
On-board Velocity Estimation and Closed-loop Control of a Quadrotor
UAV based on Optical Flow

Volker Grabe, Heinrich H. Bülthoff, and Paolo Robuffo Giordano

Abstract— Robot vision became a field of increasing im-
portance in micro aerial vehicle robotics with the availability
of small and light hardware. While most approaches rely on
external ground stations because of the need of high compu-
tational power, we will present a full autonomous setup using
only on-board hardware. Our work is based on the continuous
homography constraint to recover ego-motion from optical flow.
Thus we are able to provide an efficient fall back routine for
any kind of UAV (Unmanned Aerial Vehicles) since we rely
solely on a monocular camera and on on-board computation.
In particular, we devised two variants of the classical continuous
4-point algorithm and provided an extensive experimental
evaluation against a known ground truth. The results show
that our approach is able to recover the ego-motion of a flying
UAV in realistic conditions and by only relying on the limited
on-board computational power. Furthermore, we exploited the
velocity estimation for closing the loop and controlling the
motion of the UAV online.

I. INTRODUCTION

In the recent years, vertical take-off and landing vehicles
became a very popular focus of research among roboticists.
Especially quadrotors combine high agility with a reasonable
amount of payload. Thus, contrarily to autonomous fixed
wing aircrafts, they are able to navigate in small cluttered
spaces. This allows the use of quadrotors in indoor environ-
ments or unaccessible/hostile locations such as sites affected
by natural catastrophes.

In order to provide sufficiently reliable spatial localization
in these scenarios, robotic vision as intersection between
robotics and computer vision is currently an active field of
research. Cameras can be very light weighted and provide a
rich sensory feedback in a large range of environments and
conditions. Therefore, they are particularly suitable for use
on a flying vehicle. Additionally, the information perceived
by a camera can be used for many different applications start-
ing from leader following and automatic landing [1], [2], up
to a full three dimensional mapping of the environment [3].

However, many recent advanced results from the field of
computer vision were achieved thanks to the availability
of high computational power and, often, not meeting the
hard real-time performance required for closed-loop control
of robotic systems [3]. With the aim of developing vision
systems which are suitable for real-time control, several
projects inspired by the development of augmented reality

V. Grabe, and P. Robuffo Giordano are with the Max Planck Institute
for Biological Cybernetics, Spemannstraße 38, 72076 Tübingen, Germany
{volker.grabe, prg}@tuebingen.mpg.de.

H. H. Bülthoff is with the Max Planck Institute for Biological Cybernet-
ics, Spemannstraße 38, 72076 Tübingen, Germany, and with the Department
of Brain and Cognitive Engineering, Korea University, Seoul, 136-713
Korea. E-mail: hhb@tuebingen.mpg.de.

approaches were recently presented [4], [5], [6]. However,
all of these visual SLAM (simultaneous localization and
mapping) setups rely on the possibility to forward demanding
large portions (if not all) of the needed computations to an
ad-hoc ground station. This, however, greatly reduces the
flexibility of the robotic system at hand. Additionally, they
usually do not include a reliable emergency backup behavior
in case of lost tracking, an unwanted but common situation
when dealing with artificial vision.

Up to now, only a few real-time approaches are able to
cope with the limited processing power available on current
on-board hardware. However, one of the first system with
all processing done on-board uses a laser scanner as main
data source to detect the environment [7]. A camera is
used only with a frequency of 2 Hz to detect loop closures.
Unfortunately, compared to cameras, laser scanners can only
observe a two dimensional slice of the world and are much
more demanding for on-board use in terms of weight and
energy consumption. To the best of our knowledge, only
one solution has been presented so far combining the use
of a camera with pure on-board processing [8]. The authors
exploit a reduced version of PTAM to create a sparse local
map. However, there is still no backup behavior to deal with
tracking failures.

Other approaches try to detect features of known position
in the environment in order to recover a self-position esti-
mate [9], [10]. While this setup could be moved between
different locations, it is still limited by the range in which
features are located. Furthermore, these systems require a
certain number of known features to be visually detected at
any time in order to maintain a good tracking performance.

