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Preserving first integrals and volume forms of additively spit systems

Philippe Chartier and Ander Murud

This work is concerned with the preservation of invariants and of volformas by numerical methods

which can be expanded into B-series. The situation we consider heretisfthasplit vector field

f =l +... 4+ N where eacH V] either has the common invarianbr is divergence free. We derive
algebraic conditions on the coefficients of the B-series for it either teeprekor to preserve the volume

for generic vector fields and interpret them for additive Runge-Kutthaous. Comparing the two sets of
conditions then enables us to state some non-existence results. For eestoctive class of problems,

where the system is partitionned into several components, we nevestbéliesn simplified conditions

and show that they can be solved.
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1. Introduction

Preserving volume forms is a necessary requirement in aewal-identified applications, such as
molecular dynamics or meteorology, while preserving fimgtgrals is vastly recognized as fundamental
in a very large number of physical situations. Although tguirements appear somehow disconnected,
they lead to algebraic conditions which have strong siritiéesr and this is the very reason why we ad-
dress these questions together.

We will show in particular that a method that preserves thieime must also preserve all first
integrals and as a consequence, that no volume-preserving B-sertesdnexists apart from the com-
position of exact flows (see Theorem 4.8 of Section 4.2). Tasslt generalizes to split vector fields a
known result of Feng Kang and Shang Zai-jui [FS95]. Let usceathat a similar result, using rather
different techniques of proof, has been derived indepethdby Iserles, Quispel abd Tse [IQT06]. A
noticeable difference is in particular that we obtain ctiods on both the modified vector-field (which
has to be divergence-free) and the method itself (which lisree-preserving): this then allows for the
derivation of algebraic conditions set directly on the io&fnts of an additive Runge-Kutta method
(see Section 4.2.1).

It is however interesting to consider specific classes ableras, for which volume-preserving in-
tegrators can be constructed. For instance, it is clearsyraplectic methods are volume-preserving
for Hamiltonian systems: in Section 4.3.1, we show that dgtjt conditions are in general necessary
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for a method to be volume-preserving and indeed sufficienthfe special class of Hamiltonian prob-

lems. In a similar spirit, we derive in Section 4.3 simplifieahditions for partitioned systems with two

functions and three functions. The results obtained forfimztions corroborate already known ones
(see Theorem 3.4. of [HLWO02]) and results for more than theeetions (and their straightforward

generalization to more functions) appear to be completely. fit is interesting to notice that the general
idea used here to obtain numerical methods also has somnlardies with the technique considered by
H. Munthe-Kass, A. Iserles, R. Quispel and A. Zanna [IMKQE@8 polynomial vector fields.

In the sequel, we shall thus considar-dimensional system of differential equations of the form

N

yo =3 V), (1.1)
v=1

= )+ By +...+MN(y). (1.2)

A NB-seriesNB(a) is a formal expression of the form

NB = id !
(a) = |Rn+t€zym

where the index sef/ is the set of N-coloured rooted tree$- |, o andF are real functions defined
on 7 and wherea is a function defined o7 as well which characterizes the NB-series itself. These
series have been introduced in [AMSS97] in full details f@ purpose of studying symplectic additive
Runge-Kutta methods. Note that this definition coincideth\lie standard definition of B-series as
given in [HLWO02] when only one colour is used for the verticésthe sequel, we shall simply write
B(a) for the general case, and refer NB-series as B-series.

As in [CFMO06], S-series arise naturally: in accordance \Bitkeries, we consider here S-series for
coloured trees. For instance, fidr= 2, and for a smooth functiog, a S-series is a series of the form

a(t)F(t), (1.3)

S(a)lg = a(eg+ha(+)gfH+ha(e)g,f
O(e e ad(oo
+hz( (2 )gyy(fm,fm)JrO,(.c,)gyy(fm,fm)+ <2 )gyy<f[2],f[z]))

2 (a( 2y 710+ a( 2oy 1+ a( oy 1+ a( gy 12+

Assuming that a functiohwith a S-series expansion is a first integral of individu#fiedlential equations
y=flV(y),v=1,... N, ie. satisfies

T
Yv=1..N,VycR" (Dl(y)) £V(y) =0, (1.4)
preserving for an integratoB(a) amounts to satisfying the condition
vy e R", (10B(@)(y) =1(y),
and it can be shown [Mur99], that

I oB(a) = S(a)]l], (15)
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wherea, acting on%, is uniquely defined in terms af All further results on general invariants will be
obtained in this framework.

Assuming now that we have, instead of (1.4),
vv=1,...,N,VyeR" div f(y) =0,

preserving the volume for an integrator whose modified wefigtd is fi(y)) = %B(B)(y) amounts to
satisfying the condition

vy € R, div(fn(y))) = 0.

Using thelinearity of the divergence operator and a convenient matrix reptaten of the differential
formsdF(t) for a treet, we obtain algebraic conditions in termsarbmatictrees, defined as oriented
trees with exactly one cycle. Anticipating on the computasi of Section 4.2, consider for instance the
term div(F (\P)) as appearing in di,). We have:

du(F(V) = Tra (11, £)

= Tr (A2 )) T () 12)) T (R )
= Tr(F* (W) +Tr(F*(J)F () + Tr(F*(F)F"(+))
= div(o1) +div(op) +div(og),

whereF*(t) denotes the matrix obtained by differentiatiR¢t) “at the root oft” and whereo; = (t),

02 = (/o) andog = (/«) are aromatic trees composed respectively of one, two andrées. Note
that owing to the properties of the trace operator( div) = div(o /) so that there is no reason to
distinguish( / o) from (o /): this general property allows us to consider such exprassis trees with
one cycle. It will turn out that the algebraic conditions $miume-preservation can be expressed solely
in terms of aromatic trees.

