
Model Driven Benchmark Generation for Web Services

Liming Zhu, Ian Gorton, Yan Liu
Empirical Software Engineering, National ICT Australia

School of Computer Science and Engineering,
University of New South Wales

{Liming.Zhu, Ian.Gorton, Jenny.Liu@nicta.com.au}

Ngoc Bao Bui
Faculty of Information Technology, University of

Technology, Sydney, Australia
NgocBao.Bui@student.uts.edu.au

ABSTRACT
Web services solutions are being increasingly adopted in
enterprise systems. However, ensuring the quality of service of
Web services applications remains a costly and complicated
performance engineering task. Some of the new challenges
include limited controls over consumers of a service,
unforeseeable operational scenarios and vastly different XML
payloads. These challenges make existing manual performance
analysis and benchmarking methods difficult to use effectively.
This paper describes an approach for generating customized
benchmark suites for Web services applications from a software
architecture description following a Model Driven Architecture
(MDA) approach. We have provided a performance-tailored
version of the UML 2.0 Testing Profile so architects can model a
flexible and reusable load testing architecture, including test
data, in a standards compatible way. We extended our
MDABench [27] tool to provide a Web service performance
testing “cartridge” associated with the tailored testing profile. A
load testing suite and automatic performance measurement
infrastructure are generated using the new cartridge. Best
practices in Web service testing are embodied in the cartridge
and inherited by the generated code. This greatly reduces the
effort needed for Web service performance benchmarking while
being fully MDA compatible. We illustrate the approach using a
case study on the Apache Axis platform.

Categories and Subject Descriptors
D.2.10 [Software]: Software Engineering – Design; D.2.11
[Software]: Software Engineering – Software Architectures;
D.2.2 [Software]: Software Engineering – Design Tools and
Techniques

General Terms: Design, Theory

Keywords
MDA; model-driven development; Performance; Testing; Code
Generation; Web Service; Service-Oriented Architecture

1. Introduction
Web services technologies have proven useful in the
construction of enterprise-scale systems. However, many
challenges remain, especially ensuring that Web services
solution can meet specified performance requirements [2].

Various performance analysis models with prediction
capabilities exist to evaluate architecture designs during early
phases of the application development cycle [4] [8]. Applying
them to Web services has shown promising results [16].
Utilizing these models requires two distinct activities be carried
out by the application architect. The first requires the
development of specific analytical models based on the
application design. The second must obtain parameter values for
a performance model using measurements or simulation. Both
these activities require significant additional effort and specific
expertise in performance engineering methods. Hence, they are
key inhibitors that have prevented performance engineering
techniques from achieving wide-spread adoption in practice [4].

With the growing interest in Model Driven Architecture
(MDA)[19] technologies, attempts to integrate performance
analysis with MDA and UML have been made, aiming to reduce
the performance modeling effort required. Recent work has
attempted model transformation from UML design models to
method-specific performance analysis models [21]. Parameter
values in these models also depend greatly on the underlying
Web service framework used to implement the application. One
method to obtain and tune these parameters is to run a
benchmark application on the framework. This approach has
proven to be useful with component-based technologies [11,
12] [17] and Web services [16]. Running benchmark
applications can also help in predicting and diagnosing
performance problems, including identifying bottlenecks,
preliminary profiling and exploring core application
characteristics.

An effective benchmark suite includes a core benchmark
application, a load testing suite and performance monitoring
utilities. There are existing industry benchmark standards and
suites applicable to Web services (e.g. TPC-W v2 [9]), but these
are not broadly suitable for performance modeling and
prediction for a number of reasons. First, they are mainly
designed for vendors to showcase and improve their products,
rather than reflecting a specific application’s performance
characteristics. The application logic in these benchmarks is
fixed and impossible to adapt to assist in predicting performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
IW-SOSE’06, May 27–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005...$5.00..

33

for a specific application under design. Second, these benchmark
suites tend to be expensive to acquire and complex to use.

