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Abstract
We consider a class of relaxation problems mixing slow and fast variations which

can describe population dynamics models or hyperbolic systems, with varying stiffness
(from non-stiff to strongly dissipative), and develop a multi-scale method by decom-
posing this problem into a micro-macro system where the original stiffness is broken.
We show that this new problem can therefore be simulated with a uniform order of
accuracy using standard explicit numerical schemes. In other words, it is possible to
solve the micro-macro problem with a cost independent of the stiffness (a.k.a. uniform
cost), such that the error is also uniform. This method is successfully applied to two
hyperbolic systems with and without non-linearities, and is shown to circumvent the
phenomenon of order reduction.

Keywords: dissipative problem, multi-scale, micro-macro decomposition, uniform
accuracy, asymptotic approximation

1 Introduction

We are interested in problems of the form, for xε(t) ∈ Rdx and zε(t) ∈ Rdz ,{
ẋε = a(xε, zε), xε(0) = x0,

żε = −1

ε
Azε + b(xε, zε), zε(0) = z0,

(1.1)

with ε ∈ (0, 1] a small parameter, A a diagonal positive matrix with integer coefficients,
and a, b are respectively the x-component and the z-component of an analytic map f which
smoothly depends on ε. In this paper we shall more often write this problem as

u̇ε = −1

ε
Λuε + f(uε), uε(0) = u0, (1.2)

where u =

(
x
z

)
, Λ =

(
0 0
0 A

)
and f(u) =

(
a(x, z)
b(x, z)

)
. We set d = dx + dz the dimension

of u such that u ∈ Rd. In particular, the dimension of xε can be zero without impacting
our results. The map u 7→ f(u) is assumed to be smooth. Our results do not consider the
case where f involves a differential operator in space (i.e. the case of partial differential
equations). Nonetheless, two of our examples are discretized hyperbolic partial differen-
tial equations (PDEs) for which the method is successfully applied, even though a special
treatment is required.

Systems of this kind appear in population dynamics (see [GHM94; AP96; SAAP00;
CCS15]), where A accounts for migration (in space and/or age) and a, b for both the demo-
graphic and inter-population dynamics. The migration dynamics is quantifiably faster than
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the other dynamics involved, which explains the rescaling by ε in the model. When solving
this kind of system numerically, problems arise due to the large range of values that ε can
take.

Considering a numerical scheme of order q > 1, it is obvious by definition that for all ε,
there exists a constant C(ε) and a time-step ∆t(ε) such that for all ∆t < ∆t(ε), the error
Eε(∆t) when solving (1.2) is bounded by

Eε(∆t) ≤ C(ε)∆tq.

Assume now that there exists ∆t∗ such that this scheme is stable for all ε ∈ (0, 1] and
∆t < ∆t∗.1 Order reduction means that there exist s < q and C > 0, both independent of
ε such that the uniform error E(∆t) := supεEε(∆t) satisfies

sup
ε∈(0,1]

Eε(∆t) ≤ C∆ts,

however generally such a constant C can only be found with s much smaller than q. This
is a phenomenon known as order reduction, observed for instance in [HW96, Section IV.15]
or in [HR07]. In order to obtain the same error for all ε, one must either accept this
order reduction (if s > 0), as is done for asymptotic-preserving (AP) schemes (see for
instance [Jin99]), or use an ε-dependent time-step ∆t = O(εα) for some α > 0. In practice,
both approaches cause the computational cost of the simulation to increase greatly, often
prohibitively so.

Another handy way to tackle this is to invoke the center manifold theorem (see [Vas63;
Car82; Sak90]) which dictates the long-time behaviour of the system and presents useful
characteristics for numerical simulations: the dimension is reduced and the dynamics on
the manifold is non-stiff. However, this approach does not capture the transient solution
of the problem, i.e. the solution in short time before it reaches the stable manifold. This
is troublesome when one wishes to describe the system after a sudden perturbation of
environment (e.g. a change of A, a, b or a sudden drop in population). Furthermore, even
if the solution is close to the manifold, these approximations are accurate up to a certain
order O(εn), rendering them useless if ε is of the order of 1.

We first provide a systematic way to compute asymptotic models at any order in ε
that approach the solution uniformly even in short time. Then we use the defect of this
approximation to compute the solution with usual explicit numerical schemes and uniform
accuracy (i.e. the cost and error of the scheme must be independent of ε). This approach
automatically overcomes the challenges posed by both extremes ε� 1 and ε ∼ 1.

In order to achieve this goal, for any non-negative integer k we construct a change of
variable for the dissipative problem (1.2), (τ, u) ∈ R+ ×Rd 7→ Ω

[n]
τ (u) ∈ Rd, and a non-stiff

vector field u ∈ Rd 7→ F [n](u) ∈ Rd, such that

uε(t) = Ω
[n]
t/ε

(
v[n](t)

)
+ w[n](t) (1.3)

where v[n] is the macro component dictated by the equation ∂tv[n] = F [n](v[n]), and w[n] is
the micro component of size O(εn+1). The main result we prove is that from this decomposi-
tion, it is possible to compute uε with uniform accuracy up to order n+1 when using explicit

1 In particular, the scheme cannot be any usual explicit scheme since it would require a stability condition
of the form ∆t/ε < C with C independent of ε.
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exponential Runge-Kutta schemes of the same order n+1 (see for instance [HO05]). Simply
speaking, if (ti)0≤i≤N is a discretisation of time-step ∆t, and (vi) and (wi) are computed
numerically using such a scheme, then there exists C independent of ε such that

max
0≤i≤N

∣∣∣uε(ti)− Ω
[n]
ti/ε

(vi)− wi
∣∣∣ ≤ C∆tn+1

where | · | is the usual Euclidian norm on Rd. Furthermore, using a scheme of order n
generates an error proportional to ε on the z-component of the solution. This is interesting
as zε is of size ε after a time O(ε log(1/ε)). IMEX methods such as CNLF and SBDF
(see [ARW95; ACM99]) are not the focus of the article, but their use is discussed.

Recently in [CCS16], asymptotic expansions of the solution of (1.1) were constructed
using B-series in the case A = Idz . These expansions allowed an approximation of the
solution of (1.1) with an error of size O(εn+1). Implementing these expansions could be
considered to compute Ω

[n]
t/ε

(
v[n](t)

)
. However, this generates a truncation error which is

incompatible with uniform accuracy. Encouraged by recent results on highly-oscillatory
problems, namely [CLMV19] which do not involve truncation errors, our approach unfolds
as follows. We start by considering the following problem

ẏε = −ie−i
t
ε
Λf
(
ei
t
ε
Λyε
)
, yε(0) = y0 := u0 (1.4)

on which we apply averaging methods detailed in [CCMM15] that are in the vein of those ini-
tiated by [Per68] in order to approach the solution with the composition of a near-identity
periodic map (θ, u) 7→ Φ

[n]
θ (u) and a flow (t, u) 7→ Ψ

[n]
t (u) following a vector field G[n]:

yε(t) = Φ
[n]
t/ε ◦Ψ

[n]
t ◦

(
Φ

[n]
0

)−1
(y0) + ỹ[n](t) for all n ≥ 0, where ỹ[n] is of size O(εn+1) and can

be computed numerically with a uniform error. The change of variable Ω[n] and the vector
field F [n] are then deduced from Φ[n] and G[n] using Fourier series. From this, the micro-
macro problem defining v[n] and w[n] in (1.3) for the dissipative problem (1.2) is deduced.

The rest of the paper is organized as follows. In Section 2, we construct the change of
variable and smooth vector field used to obtain the macro part in (1.3) for Problem (1.2).
These maps are constructed using averaging methods on (1.4) and properties similar to
those of averaging are proven, ensuring the well-posedness of the micro-macro equations on
(v[n], w[n]) as defined in (1.3). In Section 3, we study the micro-macro problems associated
with this new decomposition (1.3), and prove that the micro part w[n] is indeed of size
εn+1, and that the problem is not stiff. We then state the result of uniform accuracy when
using exponential RK schemes. In Section 4, we present some techniques to adapt our
method to discretized hyperbolic PDEs. Namely, we study a relaxed conservation law and
the telegraph equation, which can be respectively found for instance in [JX95] and [LM08].
In Section 5, we verify our theoretical result of uniform accuracy by successfully obtaining
uniform convergence when numerically solving micro-macro problems obtained from a toy
ODE and from the two aforementioned PDEs.

2 Derivation of asymptotic models with error estimates

Before describing the content of this section, let us start by stating the assumptions we
make on problem (1.2) in order to conduct our study.
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Assumption 2.1. Let us set d = dx + dz the dimension of Problem (1.2). There exists a
compact set X1 ⊂ Rdx and a radius ρ̌ > 0 such that for every x in X1, the map u ∈ Rd 7→

f(u) ∈ Rd can be developed as a Taylor series around
(
x
0

)
, and the series converges with a

radius greater than or equal to ρ̌.