In our work, we will address several of the aforementioned
issues by relying on direct self-motion estimation from
optical flow. While optical flow was used before on UAVs
to allow velocity estimation without the need to maintain
a map, this possibility was seldom demonstrated in actual
operation of real robots [11], in closed loop control [12],
using only on-board hardware [13]. A notable exception is
a recent commercial system, the Parrot1 AR.Drone, which
makes use of optical velocity estimation together with a
sonar to stabilize itself in the environment. Along these lines,
we present a real-time, low-computational method which can
be used to hover a UAV in emergency situations and does
neither rely on a map nor some known features in the image.

The rest of the paper is structured as follows: in Sect. II,
we will describe the theoretical foundations of our approach

1www.parrot.com



and illustrate the main feature of our solution. Afterwards, in
Sect. III, we will present our platform and report the results
of the conducted experiments, which will then be discussed
in Sect. IV. Section V will draw the concluding remarks and
line out our future work.

II. SELF-MOTION ESTIMATION FROM OPTICAL
FLOW

Estimation of self-(camera-)motion form optical flow is a
longstanding problem which has been extensively addressed
in the robotics and computer vision communities [14].

As opposed to more computationally expensive solutions
such as visual SLAM, whose broad aim is to recover the
3D structure of an observed local environment, use of
optical flow allows to obtain a direct (instantaneous) esti-
mation of the camera translation/rotation among consecutive
frames. This information is usually both exploited in more
sophisticated reconstructions such as the aforementioned
SLAM problem, but also as a direct feedback of the camera
displacement (velocity) w.r.t. the surrounding environment.
Indeed, many works have exploited this information in
building simple/reactive obstacle avoidance algorithms or
self-motion/velocity stabilization laws, see, e.g., [11].

In this paper, we focus on this latter case and propose
an experimental validation of a self-motion estimation al-
gorithm based on optical flow extraction. Experiments are
carried on a typical UAV platform, a quadcopter carrying
onboard a camera and an Inertial Measurement Unit (IMU)
sensor. A relevant feature of our work, that distinguishes
it from most of the past literature, is that we build upon
the framework of continuous motion recovery, in particular
of the so-called continuous homography constraint [15]. In
fact, an often overlooked problem in self-motion estimation
from optical flow is that one assumes small but finite
camera displacements over frames. This gives rise to the
well-known reconstruction methods based on the (discrete)
epipolar/homography constraints whose aim is to recover
a finite relative camera translation/rotation. However, since
most cameras acquire images at high rates (30 − 60 Hz),
in most robotics applications one is more interested in the
camera instantaneous linear/angular velocity rather than in
a finite displacement over time. Therefore, it seems more
appropriate to adopt a continuous estimation point of view
when trying to recover the camera self-motion.

In our experimental setup, we assume a downfacing cam-
era in an approximately flat outdoor or indoor scenario.
Features on the ground will be tracked between any two
consecutive frames to compute an optical flow field Φ =
((x1, u1), . . . , (xn, un)) as function of n pairs (xi, ui)
of detected features on the image plane xi ∈ R3 and
associated image velocities ui ∈ R3. In indoor hallways
as well as in many outdoor scenarios in open space, one
can safely assume that any tracked feature will be located
on the horizontal ground plane when using a downfacing
camera. This assumption will be exploited as follows: after
reviewing an algorithm to retrieve the linear and angular
velocities (v ∈ R3,ω ∈ R3) of a moving camera (w.r.t. the

world frame and expressed in the camera frame) based
on the classical continuous four-point algorithm for planar
scenes [15], we will show how to extend it in the cases of
(i) known angular velocities from onboard gyroscopes, and
(ii) additional known direction of the ground plane normal
vector in the camera frame. This is motivated by the fact
that, apart from a measurement of ω, typical IMUs are also
able to sense the local direction of gravity which, given our
assumptions, coincides with the ground plane normal vector.

We will then present an experimental validation and thor-
ough comparison of these three methods against a known
ground truth. Finally, we will show the experimental results
of using our proposed solutions as a feedback term for closed
loop control of a quadrotor UAV.

As a first step, we now review the classical reconstruc-
tion algorithm based on the continuous homography con-
straint [15].