On the other hand, implementing a custom benchmark suite
from scratch for Web services is costly and error-prone. This is
due to the complexity of Web service frameworks and the higher
than usual performance testing demands for Web services.

In our approach, we tackle the problem from two perspectives:

1) A benchmark implementation usually requires a large amount
of container and framework infrastructure-related plumbing,
even for a relatively simple benchmark design. Interestingly, this
characteristic is particularly amenable to MDA-based code
generation, which is efficient at generating repetitive but
complicated infrastructure code. However, one capability that
current MDA code generation frameworks lack is that they do
not provide solutions to the generation of a load testing suite and
performance data collecting utilities.

2) Load testing suites are often constructed in a bottom-up
fashion. Manually produced code is coupled with test data and
the System Under Test (SUT). Their structures are often not
optimized for reuse and adaptation to a large number of load test
scenarios and test data. In order to address this, we raise the
level of load testing suite design by adopting and tailoring the
UML 2.0 Testing profile [23]. The use of the profile encourages
modular design of the load testing suite. Meanwhile, using
MDA-based code generation, a large amount of reusable
performance testing and data capture infrastructure code are also
generated using “cartridges”. A cartridge is a collection of meta-
model definitions, code generation handlers and templates.

The aim of our work is to automate the generation of complete
Web services benchmark suites from a design description. The
input is a UML-based set of design diagrams for the benchmark
application, along with a load testing suite modeled in the UML
2.0 Testing Profile. The output is a deployable benchmark suite
including the core benchmark application, load testing suite, and
performance data collecting utilities.

To demonstrate the approach, the Apache Axis Web service
platform [3] has been selected for our case study. The work is
based on our previous research [27] on model driven customized
benchmark generation and the MDABench toolkit [28]. This
paper illustrates how to model the load testing suite using UML
along with the core application design and generate deployable
customized benchmark applications for Web Services platforms.
Executing the generated benchmark application produces
performance data in an analysis friendly format, along with
automatically generated performance graphs.

This approach has a number of benefits:

1) The generated benchmark suite is based on a design that
closely corresponds to the application of interest, and hence it
captures the unique characteristics of the application. This
should lead to the benchmark producing more representative
measures of the eventual application.

2) Model driven code generation hides the complexities of the
benchmark implementation from architects, and helps them
focus on analyzing the benchmark results that are automatically
produced. It also integrates best practices in Web service

performance testing into the generation “cartridges” and the
associated framework.

3) Following MDA standards, including the UML 2.0 Testing
Profile, and using existing open source MDA frameworks
significantly reduces the learning curve of the approach. It also
takes advantage of existing code generation “cartridges”
exploiting the latest technologies and platforms. The wide range
of interoperable UML modeling tools (due to the MDA/UML
compatibility standard) also makes the approach more amenable
to adoption in practice.

4) Most importantly, the load testing data is modeled in a
modular fashion with test data decoupled from the testing logic.
This allows large numbers of testing scenarios to be
accommodated and managed from a high-level model.

The next section discusses related work on Web service
performance testing and MDA. We then introduce our approach
in section 3. The case study based on Apache Axis is presented
in section 4. We briefly discuss the reusability and extensibility
in section 5 then conclude in section 6.

2. Related Work
2.1 Web Service Performance Testing
The Web service testing domain itself is relatively new. Most of
the current work focuses on functional testing [6]. Performance-
related Web service testing has focused on comparing different
SOAP implementations [18] rather than application-specific
performance. However, such application-specific performance is
vital in situations like service level driven management [7] and
QoS-aware Web services [5].
However, conducting Web service performance testing has its
unique challenges:

• Web services are often consumed by external parties that are
not controlled by the service provider. There are potentially
high numbers of possible usage scenarios to be tested. Some of
them are unpredictable and need to be performance tested on
demand. This requires a flexible and reusable performance
testing architecture.