It is therefore possible to naturally extend f to closed subsets of Cd defined by

Uρ :=

{
u ∈ Cd ; ∃x ∈ X1,

∣∣∣∣u− ( x
0dz

)∣∣∣∣ ≤ ρ} ,
for all 0 ≤ ρ < ρ̌ as it is represented by a Taylor series in u ∈ Cd on these sets. Here | · | is
the natural extension of the Euclidian norm on Rd to Cd. Writing T = R/2πZ, we define a
map (θ, u) ∈ T× Uρ̌ 7→ gθ(u) ∈ Cd by

gθ(u) := −ie−iθΛf
(
eiθΛu

)
.

Thanks to assumption 2.1, g is well-defined and it is analytic w.r.t. both θ and u. In this
section, we shall consider the highly-oscillatory problem

ẏε = gt/ε(y
ε), yε(0) = y0 := u0, (2.1)

of which we construct a micro-macro decomposition using averaging techniques. After a
short reminder of some results associated with these techniques, and a description of how
the decomposition is computed, we deduce a decomposition for the dissipative problem (1.2).
We finish the section by stating some properties of this new decomposition. We also make
the following assumption.

Assumption 2.2. We assume that there exist two radii 0 < ρ0 < ρ1 < ρ̌ and a closed subset
X0 ⊂ X1 ⊂ Rdx such that the initial condition u0 ∈ Cd satisfies

min
x∈X0

∣∣∣∣u0 −
(
x

0dz

)∣∣∣∣ ≤ ρ0,

and for all ε ∈ (0, 1], Problem (1.2) is well-posed on [0, 1] with its solution uε in Uρ1.

Note that this assumption is always met up to replacing u 7→ f(u) by u 7→ αf(u)
with α small enough (this can be seen as a time rescaling). Finally before proceeding, for
ρ ∈ [0, ρ̌− ρ1), we introduce the set

Kρ := Uρ1+ρ =

{
u ∈ Cd ; ∃x ∈ X1,

∣∣∣∣u− (x0
)∣∣∣∣ ≤ ρ1 + ρ

}
. (2.2)

By definition, the solution of (1.2) is in K0 at all time.

2.1 Constructing an approximation of the periodic problem

The following construction and results are taken from [CLMV19], where they are described
in (much) more detail. We first apply the averaging techniques of [CCMM15], which start
by writing the solution of (2.1) as a composition

yε(t) = Φ
[n]
t/ε ◦Ψ

[n]
t ◦

(
Φ

[n]
0

)−1
(y0) +O(εn+1) (2.3)
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where Φ[n] is a change of variable (θ, u) ∈ T×Uρ̌ → Φε
θ(u) ∈ Cd and Ψ[n] is the flow map of

an autonomous differential equation

d

dt
Ψ

[n]
t (u) = G[n]

(
Ψ

[n]
t (u)

)
, Ψ

[n]
0 = id

where G[n] is a smooth map which must be determined.
The idea behind this composition is that Ψ[n] captures the slow drift while Φ[n] captures

rapid oscillations. In this work, we will focus on standard averaging, meaning the change of
variable is of identity average, i.e. 〈Φ[n]〉 = id. The average is simply defined by

〈ϕ〉(u) :=
1

2π

∫ 2π

0
ϕθ(u)dθ. (2.4)

The change of variable Φ[n] is computed iteratively using the relation

Φ
[n+1]
θ = id + ε

∫ θ

0
T (Φ[n])σdσ − ε

〈∫ •
0
T (Φ[n])σdσ

〉
(2.5)

with initial condition Φ[0] = id. The operator T is defined for maps (θ, u) 7→ ϕθ(u) with
identity average as

T (ϕ)σ = gσ ◦ ϕσ − ∂uϕσ · 〈g ◦ ϕ〉. (2.6)

From these changes of variable Φ[n] we define vector fields G[n] and defects δ[n] by

G[n] := 〈g ◦ Φ[n]〉, δ[n] :=
1

ε
∂θΦ

[n] + ∂uΦ[n]G[n] − g ◦ Φ[n]. (2.7)

Note that by definition, 〈δ[n]〉 = 0.
In order to study and bound these maps, let us introduce the norms we will be using.

Given a radius ρ ≥ 0 and a map (θ, u) ∈ T × Kρ 7→ ϕθ(u) analytic in u and ν-times
continuously differentiable in θ, we define the norms

‖ϕ‖T,ρ := sup
(θ,u)∈T×Kρ

|ϕθ(u)|, ‖ϕ‖T,ρ,ν := sup
0≤β≤ν

‖∂ βθ ϕ‖T,ρ. (2.8)

Property 2.3. Assumptions 2.1 and 2.2 ensure the following properties:

(i) There exists a final time T > 0 such that for all ε ∈ (0, 1], Problem (2.1) is well-posed
on [0, T ] with its solution yε in K0.

(ii) There exists a radius R > 0 such that for all θ ∈ T, the function u 7→ gθ(u) is analytic
from K2R to Cd.

(iii) As the function (θ, u) 7→ gθ(u) is analytic w.r.t. θ, we fix an arbitrary rank p > 0 and
set M > 0 a constant such that for all σ ∈ [0, 3],

∀ 0 ≤ ν ≤ p+ 2,
σν

ν!
‖∂ νθ g‖T,2R ≤M, (2.9)

This allows us to get averaging results which can be summed up in the following theorem:
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Theorem 2.4 (from [CLMV19] and [CCMM15]). For n ∈ N∗, let us denote rn = R/n and
εn := rn/16M with R and M defined in Property 2.3. For all ε > 0 such that ε ≤ εn,
the maps Φ[n] and G[n] are well-defined by (2.5) and (2.7). The change of variable Φ[n]

and the defect δ[n] are both (p + 2)-times continuously differentiable w.r.t. θ, and Φ
[n]
0 is

invertible with analytic inverse on KR/4. Moreover, the following bounds are satisfied for
0 ≤ ν ≤ p+ 1,

(i) ‖Φ[n] − id‖T,R ≤ 4εM ≤ rn
4
, (ii) ‖∂ νθ Φ[n]‖T,R ≤ 8εMν!

(iii) ‖G[n]‖T,R ≤ 2M (iv) ‖δ[n]‖T,R,p+1 ≤ 2M

(
2Qp

ε

εn

)n
where Qp is a p-dependent constant.

These properties ensure that the micro-macro problem is well-posed in [CLMV19]. We
will now use these in order to define a decomposition for the dissipative problem (1.2), and
show that similar properties are satisfied. The micro-macro problem associated with this
decomposition will be studied in the next section.

2.2 A new decomposition in the dissipative case

A map (θ, u) ∈ T × Kρ 7→ ϕθ(u) which is continuously differentiable w.r.t. θ coincides
everywhere with its Fourier series, i.e.

ϕθ(u) =
∑
j∈Z

eijθcj
(
ϕ
)
(u), where cj

(
ϕ
)
(u) =

1

2π

∫ π

−π
e−ijθϕθ(u)dθ. (2.10)

We define the shifted map ϕ̃ by

ϕ̃θ(u) = eiθΛϕθ(u). (2.11)

Using these Fourier coefficients (cj)j∈Z, we consider new maps by setting the change of
variable Ω[n] and the defect η[n], for (τ, u) ∈ R+ ×KRk ,

Ω[n]
τ (u) :=

∑
j∈Z

e−jτcj
(
Φ̃[n]

)
(u), η[n]

τ (u) := i
∑
j∈Z

e−jτcj
(
δ̃ [n]
)
(u). (2.12)

These series are purely formal for now, and their convergence is demonstrated at the end
of this subsection. Here Φ̃[n] and δ̃[n] are respectively the shifted change of variable and the
shifted defect, with the shift given by (2.11). If there exists an index j < 0 and a vector
u ∈ Kρ such that cj(Φ̃[n])(u) 6= 0, then Ω

[n]
τ (u) cannot be bounded uniformly for all τ ∈ R+.

We also define the flow Γ[n] by setting

d

dt
Γ

[n]
t (u) = F [n]

(
Γ

[n]
t (u)

)
, where F [n] = iG[n]. (2.13)

Note that we do not know the lifetime of any particular solution of the Cauchy problem
∂tv = F [n](v), v(0) = v0 ∈ KR yet.