A. Review of the continuous homography constraint

The apparent velocity of a point X ∈ R3 in space because
of camera motion, and seen from camera frame, is

Ẋ = ω̂X + v (1)

where ω̂ ∈ so(3) is the skew-symmetric matrix associated
to the vector ω ∈ R3.

As discussed above, we assume that all features are located
on a plane of equation NTX = d where N ∈ S2 is the unit
normal vector to the plane, and d ∈ R the plane distance
from the camera frame. By rewriting the plane constraint as
1
dN

TX = 1, eq. (1) becomes:

Ẋ = ω̂X + v
1

d
NTX =

(
ω̂ +

1

d
vNT

)
X = HX (2)

H ∈ R3×3 is known as continuous homography matrix.
Note that H encodes both the camera linear/angular velocity
(v, ω), and the scene structure (N , d).

We define λx = X for a scalar depth factor λ. Note that,
by definition, ẋ = u which implies Ẋ = λ̇x + λu. By
using (2), we then get:

u = Hx− λ̇

λ
x. (3)

Here, the depth factor λ can be removed by multiplying
both sides of (3) with x̂ to obtain the so-called continuous
homography constraint

x̂Hx = x̂u (4)

since v̂sv = 0 for any vector v and scalar s.

B. Classical 4-point algorithm

In order to retrieve H , we can stack the elements of
H into the vector HS = [H11, H21, · · · , H33] ∈ R9 and
reformulate (4) as

aTHS = x̂u (5)

where a ∈ R9×3 denotes the Kronecker product x ⊗ x̂.
This allows us to stack all ai obtained from n tracked



features into one cumulative matrix A = [a1, · · · ,an]T ∈
R3n×9. Similarly, we stack all x̂iui into a matrix B =
[x̂1u1, · · · , x̂nun]T ∈ R3n and extend (5) to the case of
n features:

AHS = B. (6)

By exploiting standard results, it is possible to recover H
from eq. (6) [15]. Since the rank of x̂ is 2, at least 4 different
feature pairs (x,u) are needed to build a matrix A of rank
8 which is the condition to uniqely recover H from (6).

After recovering H , it is further possible to decompose it
into the triple (ω̂, v

d , N). However, one can prove that, in
general, two physically equivalent solutions are compatible
with a given homography constraint [15].

C. Case of known camera angular velocity

Gyroscopes directly provide an measurement ωIMU of the
camera angular velocity ω which can be used to derotate the
perceived optical flow field. Therefore, we can subtract the
rotational components from the measured flow by exploiting
the interaction matrix relating u to (v,ω) [16]:[

u′x
u′y

]
=

[
ux

uy

]
−
[
−xxxy 1 + x2x −xy
−(1 + xy)2 xxxy xx

]
ω (7)

The resulting flow (u′x, u
′
y) does not contain any angular

velocity component, thus H can be simplified into

H =
1

d
vNT . (8)

Since N spans HT and ‖N‖ = 1, it can be retrieved from
the singular value decomposition H = UΣV T as the first
column of matrix V . The inherent sign ambiguity can always
be resolved by Nz > 0. Having retrieved N , we can find
v
d as v

d = HN .
As opposed to the original algorithm, this case leaves us

with only one unique solution if at least three feature pairs
(x,u) are available.

D. Case of known angular velocity and ground plane normal

In our setting, the normal N is assumed to be approxi-
mately parallel to the gravity vector. Thus, we can use the
ability of onboard IMUs to sense the local gravity vector
in order to retrieve N = N IMU by fusing the readings of
accelerometers and rate gyroscopes [17].

As a first step, the flow field is derotated as described in
eq. (7) such that eq. (8) holds. With NTx therefore being
now a known scalar, we can plug (8) into (4) to obtain

x̂
1

d
v =

x̂u

NTx
. (9)

Since b = x̂u
NTx

is a known quantity, we obtain a system
of three linear equations for each point i in the flow field:

x̂i
1

d
v = bi. (10)

In order to obtain a least-square approximation of v
d

overall n tracked features, we stack all x̂i into a matrix

A = [x̂1, · · · , x̂n]T ∈ R3n×3 and all bi into a vector
B = [b1, · · · , bn]T ∈ R3n to obtain the linear system

A
v

d
= B (11)

which can be easily solved as v
d = A†B, where A† denotes

the pseudo-inverse of A.
Note that any two distinct feature point vectors x will not

be parallel due to the perspective projection of the camera.
Thus, in principle we need only two flow vectors to compute
a solution for v

d . However, a more robust estimation is
of course obtained by incorporating all the available flow
vectors.

