items.
The computation process is called differential, if we can infer the hashing value of a
key from the hashing value of another key which differs from the previous key in only
few items. It can be more efficient to deduce the new hashing value knowing the value
of some few new items rather than to apply the usual computation process on every
item of the new key.

In opposition to the usual one, the differential computation process complexity is
proportional to the difference number, which is the number of modified item between
two successive keys. In general, studied systems have inherently successive states
whose keys have few differing items (less than 10%) : the subsystems of a distributed
system do not evolve simultaneously and at every moment. And our performance
evaluation of differential computation process for hashing function has showed that it
enables a substantial processing time improvement for typical distributed systems
analysis.

However when the difference ratio is high the improvement can vanish because
each difference in the key needs to be computed by a so-called mono-differential
function. Even if the complexity of the mono-differential computation is far less than
the complexity of the usual computation, the time spent into numerous function calls
can exceed the gain in complexity.

This is why in this current work we propose an improvement of the differential
computation process. ,This improvement is based on the knowledge of the
mathematical operations which produce the new states. This knowledge enables the
differential hashing value associated to each transition of the model to be computed
during the initial loading phase of the model (or during the first firing of each
transition). Similarly to the transition function associated to each transition which
enables a new state to be produced from a previous state, the differential hashing value
enables the hashing value of a new state to be computed from the hashing value of the
previous state. The precomputed value is obtained from the same items as the original
differential method : the items which differ. So we called it the differential hashing
value.

ng

~ F:, ~ h ~ Usual hashing
~ f ~ " ~ i f f e r e n t l a ! nasnmg [~ ' ~ m p u t a t i o n process

/ / /" compumtionprocess I ~ ~

i',ii f ~ li::i:: i~ili~iiiiii iJl ll !ll Transitionlfunction l Oiii! ll ll
Figure 1 - Hashing value computation

From data point of view, there can be three different manners to implement the same
hashing function (Figure 1): the usual hashing computation process which is

366

computed from all the items of the new state; the differential hashing computation
process which uses the previous hashing value and all the items of the previous state
and of the new state which differ [Cousin 93]; and the precomputed differential hashing
computation process which uses the previous hashing value and the differential
hashing value associated with the transition which has produced the new state.

At storage and computing cost of one differential hashing value for each transition
of the model, the precomputed and differential method enables the complexity of
hashing value to be completely independent of the length of the key and the number of
differences. Unfortunately, a precomputed differential computation process can not be
associated with every existing hashing function : first, because the hashing function
has to be differential and it has been shown in our previous work that all hashing
functions are not differential; second, because the operations used by the hashing
function have to be compatible with the operations used by the transition function -
this property is called regularity.

In the second section, after a formal description of regular functions and of
differential hashing functions, we produce a characterization of the regular function.
This characterization can be useful to find a precomputed differential hashing
computation process because all hashing functions as well as all differential hashing
functions are not necessarily regular.

The third section addresses the following question: Are the precomputed differential
computation processes always more efficient than the differential or usual computation
processes? We show that this is always the case, and furthermore, the precomputed
differential implementation, enabling very efficient coding, cuts down the processing
time significantly.

The fourth section gives the performances achieved by the precomputed differential
hashing function used in the Bouster verification tool [Bonafos 90], based on formal
description of distributed systems by Petri net, and the Open/Caesar verification tool
[Garavel 90] based on Lotos. These state-space exploration examples allow us to
exhibit the advantages and the limits of our precomputed differential computation
process.

2. Regular functions
2.1 P r e s e n t a t i o n

Regular functions are defined in relation to other applications which represent the
transition functions used to produce the new state. As stated above, the hashing
functions have to be compatible with the transition functions, to enable the
precomputation of the differential hashing value. We call this compatibility the
regular property.
Definit ion: regular property

An application h from A to B is regular for the application f from A to A (h is
said f-regular) if and only if there exists an application F from B to B such as :

f o h = h o F . (1)

An example of regular function is given by functions who have a right-inverse i.e.

there exists h r from B to A such as h o h r = Id where Id is the identity function on A.