Remark 2.5. From the identity gθ(u) = −g−θ(u), one can obtain the relations on the
Fourier coefficients

cj(Φ
[n])(u) = cj(Φ[n])(u) and cj(δ

[n])(u) = −cj(δ[n])(u). (2.14)
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Obviously, the same holds for Φ̃[n] and δ̃[n], as the tilde operator simply shifts the indices
of these coefficients component by component. This ensures that if u is in Rd then so are
Ω

[n]
τ (u) and η[n]

τ (u). Similarly, if u is in Rd then F [n](u) is in Rd.
For Φ[n], for instance, it is equivalent to Φ

[n]
θ (u) = Φ

[n]
−θ(u), and can be shown by induction

using (2.5). Indeed, for j = 0, cj(Φ[n])(u) = u (making the result obvious), and for j 6= 0 the
change of variable satisfies cj(Φ[n+1])(u) = 1

ij cj
(
T (Φ[n])

)
(u) with T (Φ[n]) defined by (2.6).

The following calculation is also valid for j = 0,

cj(g ◦ Φ[n])(u) =
1

2π

∫ π

−π
e−ijθgθ

(
Φ

[n]
θ (u)

)
dθ =

1

2π

∫ π

−π
e−ijθgθ

(
Φ

[n]
−θ(u)

)
dθ

= − 1

2π

∫ π

−π
eijθg−θ

(
Φ

[n]
−θ(u)

)
dθ = −cj(g ◦ Φ[n])(u).

From this, one gets cj
(
T (Φ[n])

)
(u) = −cj(g ◦ Φ[n])(u)−∂ucj(Φ[n])(u) ·

(
−c0(g ◦ Φ[n])(u)

)
=

−cj
(
T (Φ[n])

)
(u), yielding the desired result.

The micro part w[n] of the decomposition is the difference between the solution uε of (1.2)
and the asymptotic approximation Ω

[n]
t/ε◦Γ

[n]
t ◦

(
Ω

[n]
0

)−1
(u0). Assuming that Ω[n] and η[n] are

well-defined (we will prove it in Theorem 2.8), it is necessary to show that the map η[n] can
be characterized as a defect (similarly to δ(k]). Being a defect means that η[n] characterises
the error of the approximation d

dt

[
Ω

[n]
t/ε ◦ Γ

[n]
t

]
≈ −1

εΛΓ
[n]
t +f ◦Ω

[n]
t/ε ◦Γ

[n]
t . A straightforward

computation yields

η[n]
τ =

∑
j∈Z

e−jτcj

(
i

ε
∂̃θΦ

[n]
+ ∂̃uΦ

[n]
· (iG[n])− ig̃ ◦ Φ

[n]
)

(2.15)

where we can recognize ∂̃θϕ = ∂θϕ̃−iΛϕ̃, ∂̃uϕ = ∂uϕ̃ and ig̃ ◦ ϕ = f◦ϕ̃. The characterization
as a defect requires the following result:

Lemma 2.6. Let ρ and r be two radii such that 0 ≤ ρ < r ≤ 2R and let ν be a positive
integer. We set ϕ a periodic map (θ, u) ∈ T×Kρ 7→ ϕθ(u) ∈ Kr that is near-identity in the
sense

∀(θ, u) ∈ T×Kρ, |ϕθ(u)− u| ≤ r − ρ

and that is continuously differentiable w.r.t. θ for all u ∈ Kρ. Using the definitions of (2.10)
and (2.11), assume that all the Fourier coefficients of negative index of the shifted map ϕ̃
vanish. Then, setting D := {ξ ∈ C, |ξ| < 1} and D its closure, the map (ξ, u) ∈ D ×
Kρ 7→

∑
j∈Z ξ

jcj (ϕ̃) (u) is well-defined with values in Kr, p-times continuously differentiable.
Furthermore, for all (ξ, u) ∈ D ×Kρ, the following identity is satisfied

f

∑
j≥0

ξjcj(ϕ̃)(u)

 =
∑
j∈Z

ξjcj (f ◦ ϕ̃) (u)

and for all j < 0, cj (f ◦ ϕ̃) (u) is identically zero. In particular the map (τ, u) ∈ R+×Kρ 7→∑
j∈Z e

−jτcj(ϕ̃)(u) is well-defined with values in Kr.
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Proof. Let us work at fixed u ∈ Kρ. By product ϕ̃ is continuously differentiable w.r.t. θ,
therefore the series of its Fourier coefficients is absolutely convergent. Furthermore, ϕ̃ only
has nonnegative modes by assumption, meaning the indices can be restricted to nonnegative
values in the definition

ζ : ξ ∈ D 7→ ζ(ξ) :=
∑
j∈Z

ξjcj (ϕ̃) (u).

As such, the function ζ is well-defined on D and is holomorphic on D.
Let us now show that it has values in Kr. Because u is in Kρ, by Definition (2.2), we

set x ∈ X0 such that
∣∣∣∣u− (x0

)∣∣∣∣ ≤ ρ1 + ρ. Using a triangle inequality in the definition of ζ

yields ∣∣∣∣ζ(ξ)−
(
x
0

)∣∣∣∣ ≤ ∣∣∣∣ξΛu−
(
x
0

)∣∣∣∣+

∣∣∣∣∣∣
∑
j≥0

ξjcj

(
ϕ̃− id

)
(u)

∣∣∣∣∣∣ (2.16)

where ξΛ = (ξλ1 , . . . , ξλd)T if Λ = Diag(λ1, . . . , λd) and by convention ξ0 = 1 for all ξ ∈ C.
Because λα = 0 for all 1 ≤ α ≤ dx, and according to the maximum modulus principle,

∣∣∣∣ξΛu−
(
x
0

)∣∣∣∣ ≤ ∣∣∣∣u− (x0
)∣∣∣∣ ≤ ρ, and

∣∣∣∣∣∣
∑
j

ξjcj(ϕ̃− id)(u)

∣∣∣∣∣∣ ≤ sup
θ∈T
|ϕθ(u)− u| ≤ r − ρ.

The bound
∣∣∣∣ζ(ξ)−

(
x
0

)∣∣∣∣ ≤ ρ1+r becomes obvious using (2.16), therefore by Definition (2.2),

ζ(ξ) is in Kr.
In turn, the function ξ 7→ f(ξ) := f(ζ(ξ)) is well-defined for all ξ ∈ D, is continuous on

this set, and is holomorphic on D. As such, it can be developed as a power series around
ξ = 0. We write (fj) the coefficients of this power series such that for ξ � 1, f(ξ) =

∑
j ξ

jfj .
By Cauchy formula,

fj =
1

2iπ

∮
|ξ|=1

ξ−(j+1)f
(
ζ(ξ)

)
dξ =

1

2π

∫ π

−π
e−ijθf ◦ ϕ̃θ(u)dθ = cj(f ◦ ϕ̃)(u),

therefore f
(∑

j≥0 ξ
jcj(ϕ̃)(u)

)
=
∑

j≥0 ξ
jcj (f ◦ ϕ̃) (u). For j < 0, the relation cj(f◦ϕ̃)(u) =

1
2iπ

∮
|ξ|=1 ξ

−(j+1)f(ξ)dξ still holds, therefore cj(f ◦ ϕ̃)(u) = 0 by Cauchy’s integral theorem.

Assuming now that Φ̃[n] satisfies the assumptions of Lemma 2.6 (this will be proved in
Theorem 2.8), then from (2.15), we get

η[n]
τ =

1

ε
(∂τ + Λ) Ω[n]

τ + ∂uΩ[n]
τ · F [n] − f ◦ Ω[n]. (2.17)

This means that η[n] is indeed a defect, and this relation will later serve to prove that w[n]

is of size O(εn+1).
Before proceeding, given a radius ρ ∈ [0, 2R] and a map (τ, u) ∈ R+ × Kρ 7→ ψτ (u), let

us introduce the norm
‖ψ‖ρ := sup

(τ,u)∈R+×Kρ
|ψτ (u)|. (2.18)
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Lemma 2.7. Given a radius ρ ∈ [0, 2R] and an integer ν ∈ N, let ϕ be a periodic map
(θ, u) ∈ T × Kρ 7→ ϕθ(u) that is analytic w.r.t. u, that is (ν + 1)-times continuously
differentiable w.r.t. θ and that has vanishing Fourier coefficients for negative indices, i.e. for
all j < 0, cj(ϕ) is identically zero. Then the associated dissipative map (τ, u) ∈ R+×Kρ 7→
ψτ (u) defined by

ψτ (u) :=
∑
j∈Z

e−jτcj(ϕ)(u)

is well defined for (τ, u) ∈ R+×Kρ, analytic w.r.t. u and ν-times continuously differentiable
w.r.t. τ . Furthermore it respects the following bounds for 0 ≤ β ≤ ν,∥∥∂ βτ ψτ∥∥ρ ≤ ‖∂ βθ ϕ‖T,ρ
where the norm on ψ and its derivatives is defined by (2.18).