III. EXPERIMENTS

A. Experimental setup

For our experiments, we used a quadrotor purchased from
MikroKopter.de2 with a customized low level controller. The
vehicle was equipped with a small Q7 board holding an Intel
Atom 1.6 GHz CPU and running 11.04. Ubuntu Server. ROS
(Robot Operating System) formed a middle layer to allow
interprocess communication. The visual input was provided
by an IDS3 uEye UI-1226LE monochrome 752×480 camera.
The installed 140◦ lens projects an effective field of view of
102◦×59◦ onto the 1/4′′ sensor. In order to save computation
time, the calibration of the visual system was done before
the experiments using the Camera Calibration Toolbox for
Matlab4. We numerically calculated a lookup table which
allows the mapping of each pixel on the image plane to the
corresponding 3D coordinate x = [x, y, 1]T in camera frame.
As for the onboard IMU, we used a MicroStrain5 3DM-GX3
IMU at 250 Hz.

Figures 1a and 1b show the final setup, while Fig. 1c
illustrates the different sensor frames used in our setup. All
measurements were always converted into the camera frame
where all computations were carried out.

To compute the optical flow, we made use of well es-
tablished and efficient methods provided with OpenCV6. In
particular, we collected an initial set of Shi-Tomasi features
[18] which were then tracked over time using the pyramidal
version [19] of the Lukas-Kanade tracker [20]. The number
of maintained features was limited to 100 in order to cap both
the computational load of the feature tracker and the size of
the data package to be processed by the velocity estimator.
Whenever the size of the feature set dropped below 50 frames
or most of the features were in the outer sides of the image,
the set of features was refilled with newly detected features.
Since the floor of our flight arena is covered with uniformly
white foam, we placed structured carpets on the ground to
provide a normal level of features. Lighting was provided by
means of default ceiling lights only.

2www.MikroKopter.de
3www.ids-imaging.com
4www.vision.caltech.edu/bouguetj/calib_doc/
5www.microstrain.com
6opencv.willowgarage.com



Fig. 1: Experimental setup: (a) Quadrotor in its flight config-
uration with (b) IMU and camera highlighted. (c) Different
sensor and body frames used in this project. The body frame
of the quadrotor is fixed in the center of the two crossbars
holding the motors. The x-axis equals the red arm. The
IMU is aligned with the body frame while the camera is
rotated around the z-axis by 45◦ with respect to these frames.
The image plane is fixed in 1 m distance to the camera.
All frames follow the NED convention commonly used in
aviation.

After the velocities were estimated as described in Sec-
tion II, they were rotated into the quadrotor body frame and
used to regulate its velocity. As ground truth, a Vicon7 setup
consisting of six Bonita cameras was used to monitor our
6× 8× 3 m flight arena with an accuracy of approximately
0.5 mm. The linear velocities calculated from the tracking
data were filtered using a low-pass filter with a cut-off
frequency of 10 Hz. After the take-off, which was, together
with the landing, done in position control mode using the
Vicon system, we switched to pure visual control at 1 m
height.

We made use of a gamepad in order to allow a human
operator to control the velocity of the UAV. For reasons
of simplicity and to allow for wireless flight, this gamepad
was connected to a designated ground station. This ground
station received the computed velocities from the onboard
visual system and generated the appropriate commands for
the quadrotor. However, the extremely low computational
footprint of these computations would allow for an easy
integration into the flying platform at any time. Commu-
nication between the visual system and the ground station
was carried out by means of WiFi for the velocity estimates
while XBEEs8 were used to transmit the control commands
back to the quadrotor.

During the setup of the experiments, we found a strong
rotational vibration around the z axis of our quadrotor. Thus,
we implemented a 10 Hz low-pass filter on the yaw readings
of the gyroscopes as well.