In fact, Vf, taking F = h r o f o h we have h o F = h o h r o f o h = f o h (q.e.d.).

367

2.2 Character izat ion
We characterize the applications h from A to B which are f-regular. First we

restrict ourself to surjections, that is to say to applications h such as h(A) = B.
Theorem :
A surjection h from A to B is f-regular if, and only if, it satisfies the following
property: Vx~ A, Vye A, h(x) = h(y) ~ h(f(x)) = h(f(y)). (2)
Proof :

a) the condition (2) is necessary,
Suppose, by hypothesis, that h is f-regular ; let us assume that Vxe A, Vye A, h(x) =
h(y).
According to the definition (1) the f-regular application h respects the following

property : q F, f o h = h o F.

Therefore, since F is an application : k/x~ A, Vy~ A, h(x) = h(y) ~ F(h(x)) = F(h(y)).
According to the definition (1) : Vxe A, ~/yE A, h(x) = h(y) ~ h(f(x)) = h(f(y)), thus
(2) is satisfied.

b) The condition is sufficient.
Let ~. be the equivalence relation on A : x ~. y r h(x) = h(y).

Let us denote the quotient set A /~ by .~, and, for any xe A, let ~ denote the class of

x. With the surjection h can be associated the canonical injection h from ,~ to B

defined by V~e A, h(~) = h(x), where x is a particular element of ~.

Clearly, h is an application since if x' is another element of ~, we have h(x') -- h(x).

Similarly h is an injection since h(~) = h~) ~ h(x) = h(y) where xe x and y~ y,
~ x ~ . y
~ ~ = ~ ' .

Finally, h" is an surjection since h(,~) = h(A) = B. Thus h" is a bijection from ,~ onto

B. With the application f from A onto A, we associate the relation f from ,~ to ~(,~),

where ~(~) denotes the set of subsets of ,~, defined by : V ~ , ~ , f(x) = {f(x) such as

xa ~}. In others words" ~a T(~) r J xe x', 3 ye y', such as f(x)=y. (3)

Let us show that T is an application from • on to ~.

Suppose that f has two images ~ and ~" for the same element ~ �9

~ ~(~) and ~" c ~(~).
By definition (3) �9

3 x~ ~, ~ ye ~, such that f(x)=y and ~ x'e ~, B ze ~, such that f(x')=z.
But x ~. x' and thus h(x) = h(x').
By the hypothesis (2) �9 h(x) = h(x') ~ h(f(x)) = h(f(x')); hence f(x) ~ f(x') i.e. y ~, z,

and thus y = z" (q.e.d.).

Two images by f of the same element are not distinct, so f is an application.
Consider the application F from B to B by composition of the previous applications

via ~ �9 F = ~-1 o ~ o ~ (Figure 2). Finally we show that h o F = f o h.

Let 9 from A to/~ be the application defined by Vxe A, ~p(x)= ~. We have Vxe A,

368

(f o (p) (x) = q)(f(x)) = fix") = f(~) = f((p(x)) = ((p o f) (x), and thus f o (p = (p o "~. (4)

Composing on the right with h : f o 9 o f f = (p o T o ~ ,

which can be written : f o (p o ~ = (p o ~'o ~-1 o *f o h . (5)

But , Vxe A, ((p o ~)(x) = ~((p(x)) = ~(~) = h(x), and thus" (p o ~ = h. (6)

Putting this relation in (5) gives : f o h= h o ~-I o ~ o ~ , that is to say

f o h = h o F by definition of F. (q.e.d.)

A A

f ~ -

9 ~ h ~ B

Figure 2 - F construction
The case where h is not a surjection is straightforward. Consider first F' from h(A) to
h(A) such that f o h = h o F', then extend arbitrarily F' to F from B to B.

2.3 Examples

For instance, let I ~ be the application defined as the "exclusive or" between all

key items. Each item belongs to the same set B. Formally :
N

V<Xl xi XN>~ l " I B , ~ (< X l xi XN>) = Xl(9... (gxi(9...(gXN with (9
k=l

the usual "exclusive Or" operator from B to B.