Proof. It is well-known that the Fourier series of ϕ and of its derivatives ∂ βθ ϕ for 1 ≤ β ≤
ν are absolutely convergent. Therefore ψτ (u) and ∂ βτ ψτ (u) are well-defined for (τ, u) in
R+ ×Kρ by

∂ βτ ψτ (u) =
∑
j≥0

(−j)βe−jτcj(ϕ)(u) = iβ ·
∑
j≥0

e−jτcj

(
∂ βθ ϕ

)
(u).

The absolute convergence also ensures that analyticity w.r.t. u is preserved, as an absolutely
convergent series of holomorphic functions is holomorphic. We define (ξ, u) 7→ ζβ(ξ, u) the
power series defined for all ξ ∈ C, |ξ| ≤ 1 and all u ∈ Kρ by

ζβ(ξ, u) =
∑
j≥0

ξjcj

(
∂ βθ ϕ

)
(u)

such that ∂ βτ ψτ (u) = iβ ζβ(e−τ , u). The maximum modulus principle ensures

sup
τ∈R+

|∂ βτ ψτ (u)| ≤ sup
|ξ|≤1
|ζβ(ξ, u)| = sup

|ξ|=1
|ζβ(ξ, u)| ≤ ‖∂ βθ ϕ‖T,ρ

which is the desired result.

Using the lemma’s notations and assumptions, since ψ is ν-times continuously differen-
tiable, we may also define the norm

‖ψ‖ρ,ν := max
0≤β≤ν

‖∂ βτ ψ‖ρ (2.19)

with ‖·‖ρ defined by (2.18). This result can now be applied to maps Ω[n] and η[n], by simply
checking that the Fourier coefficients of the shifted maps Φ̃[n] and δ̃[n] vanish for negative
indices. The shift is given by (2.11).

Theorem 2.8. For n in N∗, let us denote rn = R/n and εn := rn/16M with R and
M defined in Property 2.3. For all ε > 0 such that ε ≤ εn, the maps (τ, u) 7→ Ω

[n]
τ (u),

u 7→ F [n](u) and (τ, u) 7→ η
[n]
τ (u) given by (2.12) and (2.13) are well-defined on R+ × KR

9



and are analytic w.r.t. u. The change of variable Ω[n] and the residue η[n] are both (p+ 1)-
times continuously differentiable w.r.t. τ . Moreover the following bounds are satisfied for
all 0 ≤ ν ≤ p+ 1,

(i)
∥∥∥Ω[n] − e−τΛ

∥∥∥
R
≤ 4εM, (ii)

∥∥∥∂ νθ [Ω[n] − e−τΛ
]∥∥∥
R
≤ 8
(
1 + |||Λ|||

)ν
εM ν!

(iii) ‖F [n]‖R ≤ 2M (iv) ‖η[n]
τ (u)‖R,p+1 ≤ 2M

(
1 + |||Λ|||

)p+1
(

2Qp
ε

εn

)n
where |||·||| is the induced norm from Rd to Rd, and Qp is a p-dependent constant.

Proof. We show by induction that Φ̃
[n]
θ (u) and δ̃[n]

θ (u) only have non-negative Fourier modes.
To start off the induction, notice Φ[0] = id, therefore Φ̃

[0]
θ (u) = eiθΛu. Since Λ only has

coefficients in N, only positive modes are generated. Assuming for 0 ≤ k < n that Φ̃[k] has
vanishing Fourier coefficients for negative indices, let us prove that Φ̃[k+1] does as well. By
definition (2.5),

Φ̃
[k+1]
θ (u) = eiθΛu+ ε

∫ θ

0
eiθΛT (Φ[k])σ(u)dσ − εeiθΛ

〈∫ •
0
T (Φ[k])σ(u)dσ

〉
from which we gather that the only problematic term in the definition of Φ̃[k+1] is the
integral∫ θ

0
eiθΛT (Φ[k])sds =

∫ θ

0
ei(θ−s)ΛT̃ (Φ[k])sds =

∫ θ

0
ei(θ−s)Λ

(
−i f ◦ Φ̃[k]

s + ∂uΦ̃[k]
s ·G[k]

)
ds

where we used eiθΛgθ ◦ Φ
[k]
θ = −i f ◦ Φ̃

[k]
θ . The convolution product of a periodic map

θ 7→ ϕθ with θ 7→ eiθΛ generates only one new, nonnegative mode, which is θ 7→ eiθΛ.
By assumption and Theorem 2.4, Lemma 2.6 is applicable, therefore f ◦ Φ̃[k] only involves
nonnegative modes. In turn, the same goes for T̃ (Φ[k]) and then for Φ̃[k+1].

This being true, Lemma 2.7 is applicable, producing the desired bounds directly. The
only relationship needed is

‖∂ νθ ϕ̃‖ρ =

∥∥∥∥∥∥
ν∑
q=0

(
ν
q

)
(iΛ)qeiθΛ ∂ ν−qθ ϕ

∥∥∥∥∥∥
ρ

≤ (1 + |||Λ|||)ν‖ϕ‖ρ,ν .

3 The micro-macro paradigm

In this section, we start by denoting v[n](t) := Γ
[n]
t ◦

(
Ω

[n]
0

)−1
(u0) and inject the decompo-

sition
uε(t) = Ω

[n]
t/ε

(
v[n](t)

)
+ w[n](t) (3.1)

into the original problem (1.2) in order to find a system on v[n] and w[n]. The idea of the
decomposition is that v[n] and w[n] are not stiff and can therefore be computed with uniform
accuracy, i.e. the numerical error is independent of ε.

With definition (3.1), w[n] is of size O(εn+1) and its derivatives are bounded uniformly
up to order n+ 1. We shall prove this immediately. Then, we will prove that using explicit
exponential Runge-Kutta of order n + 1 to compute v[n] and w[n] generates an error of
uniform order n+ 1 on uε.

10



3.1 Definition and properties of the micro-macro problem

From decomposition (3.1) we obtain the following system ∂tv
[n](t) = F [n](v[n]),

∂tw
[n](t) = −1

ε
Λ
(

Ω
[n]
t/ε(v

[n]) + w[n]
)

+ f
(

Ω
[n]
t/ε(v

[n]) + w[n]
)
− d

dt
Ω

[n]
t/ε(v

[n]),

with initial conditions v[n](0) =
(

Ω
[n]
0

)−1
(u0) and w[n](0) = 0. By definition and using

identity (2.17),

d

dt
Ω

[n]
t/ε(v

[n](t)) =
1

ε
∂τΩ

[n]
t/ε(v

[n]) + ∂uΩ
[n]
t/ε(v

[n]) · F [n](v[n])

= −1

ε
ΛΩ

[n]
t/ε(v

[n]) + η
[n]
t/ε(v

[n]) + f
(
Ω

[n]
t/ε(v

[n])
)
.

We finally get the micro-macro problem
∂tv

[n](t) = F [n](v[n]),

∂tw
[n](t) = −1

ε
Λw[n] + f

(
Ω

[n]
t/ε(v

[n]) + w[n]
)
− f

(
Ω

[n]
t/ε(v

[n])
)
− η[n]

t/ε(v
[n]).

(3.2a)

(3.2b)

with initial conditions v[n](0) =
(
Ω

[n]
0

)−1
(u0), w[n](0) = 0. Assuming that the macro equa-

tion (3.2a) is well-posed, this can be written in a more convenient form, ∂tv
[n] = F [n](v[n]),

∂tw
[n] = −1

ε
Λw[n] + L[n](t/ε, t, w[n])w[n] + S[n](t/ε, t),

(3.3)

where L[n](τ, t, w) w = f
(

Ω
[n]
τ ◦ v[n](t) + w

)
− f

(
Ω

[n]
τ ◦ v[n](t)

)
i.e.

L[n](τ, t, w) =

∫ 1

0
∂uf

(
Ω[n]
τ ◦ v[n](t) + µw

)
dµ,

and S[n](τ, t) = −η[n]
τ (v[n](t)).

After showing that problem (3.2a) is well-posed, we shall use both formulations (3.2)
and (3.3) interchangeably depending on the context.

Theorem 3.1. For all n ∈ N∗, let us define rn = R/n and εn := rn/16M , with R and
M given in (2.9). For all ε ≤ εn, Problem (3.2) is well-posed until some final time Tn
independent of ε, and the following bounds are satisfied for all t ∈ [0, Tn] and 0 ≤ ν ≤
min(n, p),

(i) v[n](t) ∈ KR (ii) |w[n](t)| ≤ R

4

(
ε

εn

)n+1

(iii) |∂ νt E[n](t)| = O(εn−ν) (iv) ‖∂ν+1
t E[n]‖L1 = O(εn−ν)

where E[n] = ∂tw
[n] + 1

εΛw[n].
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Proof. This proof is in several parts: first we show that problem (3.2a) is well-posed, and
use this result to show that the bound on w[n] is satisfied, thereby also proving that (3.2b)
is well-posed. Finally we focus on the bounds on E[n].