7www.vicon.com
8www.digi.com

−1

−0.5

0

0.5

1
−1 −0.5 0 0.5 1

0.5

1

1.5

x [m]

y [m]

z
[m

]

Fig. 2: Circular trajectory of the UAV used for comparison of
our three algorithms against the ground truth. The shape of
the trajectory measures 2 m in diameter and varies from 0.5
to 1.5 m in height. Additionally, the UAV rotates between
−70◦ in 0.5 m height and 70◦ at 1.5 m around the z-axis.
In 10 s the trajectory is traveled once.

B. Conducted experiments

In order to prove the quality and robustness of our ap-
proach, we carried out two sets of experiments. First, we
flew the quadrotor along a circular trajectory as depicted in
Fig. 2 in open loop control using the Vicon setup as position
feedback source. To test the limitations of our approach
and to allow for comparison, we ran the three different
algorithms consecutively on the same predefined trajectory
of 2 m in diameter. One loop was traveled in 10 seconds,
thus the vehicle reached a linear velocity of 0.63 m

s in the
xy-directions. Additionally, both the height and yaw of the
vehicle were varied using a sinusoidal function with the same
period of 10 s. While the height of the vehicle was kept
in the interval of [0.5 · · · 1.5] m, the yaw was varied within
[−70 · · · 70] degrees. In particular, this trajectory was chosen
to exceed the velocities typically seen in autonomously flying
vehicles. For this initial experiment, we used default desktop
hardware (2 GHz dual core, 3 GB RAM) for the computation
and transmitted all sensory data along cables to minimize lag
introduced by the transmission channel. The higher frame
rate achieved on this system allows for a sounder comparison
of our algorithms.

As a second set of experiments, we ported the algorithm to
the on-board hardware, closed the control loop and used the
sole visual system to control the UAV velocity online. First,
we tested the approach by commanding nonzero desired
velocity setpoints using the gamepad in order to move the
quadrotor within the arena. Then, by commanding a zero
velocity, we measured the (unavoidable) drift of the system.
An additional low-pass filter was used to filter the linear
velocity estimates before they were sent to the controller.

IV. RESULTS AND DISCUSSION

During the first set of experiments performed on desk-
top hardware, we recovered linear velocities as shown in



54 56 58 60 62 64 66 68 70
−1

−0.5

0

0.5

1

time [s]

v x
[m
s
]

 

 

ground truth
pure vision
known ang. vel.
known normal

(a)

54 56 58 60 62 64 66 68 70
−1

−0.5

0

0.5

1

time [s]

v y
[m
s
]

 

 

ground truth
pure vision
known ang. vel.
known normal

(b)

54 56 58 60 62 64 66 68 70
−1

−0.5

0

0.5

1

time [s]

v z
[m
s
]

 

 

ground truth
pure vision
known ang. vel.
known normal

(c)

Fig. 3: Estimated linear velocities in camera frame. (a) Linear
velocity along the x, (b) y and (c) z axis. Note that the
estimated velocities were scaled by 1/d as obtained from
the Vicon system for the preparation of this plot.

Fig. 3(a-c). The retrieved angular velocities are shown in
Fig. 4(a-b). Each plot shows a comparison of our three
algorithms together with a ground truth in one dimension.
Note that IMU readings were used for the angular velocities
in case of the two modified algorithms of Section II-C and
II-D. Also, as mentioned above, the vibrations present in yaw
rotations were effectively filtered for the IMU readings.

Figure 5(a-b) shows the norm error between the estimated
linear and angular velocities versus the Vicon ground truth.
For the pure visual algorithm, we found a mean error of
0.134 m

s with a standard deviation of 0.094 m
s on the linear

velocities. For the other two algorithms, we found slightly
better mean errors of 0.117 and 0.113 m

s with a standard
deviation of 0.093 and 0.088 m

s , respectively. While the
incorporation of IMU readings did not greatly improve the
quality of the algorithms for linear velocities, the use of
IMU readings for the angular velocities does improve the
overall performance of the system. The mean error drops
from 0.151 rad

s in the case of the pure visual approach
to 0.097 rad

s for the IMU readings. The same holds for
the standard deviations of 0.110 versus 0.065 rad

s . Note,

54 56 58 60 62 64 66 68 70
−1

−0.5

0

0.5

1

time [s]