The application ~ is regular towards the usual "exclusive Or" operator ((9).

Proof :
As the composition of the operators (9 is commutative and associative, similarly the

composition of the application @ and the operator (9 is commutative and

associative, and therefore, @ is (9-regular: (9 o @ = @ o (9 (q.e.d.).

So the precomputed differential hashing function of the hashing function (~ for

the transition function (9 is (9 itself.

But the application @ is not regular towards the usual addition (+).

369

Proof :
Counter-example of the characterization property (2):
Let be N --3, x 1 = 1, x 2 = 2, x 3 = 3.

(~(<1,2,3>) = (~(<1,3,2>) = 0 but 1~(<1,3,2+1>) ~ (~(<1,2,3+1>) because

t~(<1,3,2+1>)=1~3~(2+1)=1~3~3=1 and l~ (< 1,2,3+1>)= lq~2~(3+ 1)= 1 @2~4=7

(q.e.d.).
This example explains the important of the choice of good hashing functions

which are regular towards the transition function, all the more the hashing functions
has to be differential.

2.4 Differential funct ions

Hashing function is an application with N variables from a product of sets

N
I 'IAk to a set B. We denote h(<x 1 xi XN>) the hashing value of the key

k=l
<Xl,...,xi ,XN>.
Definition : mono-differential computation function

The hashing function h has a mono-differential computation function of the
hashing value for its i th item if and only if it exists a function Fi from BxAixAi to B
such that :

N
V<Xl xi XN>e r I A k , V y i e A i , F i (h (< x l Yi, XN>), Yi, xi) =

k=l
h(<x I x i XN>). (7)

The mono-differential function (Fi) enables the computation of the hashing value
of a key (<Xl xi XN>: called so n k ey) from the hashing value of another key
(<Xl Yi XN>: called father_key) having in common with the previous key every
items but one (i: called modified item). Knowing the old value of the modified item of
the father_key (Yi), the new value that this modified item must have in the son_key
(xi), and the hashing value computed from the father_key (h(<xl Yi XN>)), the
mono-differential function associated with the modified item enables the computation
of the hashing value associated with the son_key (h(<xl xi XN>)).
Definition : differential hashing function

If for every item of the keys of the hashing function h studied there exists one
mono-differential computation function, then the set of these mono-differential
functions constitutes a complete differential computation function family. If a hashing
function has a complete differential computation function family, we shall say that it
is differential.

2.5 Character izat ion
We can characterize the hashing functions which are differential, that is, which

admit a complete differential computation function family.
Not every hashing function admits differential computation functions. For

instance, the hashing function "| built over a binary set product and defined as the
binary operator "logical And" is not differential. In fact, no mono-differential

370

computation function can be established: F1(0,0,1) can be equal either to
FI(|174 or to FI(|174 which contradicts
the image unicity property.
Theorem :

The hashing functions which admit a mono-differential computation function for
their i th item are characterized by the following property:

N N
V<xl xi XN>~ I-IAk, V<yl Yi YN>~ I-IAk, h(<xl xi XN>) =

k=l k=l
h(<yl xi yN >) r h(<xl Yi XN>) -- h(<yl Yi yN>). (8)

The proof that the property (8) is a necessary and sufficient condition in order that
the hashing functions admit a Complete differential computation function family can
be found in [Cousin 93b].

2.6 Example

Consider the same hashing function (~ , defined previously as the "exclusive or"

between all the key items, each item belonging to the same set B.

The mono-differential hashing computation functions Fi can be defined as

Fi((~(<Xl Yi XN>), Yi, xi) = ~ (< X l Yi XN>)~yi~xi

The proof that the hashing function (~ has a complete mono-differential

computation functions (Vi~ [1,N], 3 Fi) can be found in [Cousin 93].

3. P e r f o r m a n c e s tudy
3.1 Presentation

In this section, we address the issue of performance improvement achieved by the
precomputed differential computation process. For that purpose, we compare the
performances obtained by hashing functions using precomputed differential
computation process to usual or differential ones.