Let us set ϕ(v) = u0+v−Ω
[n]
0 (u0+v). Using Theorem 2.8, if |v| ≤ R/4 then |ϕ(v)| ≤ R/4.

By Brouwer fixed-point theorem, there exists v∗ such that ϕ(v∗) = v∗, i.e. u∗ ∈ KR/4 such
that Ω

[n]
0 (u∗) = u0. Therefore v[n](0) := u∗ ∈ KR/4.

Given t > 0 and assuming v[n](s) ∈ KR for all s ∈ [0, t], one can bound v[n](t) using
Theorem 2.8: ∣∣∣v[n](t)− v[n](0)

∣∣∣ =

∣∣∣∣∫ t

0
F [n]

(
v[n](s)

)
ds

∣∣∣∣ ≤ 2Mt.

Setting Tv :=
3R

8M
ensures

∣∣v[n](t)− v[n](0)
∣∣ ≤ 3R/4, meaning that for all t ∈ [0, Tv], v[n](t)

exists and is in KR. Again from Theorem 2.8, we deduce Ω
[n]
τ

(
v[n](t)

)
∈ K5R/4.

Focusing now on w[n] and assuming for all s ∈ [0, t], |w[n](s)| ≤ R/4, the linear term
L[n]

(
τ, s, w[n](s)

)
is bounded using a Cauchy estimate:∣∣∣L[n]

(
τ, s, w[n](s)

)∣∣∣ ≤ ‖∂uf‖3R/2 ≤ ‖f‖2R
2R− 3

2R
≤ 2M

R

using a Cauchy estimate. The integral form then gives the bounds∣∣∣w[n](t)
∣∣∣ ≤ ∣∣∣∣∫ t

0
e
s−t
ε

ΛL[n]
(
s/ε, s, w[n](s)

)
w[n](s)ds+

∫ t

0
e
s−t
ε

ΛS[n](s/ε, s)ds

∣∣∣∣
≤
∫ t

0

2M

R

∣∣∣w[n](s)
∣∣∣ ds+

∣∣∣∣∫ t

0
e
s−t
ε

ΛS[n](s/ε, s)ds

∣∣∣∣ (3.4)

We compute for each component separately, using (2.12) the definition of η[n] and (2.11)
the definition of the shift operator, writing Λ = Diag(λ1, . . . , λd),

η[n]
τ (u) =

∑
j≥0

e−jτcj

(
δ̃[n]
)

(u) =

 ∑
j≥−λk

e−(j+λk)τ cj

(
δ[n]
)

(u)k


1≤k≤d

from which we get, using c0(δ[n]) = 〈δ[n]〉 = 0,

∣∣∣∣∫ t

0
e
s−t
ε

ΛS[n](s/ε, s)ds

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
e−λk tε ∑

j+λk≥0
j 6=0

∫ t

0
e−j

s
ε cj

(
δ[n]
)

(v[n](s))kds


1≤k≤d

∣∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣∣
 ∑
j+λk≥0
j 6=0

εe−λk
t
ε

∣∣∣∣∣1− e−j
t
ε

j

∣∣∣∣∣ · sup
u∈KR

|cj(δ[n])(u)k|


1≤k≤d

∣∣∣∣∣∣∣∣∣
≤ ε ·

∣∣∣∣∣∣
∑
j∈Z∗

(
sup
u∈KR

∣∣∣∣1j cj(δ[n])(u)k

∣∣∣∣
)

1≤k≤d

∣∣∣∣∣∣ ≤ ε · C‖δ[n]‖T,R,1
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for some constant C > 0 and where ‖ · ‖T,R,1 is given by Definition (2.8). We go from the
first to the second inequality simply by bounding the difference of exponentials by 1. Using
Theorem 2.4, there exists a constant Mn > 0 such that for all t ∈ [0, Tv],∣∣∣∣∫ t

0
e
s−t
ε

ΛS[n](s/ε, s)ds

∣∣∣∣ ≤Mn

(
ε

εn

)n+1

. (3.5)

Using Gronwall’s lemma in (3.4) with this inequality yields

|w[n](t)| ≤Mn e
2M
R
t

(
ε

εn

)n+1

≤Mn e
2M
R
t.

We now set Tw > 0 such that Mn e
2M
R
Tw ≤ R/4 (Tw may therefore depend on n, but does

not depend on ε) and
Tn = min(Tv, Tw).

This ensures the well-posedness of the solution of (3.3) on [0, Tn] as well as the size of w[n].
Finally, the results on E[n] are a direct consequence of the bounds on the linear term

sup
α+β+γ≤p+1

‖∂ατ ∂
β
t ∂

γ
uL

[n]‖ < +∞

and on the source term

sup
0≤α+β≤p

‖∂ατ ∂
β
t S

[n]‖L∞ = O(εn), sup
β≥1

1≤α+β≤p+1

‖∂ατ ∂
β
t S

[n]‖L1 = O(εn+1).

This stems directly from Cauchy estimates and Theorem 2.8.

Remark 3.2. So far we have not discussed how to compute the initial condition v[n](0).
Setting εφ[n] = Φ

[n]
0 − id and vk = v[n](0), by definition Ω

[n]
0 (vk) = Φ

[n]
0 (vk) = u0, therefore

using vk = vk−1 +O(εk) and φ[n] = φ[k−1] +O(εk) (see [CLMV19] for details), it is easy to
show

vk = u0 − εφ[n](vk−1) +O(εn+1).

We can now define approached initial conditions for problem (3.3) iteratively

v0 = u0, vn+1 = u0 − εφ[n+1]
(
vk
)
, and w[n](0) = u0 − Ω

[n]
0

(
vn
)

(3.6)

which ensures w[n](0) = O(εn+1), meaning our previous results are not jeopardised.

3.2 Uniform accuracy of numerical schemes

Using a classic scheme to solve Problem (3.2) cannot work due to the term 1
εΛw[n]. This is

why we focus on exponential schemes, which render this term non-problematic (see [MZ09]).
Furthermore, for these schemes the error bound involves the "modified" norm

| u |ε =

∣∣∣∣u+
1

ε
Λu

∣∣∣∣ . (3.7)
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This norm is interesting because after a short time t ≥ ε log(1/ε), the z-component of the
solution uε of (1.2) is of size ε. This is due to the center manifold theorem, which states
that there exists a invariant manifoldM stable for (1.1) which can be written

M = {(x, z) ∈ Rdx × Rdz : z = εhε(x)}

such that all solutions converge towards it exponentially quickly, i.e. there exists µ > 0
independent of ε,

|zε(t)− εhε(xε(t))| ≤ Ce−µt/ε.

Using the norm | · |ε somewhat rescales zε (but not xε) by ε−1 such that studying the error
in this norm can be seen as a sort of "relative" error. The following theorem uses known
results on exponential Runge-Kutta schemes which can be found for instance in [HO05;
HO04].

Theorem 3.3. Under the assumptions of Theorem 3.1 and denoting Tn ≤ T a final time
such that problem (3.2) is well-posed on [0, Tn]. Given (ti)i∈[[0,N ]] a discretisation of [0, Tn]
of time-step ∆t := maxi | ti+1 − ti |. computing an approximate solution (vi, wi) of (3.2)
using an exponential Runge-Kutta scheme of order q := min(n, p) + 1 yields a uniform error
of order q, i.e.

max
0≤i≤N

∣∣∣ uε(ti)− Ω
[n]
ti/ε

(vi)− wi
∣∣∣
ε
≤ C∆tq (3.8)

where C is independent of ε.

The left-hand side of this inequality involves | · |ε and shall be called the modified error.
It dominates the absolute error which uses | · |.

Proof. The idea in this proof is to bound the errors on the macro part and micro part
separately, using∣∣∣ uε(ti)− Ω

[n]
ti/ε

(vi)− wi
∣∣∣
ε
≤
∣∣∣ Ω

[n]
ti/ε

(
v[n](ti)

)
− Ω

[n]
ti/ε

(vi)
∣∣∣
ε

+
∣∣∣ w[n](ti)− wi

∣∣∣
ε
.