• Web service operations are often coarse grained. Performance
varies significantly, based on different XML payload sizes,
when the same service is invoked. This demands the service
not only be load tested using different numbers of concurrent
users, but also under different payload sizes. These all increase
the complexity of benchmarking.

• Due to the use of XML and overheads incurred by the
interoperability standards of Web services, applications are
more performance sensitive than traditional component-based
technologies. Increasingly wider adoption of Web services in
enterprise applications demand thorough performance testing
before the system enters production.

Our approach directly addresses these problems by encouraging
flexible load testing designs using the UML 2.0 testing profile
and providing supporting infrastructures through model driven
code generation.

34

2.2 Model Driven Architecture
It has been argued that the MDA approach is a suitable for
facilitating performance analysis of enterprise systems [22]. This
usually involves deriving performance analysis models through
model transformation [20, 24, 25] [13].

Analytical models can not work without data to populate the
model parameters. For complicated commercial systems,
measurements in the form of benchmarking [16] and prototyping
[15] are used to obtain valuable information for architects.
However, comprehensive benchmarking and prototyping can be
very time consuming. As stated earlier, further exacerbating the
problem, multiple benchmarks need to be executed for different
performance scenarios such as different XML payloads and
request mixes for different platforms.

We argue that deriving a customized benchmark application
using MDA improves productivity and quality of the benchmark
generation. Our approach in fact complements MDA based
analytical model construction.

3. Model Driven Benchmark Generation for
Web Services
Some pioneering work has been done on generating benchmark
and prototyping applications using models, as in [14, 15] for
component-based distributed applications. However, it has
several limitations in terms of standards compatibility,
leveraging existing code generation “cartridges” and load test
modeling [27]. Thus, we have developed MDABench [28] using
AndroMDA [1] for customized benchmark generation.
AndroMDA is an open source MDA code generation framework
with a large amount of server-side technology cartridges.
MDABench is essentially a client-side cartridge for benchmark
generation. In this work, we extended MDABench to further
provide a Web services benchmark generation cartridge.

3.1 Core Web Service Application
Generation
The core application generation simply involves modeling the
application in UML and exploiting existing Web service code
generation cartridges. After modeling, all necessary source files
including business method interfaces and implementation
skeletons are generated. Implementation logic needs to be
manually provided to produce a deployable application.
Modeling and generating the benchmark application is not
therefore a distinct engineering step from normal development
activities though the amount of development resources required
differ. It can be considered as one of the early steps in an
incremental development process instead of a throw away
performance prototyping activity. One Platform Independent
Model (PIM) can also be used to generate different deployable
applications for different Web service platforms with little
modification. This can greatly reduce the cost and consequently
the hurdle of performing performance engineering in practice.
More details can be found at [27].

3.2 Load Test Suite Generation
First, we model the load testing behavior using the UML 2.0
Testing Profile [23]. This profile is an OMG standard,

representing a comprehensive superset of existing widely used
testing frameworks such as JUnit. Our new Web service
cartridge extends our existing J2EE performance testing
cartridge. To this end, we have implemented the following
stereotypes in the UML 2.0 Testing Profile: SUT (System under
Test), Test Context, Test Component, Data Pool, Data Partition
and Test Cases. Data pool, data partition and test case can be
used for modeling different test data for the same or different
test cases. Different types of test data can be modeled and
associated with test cases under different circumstances. Please
see [27] for more details.
In the process of developing our approach and implementation,
we integrated performance engineering best practices from the
various leading technologies and our own experience.

3.2.1 Test Suite Internal Design
The internal design of the load testing infrastructure is inspired
by ECperf/SPECjAppser [9]. Clients, Controllers and Drivers
are separate components which coordinate the testing in a
flexible distributed manner. The Driver interprets the run
properties, communicates with Clients and configures them
according to the model. Clients register themselves with a
controller, and the controller aggregates the final performance
results. Through this modular design, the Controller/Driver can
be reused across applications. Clients will be generated
according to Web service consuming logic and the modeled load
testing data. The Controller/Driver infrastructure can evolve
independently from the generated Clients. This design style has
become a de-facto standard in distributed testing community.