Due to the reduction of the image definition domain, hashing functions can
associate several keys with one unique hashing value. Hashing methods associate
specific functions with hashing functions to resolve collisions. As the precomputed
and differential computation processes return exactly the same value than the usual
computation process, the observed performance improvements are independent of the
performance of the collision resolution function, and thus, are entirely preserved. So
our study focuses on performances of hashing functions without studying the collision
resolution functions. Nevertheless, previous studies have shown that the distribution
of the three following hashing functions are good to very good. So, the preconceived
idea according to which regular and differential properties induce inefficient hashing
functions, is not well founded.

Three hashing functions have been chosen among those found in the literature.
This sample does not cover all existing hashing functions, but these three functions
have the advantage to be regular and differential. Besides this advantage, the fact that
these functions are widely used and the good performance provided by their coding
simplicity have also been taken in consideration as a criterion of choice. A simple
algorithm with short code is often faster than a complex and long algorithm. Further

371

studies are undertaken to search differential algorithms of other hashing functions, in
order to increase the study spectrum.

The proposed hashing functions use the following basic operators:
division/product, modulo, addition/subtraction, folding [Knott 75]. Other operators can
been used: power/root, radix transformation, polynomial computation, etc [Lum 71] :
since they have long computation time, we choose not to use them.

Let F~i denotes the differential hashing function for the i th item of the hashing

function h x, F x denotes the precomputed differential function over the transition
function f, and 8f denotes the set of different items for the transition function f : 8f =
{xi such that xi*f(xi)}.

The first function (h 1) uses the folding method based on the logical operator
"exclusive or", as previously described :

h l (<xl xi XN> = { ~ N i---1 x i '

F 1 1 (hl(<xl xi XN>), xi, Yi) = hl (<xl xi XN>)$yi(gxi,

F l (h l<x l xi XN>, f) = hl(<xl xi XN>) �9 (~ x i ~ 8f (f(xi)(gxi)).

The second function (h 2) is a sum of the key items weighted by the power of the
prime constant p:

N

h2(<Xl xi XN> = Z xi 'p(i ' l) ,
i=l

F2 (h2(<Xl xi XN>), xi, Yi) = h2(<Xl xi XN>) + (yi-xi).p (i-l) ,

F2(h2<xl xi XN>, f) = h2(<Xl xi XN>) + ~ (f(xi)-xi).p (i-l) .
xi~ 6f

The last function (h3), which can be found in [Knuth 73], combines multiple
precision integer arithmetic and modulo operation, b is equal to the number of bits
needed to code every item. K is a prime number. In short, the whole key is interpreted
as multiple precision integer.

N

h3(<Xl xi XN> = (Z xi'2(i-1)'b) mod K ,
i=l

F 3 1 (h3(<Xl xi XN>), xi, Yi) = (h3(<Xl xi XN>)+(yi-xi).2(i-1).b)mod K,

F3(h3<xl xi XN>, f) = (h3(<Xl x i XN>) + ~(f(xi)--xi).2(i-1).b)mod K.
xi~ 8f

The performances of the three hashing functions are displayed in two graphs. In
both graphs, the time unit is 1/60.10 -6 second.

The first graph shows the performance results of the usual algorithm and
differential algorithm for various key lengths [Figure 3]. The codes of the mono-
differential and precomputed processes are similar so their processing times are almost
equal : to facilitate the graph reading, only the differential values are drawn. As the

372

processing times can depend on the modified item, we use the following process to
obtain meaningful results : we compute the mean of several processing time based on
random drawings of the modified item.