ω
x
[r

a
d

s
]

 

 

ground truth
IMU reading
pure vision

(a)

54 56 58 60 62 64 66 68 70
−1

−0.5

0

0.5

1

time [s]

ω
z
[r

a
d

s
]

 

 

ground truth
IMU reading
pure vision

(b)

Fig. 4: Estimated angular velocity in camera frame. (a)
Angular velocity around the x and (b) z axis. The plot of
the velocities around the y axis is very similar to the one
around the x axis and was omitted.

however, that the incorporation of IMU readings mainly
improved the estimation of the linear velocity in the x and
y axes while there was no significant effect on the z axis.

Figure 5(c) visualizes the origin of the irregularities within
the error plots. Since the vehicle is moving with a constant
speed in world frame, v

d increases with low altitudes. Thus,
the algorithm is forced to sample new features more often
since they vanish from the field of view faster. This both
slows down the algorithm due to the many resampling
processes and does only allow for a sets of 30 to 65 feature
pairs instead of the intended 100.

For the analysis of the obtained results in closed loop
control, we considered the estimated linear velocity, since
this is the only needed information. The used controller is
based on standard cartesian trajectory tracking controllers
for UAVs [21]. Both the filtered and unfiltered output of our
algorithm are shown in comparison with the ground truth
in Fig. 6(a-c). Figure 6(d-e) presents the norm of the error
between ground truth and our velocity estimate in all three
used dimensions. In the closed loop system, we measured a
mean error of 0.084 m

s with a standard deviation of 0.139 m
s

for the pure visual system. Here, the use of the gyroscopes
leads to a significantly lower mean error of 0.039 m

s and
0.042 m

s when knowledge about the plane normal is used
additionally. The standard deviation was 0.028 and 0.031 m

s ,
respectively.

First, we commanded the vehicle to move around the
arena. The plots in Fig. 6(a-c) present portions of this test.
From these plots, one can also estimate the lag introduced
by the processing within the visual system and the different
filtering steps to approximately 150 ms. Additionally, we



74 76 78 80 82 84 86

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time [s]

v x
[m
s
]

 

 

ground truth
unfiltered
filtered

(a)

58 60 62 64 66 68 70

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

time [s]

v x
[m
s
]

 

 

ground truth
unfiltered
filtered

(b) (c)

74 76 78 80 82 84 86
0

0.1

0.2

0.3

0.4

0.5

time [s]

er
ro
r
[m
s
]

(d)

58 60 62 64 66 68 70
0

0.1

0.2

0.3

0.4

0.5

time [s]

er
ro
r
[m
s
]

(e)

74 76 78 80 82 84 86
0

0.1

0.2

0.3

0.4

0.5

time [s]

er
ro
r
[m
s
]

(f)

Fig. 6: Linear velocity as estimated on the UAV during closed loop control by our algorithms (filtered and unfiltered) versus
ground truth in world frame, together with the norm error. (a) Pure visually estimated x component of the linear velocity,
(b) incorporation of angular velocities from the IMU, (c) additional exploit of a known plane normal. Plots for y and z
dimension were omitted due to similarity with the x dimension. (d) Norm error between filtered output and ground truth for
the pure visual, (e) incorporation of angular velocities and (f) use of an estimated plane normal. The error plots (d) to (f)
were compensated for a lag of 150 ms as visible in plot (a) to (c).

also estimated the drift of the system, which was in average
about 6 m per minute in the pure visual case and 4 m in the
other two cases relying on the IMU. The overall processed
frame rate of the system varied between 17 Hz and 18 Hz.
While the described latencies together with low controller
gains limited the agility of the system, we were still able to
actively command the vehicle.

To allow for a comparison with the available ground truth,
we solved the height ambiguity for the preparation of Fig. 3
and Fig. 6 using data from the Vicon system. The linear
velocities used by the controller, however, were computed
using solely IMU and camera data, and were only afterwards
scaled by the exploiting knowledge of the current height from
the ground plane.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

In the presented work, we were able to implement an
algorithm for closed loop control by means of a single
camera for velocity estimation and on-board hardware only.
To achieve this, we made use of the continuous homography
constraint to recover visual velocity estimation in real-time.
The incorporation of angular velocity measurements from
gyroscopes led to significantly improved results. However,
the additional integration of orientation readings which were
used to retrieve the normal vector of the ground plane
decreased the tracking error only slightly.