3.2.2 Performance Metrics and Collection Utilities
Performance metrics are based on industry standards such as
TPC-W v2 [23]. Some example metrics data for Web service
include:

• SIRT (Web Service Interaction Response Time): the time
taken to perform a successful web interaction

• SIPS (Service Interactions Per Second): the average number
of SIPS completed during a measurement internal. We also use
transactions per second (TPS) to refer to per second service
interaction.

In this manner, analysis friendly performance data can be
collected and standard benchmark reports can be generated if
appropriate report generation templates are developed.
We also included more metrics such as timing details and
distribution statistics. Distribution statistics allows a more in-
depth view of the performance results compared to average
response time and throughput. These enable us to identify
critical irregularities and their causes during our test runs of the
benchmarks. We also provide capabilities to store the timing
details. Timing details capture the time to execute each
individual operation to be recorded in the results repository.
This may of course incur performance and storage overhead.
However, the timing information allows further correlation with
other internal or external events which may have significant
performance impacts. Performance collection utilities are based
on our own extensive experience on performance testing.

35

3.2.3 Load Testing Configuration
In addition to basic load testing configuration support [27] such
as concurrent users and request mixes, we have also provided
more realistic incremental and spike test simulation. They are
based on Grinder 3 [10] and Microsoft Visual Studio 2005.
Some examples are:

All these best practices are essentially encapsulated in the
cartridge, and its use automatically supports these best practices
through generated code structures and utilities. This is one of the
main motivations behind our approach.
We provide a complete template for generating a default
implementation for all operations on SUT with randomly
generated data based on a data pool model. A database seeder is
also generated to repopulate the database before a new test.
These capabilities greatly reduce the extra effort involved in

using the suite in load testing activities, in which performance
testing is the main interests of the software engineer.

4. Case Study
We reuse the Stock-Online J2EE model from our previous
benchmark generation work to demonstrate the minimal effort
required for conducting Web service performance testing using
the same model. The Stock-Online system is a proven
benchmark for evaluating various middleware platforms. The
original system was developed for different J2EE platforms. Due
to platform differences, there was significant effort involved in
implementing the same design for different platforms, and
keeping the benchmark application in line with component
technology advancements required significant ongoing effort.

4.1 Benchmark application modeling for
Web services
The server side logic is modeled using the UML and
AndroMDA profiles. In Figure 1, class Broker represents the
entry point to the full server side UML model, which is not
shown here. It is marked with the stereotypes <<WebService>>,
<<Service>> and <<SUT>>. One of the motivations behind
MDABench is to reuse the same model as much as possible and
hide platform differences in the cartridge. When the
<<WebService>> stereotype is used, all the operations can be
accessed as Web services. If only selected methods need to be
exposed as Web services, a method level stereotype
<<WebServiceOperation>> can be used.

Figure 1. Benchmark Modeling for the Axis Web service platform

config.initialProcesses: The initial number of processes to
start with.
config.processIncrement: The number of processes to
increase or decrease for an incremental time interval.

config.processIncrementInterval: The time interval
between starting up or stopping new processes.

config.stabilizationperiod: An estimated time before a
steady state period is reached.

36

In Web service modeling, a number of performance parameters
can be set through configuration on the model directly. These
include WSDL binding styles (RPC/Document) and binding use
styles (Encoded/Literal). As we have annotated on the diagram
through tagged values on the Broker class, we use the doc/literal
wrapped pattern. The wrapped pattern is a slightly improved
variation of the commonly used doc/literal style. This is
considered the best configuration for performance. Such tuning
largely depends on the server side cartridge. However, the
values can be queried by the load testing client to conduct
necessary style-specific testing and performance measurement.
The client side modeling conforms to the UML 2.0 testing
profile. Client is the <<TestContext>> which consists of test
cases. Only the default loadTestAll() test case is included with
its default implementation generated. For simplicity, all the test
data is modeled in TrxnData from which <<DataPartition>>
LoadTestingTrxnData is derived. In more complicated
situations, several test data classes may exist for different XML
payloads. They can be associated with <<TestContext>>
through <<DataRef>> for different load test scenarios at
different times. In <<DataPool>> TranDeck, we can also
indicate the transaction mix percentage as tagged values.
Performance testing settings such as concurrent workload,
incremental simulation and test step durations are configured