As the macro part v[n] involves no linear term, the scheme acts like any RK scheme on
this part. Since v[n] and F [n] are non-stiff, it is obvious that the scheme is uniformly of
order q, i.e. ∣∣∣v[n](ti)− vi

∣∣∣ ≤ ∆tq · ti · ‖∂q+1
t v[n]‖L∞

using usual error bounds on RK schemes. The reader may notice that the absolute error
involving | · | was used, not the modified error involving | · |ε. The results in [HO04] state
that an exponential RK scheme of order q generates an error given by∣∣∣ w[n](ti)− wi

∣∣∣
ε
≤ C∆tq

(
‖∂q−1

t E[n]‖∞ + ‖∂qtE[n]‖L1

)
. (3.9)

The bounds on E[n] = ∂tw
[n] + 1

εΛw[n] and its derivatives w.r.t. ε can be found in Theo-
rem 3.1, rendering the computation of bounds on the error of the micro part straightforward.
From Theorem 2.8.(i), Ω

[n]
τ (u) = e−τΛu + O(ε), therefore the error on Ω

[n]
t/ε(v

[n]) is of the
form

Ω
[n]
ti/ε

(
v[n](ti)

)
− Ω[n](vi) = e−tiΛ/ε

(
v[n](ti)− vi

)
+ εri
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where v[n](ti)− vi and ri are of size ti ·∆tq. The error can therefore be bounded, denoting
|||·||| the induced norm from Rd to Rd,∣∣∣ Ω

[n]
ti/ε

(
v[n](ti)

)
− Ω[n](vi)

∣∣∣
ε
≤
(

1 +

∣∣∣∣∣∣∣∣∣∣∣∣ tiε Λe−
ti
ε

Λ

∣∣∣∣∣∣∣∣∣∣∣∣) |v[n](ti)− vi|+ (ε+ |||Λ|||) |ri|.

From this we get the desired result on uε.

Remark 3.4. Only exponential schemes are considered here rather than IMEX-BDF schemes
which are sometimes preferred (as in [HS19]). The reason for this is twofold.

First, the error bounds are generally better for these schemes. Indeed, an IMEX-BDF
scheme of order q involves the L1 norm of ∂q+1

t w[n], which is worse than the L1 norm of
∂qtE

[n]. The former is of size O(εn−q) while the latter is of size O(εn+1−q). This allows the
use of schemes of order n+ 1 rather than n.

Second, because Λ is diagonal, the exponentials e−
∆t
ε

Λ are easy to compute. Therefore
there is no computational drawback to exponential schemes.

4 Application to ODEs derived from suitably discretized PDEs

In this section, we present some tools to adapt our previously developed method to partial
differential equations. This is done by studying two hyperbolic relaxation systems of the
form {

∂tu+ ∂xũ = 0

∂tũ+ ∂xu =
1

ε
(g(u)− ũ)

for g(u) = (ε − 1)∂xu (telegraph equation) and for u 7→ g(u) scalar (relaxed conservation
law). These two problems may seem similar in theory, and the latter actually serves as
a stepping stone to treat the former in [JPT98; JPT00], but we will be treat them quite
differently in practice. Because our results may not be valid when using operators, we shall
only be studying these problems after discretising it them, using either Fourier modes or
finite volumes.

Even after discretization, it will be obvious that a direct application of the method is
impossible, often because of the apparition of a Laplace operator with the "wrong" sign. The
goal of this section is precisely to present possible workarounds to overcome the problems
that appear. As such, the computation of maps Ω[n], F [n] and η[n] used in (3.2) will not
be detailed. Should the reader wish to see a more detailed and direct application of our
method, they can find one in Subsection 5.1.

4.1 The telegraph equation

A commonly studied equation in kinetic theory is the one-dimensional Goldstein-Taylor
model, also known as the telegraph equation (see [JPT98; LM08], for instance). It can be
written, for (t, x) ∈ [0, T ]× R/2πZ{

∂tρ+ ∂xj = 0,

∂tj +
1

ε
∂xρ = −1

ε
j,

(4.1)
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where ρ and j represent the mass density and the flux respectively. Using Fourier transforms
in x, it is possible to represent a function α(t, x) by

α(t, x) =
∑
k∈Z

αk(t)e
ikx.

Considering a given frequency k ∈ Z the problem can be reduced to{
∂tρk = −ikjk,
∂tjk = −1

ε
(jk + ikρk) .

Tackling this problem can easily lead to dead-ends, therefore we will guide the reader through
our reasoning navigating some of these dead-ends. This will lead to micro-macro develop-
ments of orders 0 and 1. These struggles can be seen as limitations of our approach, however
we show that with only slight tweaks, it is possible to obtain an error of uniform order 3
using a classic exponential RK scheme. We see this as an encouragement to keep working
with this method.

In order to make a component −1
εz appear, it would be tempting to set zk = jk + ikρk.

This quantity would verify the following differential equation

∂tzk = −1

ε
zk + k2zk − ik3ρk.

Integrating this differential equation gives

zk(t) = exp

(
−λ t

ε

)
zk(0)− ik3

∫ t

0
e(s−t)λ/ερk(s)ds. (4.2)

where λ = 1− εk2. Because ε ∈ (0, 1] and k ∈ Z should not be correlated, it seems obvious
that λ can take any value in (−∞, 1). For λ negative, this equation is unstable and cannot
be solved numerically using standard tools. To overcome this, we consider the stabilised
change of variable instead

zk = jk +
ik

1 + κεk2
ρk

where κ is a positive constant which we shall calibrate as the study progresses. This is
the same change of variable as before up to O(ε), but ikρk was regularised with an elliptic
operator to help with high frequencies. The problem to solve becomes

∂tρk = − k2

1 + κεk2
ρk − ikzk,

∂tzk = −1

ε
zk +

k2

1 + κεk2
zk −

ik3

1 + κεk2

(
κ+

1

1 + κεk2

)
ρk.

As in (4.2), the growth of zk is given by e−λt/ε if λ is defined by

λ = 1− εk2

1 + κεk2
∈
(

1− 1

κ
, 1

]
.

For stability reasons λ must be positive, therefore we will choose κ ≥ 1.
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Let us set uk = (ρk, zk)
T and Λ = Diag(0, 1) such that ∂tuk = −1

εΛuk + f(uk) with

f(u) =

 − k2

1 + κεk2
u1 − iku2

k2

1 + κεk2
u2 −

ik3

1 + κεk2

(
κ+

1

1 + κεk2

)
u1

 .

In the upcoming study, we will usually prefer to write f(ρ, z) rather than f(u) so as to
keep the distinction between both coordinates clear. Assuming |k| ≤ kmax, it is possible to
bound f(ρk, zk) independently of k and of ε, allowing us to apply the method developed in
this paper in order to approximate every ρk and jk, and eventually ρ(x, t) and j(x, t). Note
that no rigorous aspects of convergence in functional spaces are considered here – this will
come in later papers. We will be omitting the index k going forward for the sake of clarity.

The micro-macro method is initialised by setting the change of variable Ω
[0]
τ (ρ, z) =

(ρ, e−τz)T . The vector field followed by the macro part v[0] is F [0] given by

F [0](ρ, z) = k̂2

(
−ρ
z

)
.

with k̂ = k (1 + κεk2)−
1
2 . This means that the macro variable v[0](t) is given by

v[0](t) =

(
e−k̂

2t 0

0 ek̂
2t

)
v[0](0).

Notice that the growth of v[0]
2 (t) is in ek̂

2t, which is akin to the heat equation in reverse
time.2 This is problematic, as it is possible for k̂ to be quite big. For example with
k = 10, κ = 2 and ε = 10−2, one gets ek̂2 ≈ 3 · 1014. In order to obtain the solution of (4.1),
uk(t) = Ω

[0]
t/ε

(
v[0](t)

)
+w[0](t), however, we are only interested in Ω

[0]
t/ε

(
v[0](t)

)
for the macro

part, and η[0]
t/ε

(
v[0](t)

)
for the micro part, which only depend on e−

t
ε
Λv[0](t) as can be seen in

the upcoming expression of η[0] and using Ω
[0]
τ (u) = e−τΛu. This means that the interesting

quantity is

e−
t
ε
Λv[0](t) =

(
e−k̂

2t 0

0 e−(1−εk̂2) t
ε

)
v[0](0). (4.3)

Recognising 1−εk̂2 = λ > 0 in this expression, it is obvious that v[0]
2 is a decreasing function

of time, therefore it is bounded uniformly for all t, k and ε. Because the exact computation
of e−

t
ε
Λv[0](t) is readily available, it is used during implementation, leaving only w[0] to be

computed numerically using ERK schemes. Should the reader wish to conduct their own
implementation, they should use the defect

η[0]
τ (ρ, z) =

 ike−τz

k̂2

(
κ+

1

1 + κεk2

)
ikρ

 = η
[0]
0 (ρ, e−τz).

2 This problem does not appear for the oscillatory equivalent (2.1): A direct calculation yields G[0](y) =
ik̂2(y1,−y2)T , meaning both components of the macro part in yε oscillate.
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By linearity of f , the micro variable w[0] follows the differential equation

∂tw
[0] = −1

ε
Λw[0] + f(w[0])− η[0]

0

(
e−

t
ε
Λv[0](t)

)
, w[0](0) = 0.