Our approach proved to be a reliable fall back solution for
other tracking approaches since it does not rely on maps or
on the visibility of special features. While the presence of
gyroscopes does lead to a greatly improved performance in
closed loop control, the presence of an orientation estimate
does not improve the tracking. Thus we were able to present
an emergency state for any UAV regardless of the availability

of IMU readings from the high level controller or the ability
to recover a metric scale. Additionally, we were able to
demonstrate the possibility to command the vehicle in such
emergency situations as long as some input device is present.

B. Future work

In our next project, we will address two limitations of
the presented work concerning indoor environments. First,
we will additionally fuse the IMU with the visual system
in order to retrieve a metric scale as demonstrated in the
literature [22]. Secondly, we will not impose the planar
ground plane hypothesis anymore. Thus, this will allow to
recover the actual depth of a generic observed scene. Using
a wide angle lens, the outer regions of the image can be
inspected for clues which indicate vertical obstacles as walls.
Additionally, we aim to investigate other more sophisticated
ways to retrieve optical flow considering a motion model of
the UAV.

VI. ACKNOWLEDGMENTS

The authors like to thank Dr. Antonio Franchi for his
valuable suggestions and contribution on the development
of the control framework.

This research was partly supported by WCU (World Class
University) program funded by the Ministry of Education,
Science and Technology through the National Research
Foundation of Korea (R31-10008).

REFERENCES

[1] K. E. Wenzel, A. Masselli, and A. Zell, “Automatic Take Off , Tracking
and Landing of a Miniature UAV on a Moving Carrier Vehicle,”
Journal of Intelligent & Robotic Systems, vol. 61, no. 1, pp. 221–238,
2010.

[2] W. Li, T. Zhang, and K. Kühnlenz, “A Vision-Guided Autonomous
Quadrotor in An Air-Ground Multi-Robot System,” in Proceedings of
the International Conference on Robotics and Automation, Shanghai,
China, 2011, pp. 2980–2985.



54 56 58 60 62 64 66 68 70
−0.5

0

0.5

1

time [s]

er
ro
r
[m
s
]

 

 

pure vision
known ang. vel.
known normal

(a)

54 56 58 60 62 64 66 68 70
−0.5

0

0.5

1

time [s]

er
ro
r
[r

a
d

s
]

 

 

pure vision
IMU reading

(b)

54 56 58 60 62 64 66 68 70
0

0.5

1

1.5

time [s]

h
ei
g
h
t
[m

],
fe
a
tu
re
s
[1
0
2
]

 

 

height over ground
#features

(c)

Fig. 5: Norm of the error between ground truth and both the
estimated linear and angular velocities, together with altitude
of the vehicle and the number of tracked features: this latter
quantity influences the quality of the tracking system. (a)
Norm of the error between ground truth and linear and (b)
angular velocity estimates. (c) A low altitude of the UAV
induces more often the sampling of new features and thus
increases the error.

[3] R. A. Newcombe and A. J. Davison, “Live Dense Reconstruction with
a Single Moving Camera,” in Proceedings of the International Con-
ference on Computer Vision and Pattern Recognition, San Francisco,
CA , USA, 2010, pp. 1498–1505.

[4] G. Klein and D. Murray, “Parallel Tracking and Mapping for Small
AR Workspaces,” in Proceedings of the International Symposium on
Mixed and Augmented Reality, Nara, Japan, Nov. 2007, pp. 225–234.

[5] R. O. Castle, G. Klein, and D. W. Murray, “Video-rate Localization
in Multiple Maps for Wearable Augmented Reality,” in Proceedings
of the International Symposium on Wearable Computers, Pittsburgh,
PA, USA, 2008, pp. 15–22.

[6] M. Blösch, S. Weiss, D. Scaramuzza, and R. Siegwart, “Vision Based

MAV Navigation in Unknown and Unstructured Environments,” in
Proceedings of the International Conference on Robotics and Automa-
tion, Anchorage, AK, USA, 2010, pp. 21–28.