through tagged valued included in the <<TextContext>>
stereotype.
There is little change on the client side modeling when
compared to a J2EE model except the configuration of the
endpoint through a tagged value. All the extra changes involved
are encapsulated in the client cartridge. If a Web service targeted
model is detected, the cartridge will generate Web service
specific look-ups and a Web service client while the rest of the
testing logic and data is untouched.

4.2 Performance Output for Axis Web
Service Platform
By running MDABench, Web service directory structures are
generated for the Apache Axis platform. These consist of a
MDA directory for storing the exported UML model, and
directories for storing source code and the future deployable
application. Project property files for specifying dependencies
on the targeted platforms and other deployment configurations
are also generated. We then copy the exported UML model into
the designated MDA directory and run the code generation
engine. Source code is generated based on the UML model. For
the client side, the complete load testing suite is generated
without the need for further modification. The load testing logic
and random test data is derived from the load testing UML
model and method signatures of the Web service interface.

Figure 2. Samples of response time distribution for 50/100 clients on Axis

Figure 3. Average response time and throughput on Axis in an incremental requests simulation

37

In terms of the Web service implementation, business logic
inside each Web service method needs to be manually added
by placing implementation code into a separate directory. This
prevents overriding manual modification by subsequent code
generation iterations. After adding the server side business
logic code, MDABench generates the deployable package.
Deploying and running the Web service benchmark produces
the follow results:

• Figure 2 shows the response time distribution for 50 and 100
clients respectively. The spikes at the end of the 5000ms
indicate all response times longer than 5000ms. Average
response time and detailed performance data are stored in
analysis friendly logs.

• Figure 3 shows the average response time and TPS in terms
of number of threads in an incremental requests simulation
scenario.

Performance analysis of these data is beyond the scope this
paper.

5. Reusability and Extensibility
5.1 Model Reusability
When we first developed MDABench, we focused our
attention on the J2EE platform. This implementation adhered
to three design principles:

• Decouple the test suite from the server side technology.
Most information required to connect to the server side is
gathered through querying the server-side Platform
Independent Model (PIM).

• We choose not to instrument any server-side technology
cartridges. This allows the server-side cartridge to be
evolved separately and be kept up-to-date to the latest
technology developments.

• The load testing suite modeling capability is strictly divided
into a platform independent profile and platform dependent
markings. The platform independent profile is a combination
of the UML 2.0 Testing Profile and some load testing
domain specific languages. The platform dependent
markings are all tagged values.

These design principles have not only allowed us to move
MDABench to Web service platform but also achieved a
number of benefits for users, especially ones who have
investment in existing models. There are virtually no changes
of the load testing suite architecture model except the
configuration of the endpoint through a tagged value (See
Figure 1) when we move from an existing J2EE load testing
model to a Web service load testing model. After the initial
once-off effort of developing the Web services cartridge, one
student took one day to change the benchmark model to the
Web services annotation and conduct the test successfully.

5.2 MDABench Extensibility
MDABench can be easily extended. There are a number of
ways developers can extend it:

• Major utility components of the MDABench provide either
interfaces or abstract classes for overwriting existing
implementations.

• Components to interpret modeling elements strictly follow a
chain of command pattern to enable delegations to any new
model transformation and code generation interpreters.

• A templating capability within cartridges provides a simple
extension mechanism.