The rescaled macro variable e−
t
ε
Λv[0](t) is given by relation (4.3) with initial condition

v[0](0) = u(0) = (ρk(0), zk(0))T .
Extending our development to order 1 is not trivial either. Direct application of itera-

tions (2.5) yields

Ω[1]
τ (ρ, z) =

 ρ+ εike−τz

z − εk̂2

(
κ+

1

1 + κεk2

)
ikρ


from which the vector field for the macro part is

F [1](ρ, z) = k̂2

(
1 + εk2

(
κ+

1

1 + κεk2

))(
−ρ
z

)
.

Following the same reasoning as before, one should study the evolution of the z-component
of the rescaled macro variable e−

t
ε
Λv[1](t). This evolution is in e−λ̃t/ε where λ̃ = 1 −

εk̂2
(

1 + εk2
(
κ+ 1

1+κεk2

))
. Studying λ̃ as a function of εk2 in R+ shows that it is negative

for εk2 > 1, whatever the value of κ ≥ 1.
To circumvent this, we replace ε by ε

1+κεk2 in iterations (2.5). This adds terms of order
ε2 in the definition of Ω[1] that do not modify any properties of the micro-macro development
but it regularises the problem. Specifically, we define

Ω
[1]
0 (ρ, z) =

 ρ+
ε

1 + κεk2
ikz

z − ε

1 + κεk2
k̂2

(
κ+

1

1 + κεk2

)
ikρ

 ,

from which we get the vector field

F [1](ρ, z) = k̂2

(
1 + εk̂2

(
κ+

1

1 + κεk2

))(
−ρ
z

)
.

This time also, the identities Ω
[1]
τ (u) = Ω

[1]
0 (e−τΛu) and η[1]

τ (u) = η
[1]
0 (e−τΛu) are satisfied,

therefore the interesting variable is e−
t
ε
Λv[1](t). The quantity dictating its growth is

λ̃ = 1− εk̂2

(
1 + εk̂2

(
κ+

1

1 + κεk2

))
which is positive for all εk2 ∈ R+ if and only if κ ≥ 2. As with the development of order 0,
the macro variable should be rescaled and computed exactly. The micro part w[1] is given
by the differential equation

∂tw
[1] = −1

ε
Λw[1] + f(w[1])− η[1]

0

(
e−

t
ε
Λv[1](t)

)
, w[1](0) = uk(0)− Ω

[1]
0

(
v[1](0)

)
where, writing Î = (1 + κεk2)−1,

η
[1]
0 (ρ, z) = ik · k̂2

(
κ+ Î

(
2 + εk̂2(κ+ Î)

))( z

k̂2(κ+ Î)ρ

)
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and v[1](0) =

 ρk(0)− εÎikzk(0)

zk(0) + εk̂2(κ+ Î)ikρk(0)

 .

We approached the initial condition using Remark 3.2, but an exact computation of the
exact initial condition

(
Ω

[1]
0

)−1
(u0) is possible, as the map u 7→ Ω

[1]
0 (u) is linear.

4.2 Relaxed conservation law

Our second test case is a hyperbolic problem for (t, x) ∈ [0, T ]× R/2πZ,{
∂tu+ ∂xũ = 0,

∂tũ+ ∂xu =
1

ε
(g(u)− ũ),

(4.4)

with smooth initial conditions u(0, x) and ũ(0, x). This is a stiffly relaxed conservation law,
as presented in [JX95]. In order to proceed, we require the following condition to be met:

|g′(u)| < 1 (4.5)

This is a known stability condition when deriving asymptotic expansions for this kind of
problem.

We start by discretising this system in space with N > 0 points. Going forward,
(xj)j∈Z/NZ denotes a fixed uniform discretisation of R/2πZ, of mesh size ∆x := 2π/N .
We define the vectors U = (uj)j , Ũ = (ũj)j and, given a vector α of size N , g(α) = (g(αj))j .
For simplicity, uj(t) is the approximation of u(t, xj), and the same goes for ũ. We denote D
the matrix of centered finite differences and L the classic discrete Laplace operator, which
is to say

Dα =

(
1

2∆x
(αj+1 − αj−1)

)
j

and Lα =

(
1

∆x2
(αj+1 − 2αj + αj−1)

)
j

Using an upwind scheme after diagonalising problem (4.4) yields
∂tU +DŨ − ∆x

2
LU = 0,

∂tŨ +DU − ∆x

2
LŨ =

1

ε
(g(U)− Ũ).

(4.6)

Setting U1 = U and U2 := Ũ − g(U1), and neglecting the terms involving L for clarity, this
problem becomes 

∂tU1 = −D
(
U2 + g(U1)

)
,

∂tU2 = −1

ε
U2 + g′(U1)DU2 − T (U1)

(4.7)

where we defined T (U1) := DU1−g′(U1)Dg(U1). From this, our method can be applied, but
precautions must be taken in order to avoid having to solve the heat equation in backwards
time. Therefore we set

Ω[1]
τ (U1, U2) =

U1 + ε(1− 2εD2)−1DU2

e−τU2 − εT (U1)

 .
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Similarly to the manipulations for the telegraph equation, we multiplied ε by (IN−2εD2)−1,
but this time only for the first component. Writing D̃ = (IN − 2εD2)−1D, the associated
vector field is

F [1](U1, U2) =

 −Dg(U1) + εDT (U1)

g′(U1)DU2 − εT ′(U1)D̃U2 − ε2g′′(U1)
(
T (U1), D̃U2

)
 .

As in Subsection 5.1, it is possible to obtain Ω[0] and F [0] by simply neglecting the terms of
order ε and above in the expressions above.

Remark 4.1. Remember that for the telegraph equation, the macro variable v[1](t) needed
to be rescaled by e−tΛ/ε. This is not the case here: In the limit ∆x→ 0, the macro variable
v[1] = (u1, u2)T is given by{

∂tu1 = −∂x
[
g(u1)− ε

(
1− g′(u1)2

)
∂xu1

]
,

∂tu2 = g′(u1)∂xu2 −
(
1− g′(u1)2

)
· (1− 2ε∂2

x)−1ε∂2
xu2 + εφε(u1, D̃u2)

with D̃ = (1 − 2ε∂2
x)−1∂x and φε(u1, u2) = g′′(u1)

(
2g′(u1)− ε(1− g′(u1)2)∂xu1

)
u2. The

operator (1 − 2ε∂2
x)−1ε∂2

x is bounded, therefore u2 is well-defined. The equation on u1 is a
well-known result. If ε was also relaxed in the U2-component of Ω[1], there might be no need
for condition (4.5) but the result would be different.

Obtaining the defects of order 0 and 1 from these expressions presents no difficulty. For
η[1], we separate here the U1-component and the U2-component for clarity.

η[0]
τ (U,W ) =

(
e−τDW
T (U)

)
,

η
[1]
0 (U1, U2)U1 = D

(
g(U1 + εD̃W )− g(U1)

)
+ (D − D̃)U2

+εD̃
(
g′(U1)DW − εT ′(U1)D̃W − ε2g′′(U1)

(
T (U1), D̃W

))
,

(4.8a)

η
[1]
0 (U1, U2)U2 = −

(
g′(U1 + εD̃U2)− g′(U1)

)
DU2

+ T (U1 + εD̃U2)− T (U1)− εT ′(U1)D̃U2

+ εg′(U1 + εD̃U2)DT (U1)− ε2g′′(U1)
(
D̃U2, T (U1)

)
+ εT ′(U1) (Dg(U1)− εT (U1)) .

(4.8b)

The values of η[1]
τ (U1, U2) can be recovered using identity

η[1]
τ (U1, U2) = η

[1]
0 (U1, e

−τU2).

Note that, using a given scheme, solving a single step is much more costly for the micro-
macro problem than for the direct problem: Not only is the system size doubled, but the
functions implicated necessitate more computing power to obtain a single value (especially
η[1], as is apparent here). It is therefore plausible to think that our method is best for
computing values during the transient phase, after which it is possible to solve the original
problem with uniform accuracy.
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5 Numerical simulations

In this section we shall demonstrate our results by confirming the theoretical convergence
rates of exponential Runge-Kutta (ERK) schemes from [HO05]. We also use these schemes
on the original problem (1.1), thereby exhibiting the problem of order reduction.

In the first subsection we study a toy model with some non-linearity that can be found
in [CCS16], for which we compute the micro-macro expansion up to order 2. In the sec-
ond subsection, we showcase the results of uniform convergence for the partial differential
equations of Section 4. For these, the exact solution shall not take into account the error in
space, i.e. it will be the solution to the discretized problem. Finally in the third subsection,
we present a surprising numerical result of order gain for problems near equilibrium, and
discuss future works.

5.1 Oscillating toy problem

We first study an "oscillating" problem presented in [CCS16]
ẋ = (1− z)

(
0 −1
1 0

)
x

ż = −1

ε
z + x 2

1 x
2
2

(5.1)

with initial conditions x0 = (0.1, 0.7)T and z0 = 0.05, and final time T = 1. This is of the
form ∂tu = −1

εΛu+ f(u) when setting

Λ = Diag(0, 0, 1) and f(u) =

−(1− u3)u2

(1− u3)u1

(u1u2)2

 .