1 0 6 . - Usual h3 -

10 5 ,

10 4 ,

10 3 ,

10 2 "~

1

10 6

Usual h2

Usual hl
Diff h3

Diffh2

Diff hl
i = = = I " ~

1 0 1 00 1000 Key length 10000
F i m t r e 3 - U s u a l o r d i f fe ren t i a l n r o c e s s e s

10 5

10 4

10 3 ,

Diff h2

J
Diff ld

Usual h3
Usual h2

Usual hl

Precom h3

lO2
1

Precomp h2
�9 Precomp hl

1 0 1 0 0 Modified items 1 0 0 0
F i g u r e 4 - Usua l , d i f fe ren t ia l o r p r e c o m p u t e d p r o c e s s e s

The second graph shows the processing time obtained by the usual algorithm, the
differential algorithm and the precomputed differential algorithm [Figure 4]. In this
case the key length is fixed and equal to 128. We compute the processing time for
various numbers of simultaneous modified items.

373

3.2 Preliminary discussion
Before going inside the comparison of hashing function computation processes

(usual, differential or precomputed), it is worth to discuss some facts concerning the
functions themselves. First, we observe that all the functions have an usual
computation process which increases in time depending on the length of the key
(Figure 3). In fact, to be efficient, hashing functions must use all the key items, if
they are significant, to compute a hashing value [Knuth 73]. So the usual
computation processes have similar behavior : their computation time increases
according to the key length.

Recall that the displayed times do not show the overall performance times of
hashing methods, because hashing methods are based on hashing/collision resolution
function pair. We emphasize that an inadequate hashing function can generate
numerous collisions which will degrade considerably the overall performance of the
hashing method. However, we should not conclude that the obtained results on
hashing computation time are not significant. In fact, the time due to resolution
collision is independent of key length, so it becomes negligible for long keys
compared to the computation time of the hashing functions [Deudon 92]. Furthermore
experiments show that the three previous hashing functions are rather good scattering
functions.

We have made these performance tests over numerous versions of the hashing
functions: word length variation (1, 2, 4 bytes item), modification of the overflow
treatment, table extraction or computation of the computational factor, etc. The
previous and following described behaviors have been maintained, even if some local
optimizations have been noted.

3.3 Results
If we compare the results obtained from the differential algorithm to those from

the usual algorithm, we observe that the processing time of the differential algorithm
is, on the one hand, shorter than the processing time of the usual algorithm, and on
the other hand, constant with respect to key length, with the exception of the hashing
function number 3 (Figure 3). In fact, the implementation of the differential algorithm
of the third hashing function uses multiple precision integer arithmetic. So the
processing time increases according to key length.

The influence of the modified item location can be observed over all the hashing
functions and their differential algorithms, but this influence is very low over all the
functions except the number 3 hashing function, as established in the previous
paragraph. The other two functions, although their absolute duration is short, have
some erratic variations. In fact, theses variations are generated by either the
coincidence or not coincidence of the modified item location with some constants used
during differential computation process.

We recall that the previous results have been established by algorithms based on
mono-differential functions. In case of multiple differences (case where the sonkey
differs from the father key by more than one item) the processing time can be deduced
from the mono-differential result : it is equal to the product of this value and the
number of differences. So the duration is proportional to the number of different items
between the two keys.

The Figure 4 exhibits the following behaviors: the processing times of the usual
or precomputed algorithms are constant : they are independent of the number of
simultaneous modified items; even though the processing time of differential
algorithm is proportional to the number of simultaneous modified items. As stated in

374

our previous work, the processing time of differential algorithm is shorter than the
one of usual algorithm, only if the number of modified item is low (>10%). Previous
experiments have pointed out that this condition is verified in practice, and accordingly
differential algorithm improves the processing time of state space exploration process.

Nonetheless the current measurements show real improvement of the processing
time using the precomputed differential algorithm compared with the two other
algorithms. Shorter are the processing time for usual or differential algorithm, shorter
are the precomputed algorithm, for a ratio from 20/I to more than 100/1.

4. Application to state space exploration
Usual state spaces can be very large. In fact, the graph size and the number of

states depend on parallelism and accuracy of the modelized system. Previous studies
lead to establish that real distributed system or protocol models have states whose size
is significant: 1916 bytes for P-channel protocol [Doldi 92]; hundreds of bytes for
Holzmann [Holzmann 91]; or from our own experiments several hundred of bytes
(Transport class 4 protocol).