Using these mechanisms, extending MDABench from J2EE to
Web services took us relatively little effort. However, it will
be difficult to directly extend MDABench to the Microsoft
.Net platform. Though MDABench theoretically could
generate .Net applications, the UML-based modeling
environment is not encouraged in Microsoft Visual Studio
development environment. Microsoft has launched its own
initiative on model driven development (Software Factories)
and uses the Domain Specific Language (DSL) as its
modeling language. Thus, we are currently developing an
MDABench equivalent using DSL. It will take advantage of
the existing Visual Studio testing capabilities but raise the
level of testing into a model driven level.

6. Conclusion and Future Work
This paper has presented an approach to generate a
customized benchmark application from architecture designs
for Web service platform using MDA.
A benchmark design is modeled with platform independent
models in UML. A corresponding load testing suite is
modeled following a subset of the UML 2.0 Testing Profile.
Deployable code is then generated for both the core
benchmark design and its associated load testing suite. The
load test suite generator has been developed by the authors,
and fully integrates with the core application generation. A
case study using the Axis Web services platform for the
Stock-Online benchmark suite have demonstrated the tools
and the generated outputs from load tests.
This approach has several advantages over proprietary model-
based CASE tool environments for benchmark generation.
Using MDA and exiting open source MDA frameworks
reduces the learning curve and training effort required, and
improves model traceability and tool interoperability. The
default implementation and test data generation saves a large
amount of load testing effort considering the high demand of
Web service testing.
There are still limitations of this approach. The default
implementation of the load testing suite is still relatively
simple. It covers only successful test scenario generation and
does not produce more interesting stress testing data.
Currently, users have to implement such scenarios or produce
higher quality stress testing data manually. However, auto
generation of such data has been successfully applied in other
areas [26]. We are considering integrating these methods both
at the modeling level and in the default implementation in
future versions. We are also working on linking MDABench’s
modeling ability with current Web service quality of service
standards such as Web Service Level Agreement to reflect
requirements modeling needs.

38

7. Acknowledgments
National ICT Australia is funded through the Australian
Government's Backing Australia's Ability initiative, in part
through the Australian Research Council.

8. References
[1] AndroMDA, “AndroMDA v3.0M3”, http://andromda.org/.
[2] M. Aoyama, S. Weerawarana, H. Maruyama, C. Szyperski,

K. Sullivan, and D. Lea, “Web Services Engineering:
Promises and Challenges,” in Proceedings of the
International Conference on Software Engineering (ICSE),
2002.

[3] Apache, “Apache Axis 1.3 Final”, http://ws.apache.org/axis/.
[4] S. Balsamo, A. Di Marco, P. Inverardi, and M. Simeoni,

“Model-based performance prediction in software
development: a survey,” IEEE Transactions on Software
Engineering, vol. 30 (5), pp. 295-310, 2004.

[5] G. Canfora, M. D. Penta, R. Esposito, and M. L. Villani,
“QoS-Aware Replanning of Composite Web Services,” in
Proceedings of the International Conference on Web
Services, 2005.

[6] W. K. Chan, S. C. Cheung, and K. P. H. Leung, “Towards a
Metamorphic Testing Methodology for Service-Oriented
Software Applications,” in Proceedings of the First
International Workshop on Services Engineering (SEIW),
2005.

[7] D. D. Dan, R. Kearney, R. K. A. Keller, D. Kuebler, H.
Ludwig, M. Polan, M. Spreitzer, and A. Youssef, “Web
services on demand: WSLA-driven automated
management,” IBM Systems Journal, vol. 43 (1), pp. 136-
155, 2004.

[8] G. Denaro, A. Polini, and W. Emmerich, “Early
Performance Testing of Distributed Software
Applications,” in Proceedings of the ACM International
Workshop on Software Performance (WOSP), 2004.

[9] ECperf, “ECperf v1.1”,
http://java.sun.com/j2ee/ecperf/index.jsp.

[10] P. Gomez, P. Aston, and etc, “The Grinder V3.0-beta23”,
http://grinder.sourceforge.net/.