Here we will sometimes prefer to write f(x, z) so as to distinguish the x and z component.
In order to apply our method, we set

gθ(u) = −ie−iθΛf
(
eiθΛu

)
= −i

−u2 + eiθu2u3

u1 − eiθu1u3

e−iθ(u1u2)2

 .

By construction, Φ
[0]
θ (u) = u therefore G[0](u) = 〈g〉(u) = (−u2, u1, 0)T . One then gets the

change of variable at order 1 using (2.5),

Φ
[1]
θ (u) =

 u1 − εeiθu2u3

u2 + εeiθu1u3

u3 + εe−iθ(u1u2)2

 , yielding G[1](u) = −i

− (1− ε(u1u2)2
)
u2(

1− ε(u1u2)2
)
u1

2εu1u2u3(u 2
1 − u 2

2 )

 .

We remind the reader of the definition G[1] = 〈g ◦ Φ[1]〉. In order to compute the defect
δ[1] and the change of variable of the next order Φ[2], one must compute the difference
g ◦ Φ[1] − ∂uΦ[1] ·G[1], denoted T (Φ[1]) which is

T (Φ[1])θ(u) = −i ·

 eiθu3

(
u2 + εeiθu1u3 + 2ε2u1u

2
2 (u 2

1 − u 2
2 )
)

−eiθu3

(
u1 − εeiθu2u3 − 2ε2u 2

1 u2(u 2
1 − u 2

2 )
)

e−iθ
(
U0 + εU1 + ε2U2

)
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where for clarity we defined

U0 =
(
u 2

1 + ε2e2iθ(u2u3)2
)(

u 2
2 + ε2e2iθ(u1u3)2

)
,

U1 = −2u1u2(u 2
1 − u 2

2 )
(

1− ε(u1u2)2 + εe3iθu 3
3

)
and U2 = −(2u1u2u3)2.

Note that U0, U1 and U2 depend on both ε and θ. The defect δ[1] is defined as 1
ε∂θΦ

[1] −
T (Φ[1]) and can easily be obtained from the previous formula.

We truncate terms of order ε2 and above in T (Φ[1]) (which will not impact results of
uniform accuracy) and integrate it following formula (2.5) to compute the expansion of
order 2: the change of variable of Φ[2] and the vector field G[2]. We then identify the Fourier
coefficients of eiθΛΦ[2] to obtain Ω[2], and we obtain F [2] from G[2]. This yields

Ω[2]
τ (x, z) =


x1 − εe−τx2z − 1

2ε
2e−2τz2x1

x2 + εe−τx1z − 1
2ε

2e−2τz2x2

z + ε(x1x2)2 − 2ε2x1x2(x2
1 − x2

2)

 ,

F [2](x, z) =


x2(−1 + ε(x1x2)2 − 2ε2x1x2(x2

1 − x2
2))

x1(1− ε(x1x2)2 + 2ε2x1x2(x2
1 − x2

2))

2εzx1x2(x2
1 − x2

2)

 .

The defect η[2] is obtained using relation (2.17) or by computing δ[2] and identifying the
Fourier coefficients.

Remark 5.1. It is easy to find an approximation of the center manifold x 7→ εhε(x) by
taking the limit τ →∞ of the z-component of Ω[k]. For example here

εhε(x) = ε(x1x2)2 − 2ε2x1x2(x2
1 − x2

2) +O(ε3).

This coincides with the results in [CCS16].

We remind the reader that the problem that is solved at times (ti)0≤i≤N is ∂tv
[k](t) = F [k](v[k]),

∂tw
[k](t) = −1

ε
Λw[k] + f

(
Ω

[k]
t/ε(v

[k]) + w[k]
)
− f

(
Ω

[k]
t/ε(v

[k])
)
− η[k]

t/ε(v
[k]),

with k = 1, 2. This yields vectors (vi) ≈ (v[k](ti)) and (wi) ≈ (w[k](ti)), from which an
approximation ui ≈ uε(ti) is then obtained by setting ui = Ω

[k]
ti/ε

(vi) +wi. Initial conditions
v[k](0) and w[k](0) are computed using Remark 3.2.

The difference f
(

Ω
[2]
t/ε(v

[2]) + w[2]
)
− f

(
Ω

[2]
t/ε(v

[2])
)
is computed using

f(x+ x̃, z + z̃)− f(x, z) =

 −(1− z)x̃2 + (x2 + x̃2)z̃
(1− z)x̃1 − (x1 + x̃1)z̃(

x1x2 + (x1 + x̃1)(x2 + x̃2)
)

(x1x̃2 + x̃1x2 + x̃1x̃2)


in order to avoid rounding errors due to the size difference between u and ũ.
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Figure 1: Oscillating case: On the left, maximum error on ε (for ε = 2−k with k spanning
{3, . . . , 15}) as a function of ∆t when using exponential RK schemes (abbr. ERK) of different
orders. On the right, the error as a function of ε when solving the micro-macro problem of order 2
using ERK3.
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Figure 2: Telegraph equation: Absolute H1 error on the solution of (4.1) computed by an ERK3
scheme. Supremum on ε as a function of ∆t (left) and evolution of this error as a function of ε for
the 1st-order development (right).

Figure 1 showcases the phenomenon of order reduction when solving the original prob-
lem (5.1): Despite using a scheme of order 2, the error depends of ε in such a way that,
at fixed ∆t, there exists no constant C such that the error is bounded by C∆t2 for all ε.
However there exists C such that the error is bounded by C∆t. This phenomenon of order
reduction is discussed in [HO05].

In that case, we cannot say that the error is of uniform order 1, as this would require
the error to be independent of ε. However, this is the case when solving the micro-macro
problem, as can be seen on the right-hand side of the figure for a development of order
2. Furthermore, the theoretical orders of convergence from Theorem 3.3 are confirmed.
Indeed, using a scheme of order 2 (resp. 3) on the micro-macro problem of order 1 (resp.
2) generates a uniform error of the expected order of convergence, with no order reduction.

5.2 Partial differential equations

The telegraph equation (see Subsection 4.1 for details)
Implementations are conducted using κ = 2, space frequencies are bounded by kmax :=

12, and initial data is ρ(0, x) = ecos(x), j(0, x) = 1
2 cos3(x). Results can be seen in Figure 2

when using a scheme of order 3. When solving the original problem, some order reduction
is observed, from 3 to 1. Here the convergence is not uniform, as it varies with ε when
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Figure 3: Relaxed Burgers-type problem: Maximum modified H1 error (for ε spanning 1 to 2−18 using
an ERK3 scheme as a function of ∆t (left), and H1 error as a function of ε for the micro-macro
problem of order 1 (right).

fixing ∆t, but this is an artefact due to the exact solving of the macro part: The bounds
presented in Theorem 3.3 are at worst, and the relationship between the error bound and
the stiffness of the linear operator is rather complex when using exponential RK schemes
(again, see [HO05] for details). It is known that these schemes have properties of asymptotic
preservation (shown in [DP11] for instance), which explains the error variations with ε.

Relaxed conservation law (see Subsection 4.2 for details)
For our tests, following [HS19], we consider g(u) = bu2 with b = 0.2. Simulations run to

a final time T = 0.25 and the mesh size is fixed: N = 16. Initial data is u(0, x) = 1
2e

sin(x)

and ũ(0, x) = cos(x). The reference solution was computed up to a precision 10−12 using an
ERK2 scheme. Convergence results are presented in Figure 3, confirming theoretical results
once more.

It should be said again that our approach does not study the error in space, only in time.
For instance, the relationship between the error bound and the grid size is not considered.
Further studies will be conducted, especially considering CFL conditions, L2 and H1 norms,
and computational costs.

5.3 Near-equilibrium results

If one chooses an initial condition zε(0) = 0 in (1.1), then it is close to the center manifold
up to O(ε), and Problem (1.2) can be solved with uniform accuracy of order 2 but only when
considering the absolute error |·|, not the modified error | · |ε from (3.7). The same behaviour
is observed for the telegraph equation when setting j(0, x) = −∂xρ(0, x), meaning z = O(ε).
This would theoretically mean that we need to push the micro-macro developments up to
order 2 if we want to improve the order of convergence. However, this is not the case: uniform
accuracy of order 3 is obtained from a development of order 1 for all test cases. This "order
gain" also propagates to our micro-macro development of order 2 for the oscillating toy
problem. These results can be seen in Figure 4 and will be studied in future works.
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Figure 4: In reading order, errors when solving the oscillating toy problem, the telegraph equation
and the relaxed conservation law. All systems start near equilibrium and are solved with exponential
Runge-Kutta schemes of the observed order of convergence.
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