Large state space exploration raises two main problems : very huge storage and
very long computation time. Precomputed differential computation process only
address the second problem, but many methods, trying to reduce the storage
requirement, increase their processing time (it is the usual time/space trade-off).
Several of these methods make intensive use of hashing functions [Holzmann 88,
Wolper 93]. In this case our proposition can be very effective if it can be combined
with these methods : under those circumstances, state space exploration requires less
storage space and shorter processing time.

An intensive performance test campaign has been carried out using either the
Bouster validation tool [Campergue 91] or the Open/Caesar verification environment
[Garavel 90] on a set of several distributed system models. These models had various
number of places (2 to 50000), various numbers of transitions (I to 50000), various
numbers of arcs (10 to 100000) and they produce several hundred thousand states.
These models either have been obtained from an automatic tool which generates
models with specific or symmetrical topologies, either have been found in literature,
or have been provided by the package of the tool itself.

Using the Unix profiler tool, our study established that the hashing function, the
collision resolution and access function, the transition selection function and the
compare function are the most time consumer functions: each of these functions
consume on average 15 to 40 % of the processor time in user mode depending on the
distributed system studied, and in various order. The order and the utilization time of
these functions are variable because they depend on the collision rate which itself
depends on the hashing function, the size of the hashing table and the model
characteristics. All the other functions without exception used less than 10% of the
processor time (most of them significantly less). Some specific methods, like bitstate
method, can raise the processor utilization rate of hashing function to more than 50%,
if the collision rate is kept low (i.e. hashing table size is close to explored state space
size).

We have built three versions for both verification tools using the h 2 function
which is faster than the h 3 function and has better distribution than the h 1 function.
The first version uses the usual computation process, the second version the
differential computation process, the third one the precomputed differential
computation process. Let us recall that the first tool (Bouster) uses Petri net as

375

description language, while the second one (Caesar) uses Lotos. We have selected
some significant results (Table 5).

First, all the measurements show an hashing function speed-up produced by the
precomputed differential computation process compared with the usual computation
process from 100/1 to 70/1, so our technic is rather efficient. Second, in contrast with
the differential speed-up which varies with the studied system, the precomputed speed-
up is quite constant and independent of the context. Third, the results show that the
acceleration is independent of the description language and of the verification method
used.

TP4 protocol (P. net)
alternate bit protocol (P. net)
alternate bit protocol (Lotos)

symmetrical rin~ (P. net)
symmetrical ring (Lotos)

Total time !usual comp. diff. comp.
2064.6 621.5 147.8
880.3 367.1 67.5

2357.0 1043.4

preeomp, proc.
18.9
7.3

214.4 40.5
5040.6 2405.3 1070.1 23.6
14867.1 8655.4 4367.2 96.3

Table 5 - processing time
These results exhibit at the same time the importance and the limits of the gain

which can likely be achieved with the precomputed differential process. In fact, on
average the processor spends about 40% in the average of its user mode time in tho
code of the hashing function and collision resolution function. A fast hashing
function, judicious and balanced, should enable this processing time to be reduced,
decreasing the collision rate and hashing value computation time. Nevertheless, the
performance increase due to a differential technique can not magically reduce the
inherent complexity of the system studied, in particular the huge number of states that
we sometimes need to generate. Other methods like data densification, partial
exploration, on the fly verification, etc can be combined to advantage with our
method.

These promising results must not hide an important phenomena already raised by
numerous performance researchers: the influence of the virtual memory mechanism on
execution time. In fact, a considerable slow down is noticed as soon as the data
application can not longer be kept in core memory. Nevertheless the direct access
technique offered by the hashing method as long as the collision rate is kept low,
favors this method against all other proposed methods because it reduces the inputs
and outputs between secondary and main memory.

5. Conclusion
The results show that differential hashing speed-up increases with key length. In

fact, typical hashing functions use all key items (this process is recommended to
enable the hashing value distribution to be balanced); hence the usual algorithm
complexity is proportional to the key length. In the context of many applications
(large graph, very numerous states) long key lengths are generated, as corroborated by
several examples. If the differential algorithm complexity is proportional to the
modified item number between the original key and the new key, on the contrary,
precomputed differential algorithm complexity is fixed, and its processing time is
comparable to the processing time of one function call of the mono-differential
algorithm, which is very short.