[7] S. Shen, N. Michael, and V. Kumar, “Autonomous Multi-Floor Indoor
Navigation with a Computationally Constrained MAV,” in Proceedings
of the International Conference on Robotics and Automation, Shang-
hai, China, 2011, pp. 20–25.

[8] M. Achtelik, M. Achtelik, S. Weiss, and R. Siegwart, “Onboard
IMU and Monocular Vision Based Control for MAVs in Unknown
In- and Outdoor Environments,” in Proceedings of the International
Conference on Robotics and Automation, 2011.

[9] L. Meier, P. Tanskanen, F. Fraundorfer, and M. Pollefeys, “PIXHAWK:
A System for Autonomous Flight using Onboard Computer Vision,”
in Proceedings of the International Conference on Robotics and
Automation, Shanghai, China, 2011, pp. 2992–2997.

[10] T. Zhang, Y. Kang, M. Achtelik, K. Kuenhnlenz, and M. Buss, “Au-
tonomous hovering of a vision/IMU guided quadrotor,” in Proceedings
of the International Conference on Mechatronics and Automation,
Aug. 2009, pp. 2870–2875.

[11] R. Mahony, F. Schill, P. Corke, and Y. S. Oh, “A new framework
for force feedback teleoperation of robotic vehicles based on optical
flow,” in Proceedings of the International Conference on Robotics and
Automation, Kobe, Japan, May 2009, pp. 1079–1085.

[12] L. R. Garcı́a Carrillo, A. Dzul, R. Lozano, and C. Pégard, “Combining
Stereo Vision and Inertial Navigation System for a Quad-Rotor UAV,”
Journal of Intelligent & Robotic Systems, 2011.

[13] F. Kendoul, I. Fantoni, and K. Nonami, “Optic flow-based vision
system for autonomous 3D localization and control of small aerial
vehicles,” Robotics and Autonomous Systems, vol. 57, no. 6-7, pp.
591–602, June 2009.

[14] T. Y. Tian, C. Tomasi, and D. J. Heeger, “Comparison of Approaches
to Egomotion Computation,” in Proceedings of the Conference on
Computer Vision and Pattern Recognition, vol. 0, no. 2, San Francisco,
CA , USA, 1996, pp. 315–320.

[15] Y. Ma, S. Soatto, J. Kosecka, and S. S. Sastry, An Invitation to 3-D
Vision. Springer, 2004.

[16] F. Chaumette and S. Hutchinson, “Visual Servo Control, Part I. Basic
Approaches,” Robotics & Automation Magazine, vol. 13, no. 4, pp.
82–90, 2006.

[17] R. Mahony, T. Hamel, and J.-M. Pflimlin, “Nonlinear Complementary
Filters on the Special Orthogonal Group,” Transactions on Automatic
Control, vol. 53, no. 5, pp. 1203–1218, 2008.

[18] J. Shi and C. Tomasi, “Good features to track,” in Proceedings
of the International Conference on Computer Vision and Pattern
Recognition, no. June, Seattle, WA, USA, 1994, pp. 593–600.

[19] J.-Y. Bouguet, “Pyramidal Implementation of the Lucas Kanade Fea-
ture Tracker Description of the algorithm,” In Practice, vol. 1, no. 2,
pp. 1–9, 1999.

[20] B. D. Lucas and T. Kanade, “An iterative image registration tech-
nique with an application to stereo vision,” in Proceedings of the
International Joint Conference on Artificial Intelligence, Vancouver,
BC, Canada, 1981, pp. 674–679.

[21] S. Bouabdallah and R. Siegwart, “Backstepping and Sliding-mode
Techniques Applied to an Indoor Micro Quadrotor,” in Proceedings of
the International Conference on Robotics and Automation, no. April,
Barcelona, Spain, 2005, pp. 2247–2252.

[22] G. Nützi, S. Weiss, D. Scaramuzza, and R. Siegwart, “Fusion of IMU
and Vision for Absolute Scale Estimation in Monocular SLAM,” in
Proceedings of the International Conference on Unmanned Aerial
Vehicles, Dubai, United Arab Emirates, 2010.