[11] I. Gorton and A. Liu, “Evaluating the performance of EJB
components,” IEEE Internet Computing, vol. 7 (3), pp. 18-
23, 2003.

[12] I. Gorton, A. Liu, and P. Brebner, “Rigorous evaluation of
COTS middleware technology,” IEEE Computer, vol. 36
(3), pp. 50-55, 2003.

[13] V. Grassi and R. Mirandola, “A Model-driven Approach to
Predictive Non Functional Analysis of Component-based
Systems,” in Proceedings of the UML 2004 workshop on
Models for Non-functional Aspects of Component-Based
Software, 2004.

[14] J. Grundy, Y. Cai, and A. Liu, “Generation of distributed
system test-beds from high-level software architecture
descriptions,” in Proceedings of the 16th Annual
International Conference on Automated Software
Engineering (ASE), 2001.

[15] J. Grundy, Z. Wei, R. Nicolescu, and Y. Cai, “An
environment for automated performance evaluation of
J2EE and ASP.NET thin-client architectures,” in
Proceedings of the Australian Software Engineering
Conference (ASWEC), 2004.

[16] Y. Liu and I. Gorton, “An Empirical Evaluation of
Architectural Alternatives for J2EE and Web Services,” in
Proceedings of the 11th Asia-Pacific Software Engineering
Conference (APSEC), 2004.

[17] Y. Liu, A. Fekete, and I. Gorton, “Design-Level
Performance Prediction of Component-Based
Applications,” IEEE Transactions on Software
Engineering, vol. 31 (11), pp. 928-941, 2005.

[18] A. Ng, S. Chen, and P. Greenfield, “An evaluation of
contemporary commercial SOAP implementations,” in
Proceedings of the Fifth Australasian Workshop on
Software and System Architectures, Melbourne, 2004.

[19] OMG, “Model Driven Architecture”,
http://www.omg.org/mda/.

[20] M. J. Rutherford and A. L. Wolf, “Integrating a
Performance Analysis Kit into Model-Driven
Development,” in Proceedings of the the 5th GPCE Young
Researchers Workshop 2003, Erfurt, Germany, 2003.

[21] J. Skene and W. Emmerich, “Model Driven Performance
Analysis of Enterprise Information Systems,” Electronic
Notes in Theoretical Computer Science, vol. 82 (6), pp. 1-
11, 2003.

[22] J. Skene and W. Emmerich, “A model-driven approach to
non-functional analysis of software architectures,” in
Proceedings of the 18th IEEE International Conference on
Automated Software Engineering (ASE), 2003.

[23] TPC, “TPC Benchmark W (TPC-W)”,
http://www.tpc.org/tpcw/spec/TPCWV2.pdf.

[24] T. Weis, A. Ulbrich, K. Geihs, and C. Becker, “Quality of
service in middleware and applications: a model-driven
approach,” in Proceedings of the Eighth IEEE International
Enterprise Distributed Object Computing
Conference(EDOC), 2004.

[25] C. Yilmaz, A. M. Memon, A. A. Porter, A. S. Krishna, D.
C. Schmidt, A. Gokhale, and B. Natarajan, “Preserving
distributed systems critical properties: a model-driven
approach,” Software, IEEE, vol. 21 (6), pp. 32-40, 2004.

[26] J. Zhang and S. C. Cheung, “Automated test case
generation for the stress testing of multimedia systems,”
Softw. Pract. Exper., vol. 32 (15), pp. 1411-1435, 2002.

[27] L. Zhu, J. Liu, I. Gorton, and N. B. Bui, “Customized
Benchmark Generation Using MDA,” in Proceedings of
the 5th Working IEEE /IFIP Conference on Software
Architecture, 2005.

[28] L. Zhu, J. Liu, I. Gorton, and N. B. Bui, “MDAbench: A
Tool for Customized Benchmark Generation Using MDA,”
in Proceedings of the Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA), 2005.

39