The differential hashing functions are not a general answer to all the computation
time problems: they do not always exist, and when they exist, they are not always the
most efficient. But our previous work establishes that, first, numerous hashing
functions can be associated with a complete mono-differential function set (i.e. they

376

are differential); second, for the majority of differential computation processes
processing time is shorter than for the usual ones; third, differential techniques require
applications where the modified items can be obtained at low cost (no need of modified
item searching). The proposed application (state space exploration) has all these
prerequisite characteristics, and consequently enables a substantial improvement of
performances.

The current work shows that, if the hashing function is regular for the transition
functions and if the hashing function is differential then its coding produces drastic
improvements in processing time. In conjunction with state space compression
methods the precomputed differential implementation of hashing functions have
shown their great efficiency �9 reducing of both storage and processing time
requirements to achieve the verification of distributed systems.

References
[Algayres 91] B.Algayres, & all, "Vesar: a Pragmatic Approach to Formal

Specification and Verification", Computer Network and ISDN Systems, vo125
n~ February 1991.

[Bonafos 90] B.Bonafos, E.Domingo, "Leda : Structured Language for Automata
Description and Verification", rapp. de recherche, Bordeaux-France, june 1990.

[Campergue 92] C.Campergue, C.Nouaille, "Bouster : g6n6ration parall~le du graphe
des marquages accessibles", rapport ENSERB, Bordeaux-France, Juin 1992.

[Cousin 93] B.Cousin, "Differential Hashing Functions : Application to Reachability
Graph Generation". ICCI'93. Sudbury - Canada, 26-29 May 1993.

[Cousin 93b] B.Cousin, "Les fonctions de hachage diffrrentielles". CFIP'93. Montrral
- Canada, 7-9 septembre 1993. Hermes, p525-541.

[Deudon 92] G.Deudon, C.Houillon, "Techniques de hachage", rapport interne
ENSERB, Bordeaux-France, Juin 1992.

[Dimitrijevic 89] D.D.Dimitrijevic, M.S. Chen, "Dynamic State Explosion in
Quantitative Protocol Analysis",PSTV-IX, Twente-Netherland, 6-9June 1989.

[Doldi 92] L.Doldi, P.Gauthier, "Veda-2: Power to the Protocol Designers",
FORTE'92, Lannion-France, 13-16 Octobre 1992.

[Garavel 90] H.Garavel, J.Sifakis, "Compilation and Verification of Lotos
Specifications", PSTV-X, Ottawa, june 1990.

[Holzmann 88] G.J.Holzmann, "An Improved Protocol Reachability Analysis
Technique", Sofware, Practice and Experience, vol 18 n~ Feb. 1988.

[Holzmann 91] G.J.Holzmann, "Design and Validation of Computer Protocols",
Prentice-Hall, 1991.

[Knuth 73] D.E.Knuth, "The Art of Computer Programming: Sorting and Searching",
vol 3, Addison-Wesley, 1973.

[Knott 75] G.D.Knott, "Hashing Functions", The Computer Journal, vol 18, n~
August 1975, p265-278.

[Lum 71] V.Y.Lum, P.S.T.Yuen, M.Dodd, "Key-to-Adress Transform Techniques : a
Fundamental Performance Study on Large Existing Formatted Files",
Communications of the ACM vol14 n~ April 1971.

[West 86] C.H.West, "Protocol Validation by Random State Exploration", PSTV-VI,
Monlrral - Canada, June 1986.

[Wolper 93] P.Wolper, D.Leroy, "Reliable Hashing without Collision Detection",
CAV, Elounda - Greece, June 1993.

[Zhao 86] J.Zhao, G.Bochmann, "Reduced Reachability Analysis of Communication
Protocols: a New Approach", PSTV-VI, Montrral - Canada, June 1986.