2. Basic tools

In this first section, we describe very briefly the basic atgabtools that allow for the manipulation of
S-series. Since the definitions used here are rather sitoif@FMO06], we shall focus mainly on the
differences with the one-colour situation.

2.1 The algebra of trees

Definition 2.1 (Rooted trees, Forests) The set of (rooted) tree§” and forests# are defined recur-
sively by:

1. the foreseis the empty forest
2. ifty,...,tn arentrees of.7, the foresu =t; .. .t, is the commutative juxtaposition bf, ... ,tn

3. if uis a forest of#, thent = [u],, wherev € {1,...,N} is a tree ofZ with root of colourv.
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The order of atree is its number of vertices and is denotdt] bjhe ordelu| of a forestu=t; ...t,
is the sum of thétj|'s. If u= t£1 ...t wherety, ...,t, are pairwise distinct and are repeated respectively
ri, ...,rn times, then the symmetny of uis

o) =ry!...rp! (a(t)*...(a(tn))™.

By convention,g(e) = 1. The symmetno (t) of a treet = [u], is the symmetry ofi. The set of linear

Forestu <o/ V"\V§ VQVYV \V§V
11 17

Order|u| 4 11
Symmetrya(u) | 2! 113111 3121321 31111l

FiG. 1. A few forests with their orders and symmetry coefficients.

combinations of forests i can be naturally endowed with an algebra structéfeand the tensor
product of 7# with itself can be defined just as in [CFMO6].

Definition 2.2 The algebra of forestg? is defined as follows:
e V(uV) € F2V(A,U) ERZ AU+ pve A,
e V(u,v) € .#?, uve s (note thatuv = vu),
e YUE .F, ue=eu=u.

EXAMPLE 2.3 (CALCULUS IN %)

T TETIS0 25 SEREEN ) S0 SRS NP5 SV9s ey

Definition 2.4 The tensor product of# with itself is the set of elements of the four® v such that for
all (u,v,w,x) € #* and all(A, 1) € R2:

Au+pv)@w = AUw)+ U(VRw),
W AU+HY) = A(WRU)+ (W V),
(URV)(WR®X) = (UW®VX).

We will further denote by Alg27,R) the space of algebra morphisms froifi to R, i.e. maps from
27 to R such that

Yu=ti...tm€.Z, a(u)=a(ty)...da(tm),

and by.sZ* the space of linear forms og?’. Eventually, the co-product has to take into account the
possibility of trees with different colours: hence, the @terB™ become®; as defined below:

By : F g
[tl .. .tn]v
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EXAMPLE 2.5
Bi(-o)= [+o], = V. B0 =[--] =V, BAW=--e B (Y)Y

Defining (t) as the colour of the root af we then have:

Definition 2.6 (Co-product) The co-produch is alinear map froms# to 7 ® ¢ defined recursively
by:
1. Ale) =e®e,

2.Vte 7, A(t) =toe+(idy® Bz(t)

. Vu=t;...tne F, A(u)=At1)...A(tn).

JoAoB™(t),

EXAMPLE 2.7

AY) = YWoet(idy®Bi)A(eo)
= Yoe+(idy®@B3)A(+)A(0)
VY @e+(idyoB)) (s ®ete®s)(oRetexo)
Yoet |d%’®52)(°0®8+0®0—|—0®-+e®.o>
Yoeteo@ote@S+o00f+exdy

REMARK 2.1 The co-product of a tree can also be written as (see [CK@&)stance)

Alt) =t®e+y ues, (2.1)
|
wheres € .7 is a subtree of andy; the forest obtained when removisgfromt.

2.2 B-series, S-series and their composition
For atred € .7 theelementary differential ¥/ (t) is a mapping fronR" to R", defined recursively by:

_onflvl
=57

W) (F ) Ft) ).

wheree, = [¢g]y.

EXAMPLE 2.8
2 2
P = 2, R = (10 6) R(P) = P

We can now define formally a coloured B-series as follows:

Definition 2.9 (B-Series) Leta: .7 — R. The B-serie$(a) is the formal series:

Ba)ly) = a(e)y+

teg
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ExAMPLE 2.10 The B-series corresponding to the Implicit/Explicil& Method is of the form

Y1

yo+h (fm (y1)+ f2 (yo))
= Yo+ hF(+)(yo) +hF(o)(Yo) +h?F (/) (yo) + h?F(£)(yo) + O(h®)

Differential operators associated to a forest and S-sariegxactly the same as for the one-colour
situation [CFMO6].

Definition 2.11 (Differential operator associated to a forest [Mer57]) Consider aforeat =t; ...t
of #. The differential operatoX(u) associated to is the map operating on smooth functiofis=
C*(R™R™) defined as:
Xw:2 — 2
g — XWlg=g"(F(tr),...F (%)

EXAMPLE 2.12 Forg € 2, one has

X(@ld =g X(+v)d =g, X(P)a=gH'12, X(J+0)=gp( 711 12).
More generally, the relations
X(®)lidgn] = F (1),  X(W[f¥] = F([u),

hold true.

Definition 2.13 (Series of differential operators) Leta : % — R. The S-serie§(a) is the formal
series

hiul

Sa)lg) = a(u)X(u)[g]

Now, considering the action of a mape 2 on a B-serie8(a), the following formula can be easily
obtained (see for instance [Mur99] for a proof):

hiul
a(u)

goB(a)= ) a(uX(uld, (2.2)

ue.F#

with a(e) =1 anda(t;...tj) = a(ty)---a(t;). It follows that to every B-serieB(a) can be associated a
S-seriesS(a) wherea is an algebra morphism.

LEMMA 2.1 (COMPOSITION OF S-SERIES Let a and 3 be in .»#* and letS(a) and §(3) be the
associated series of differential operators. Then the ositipn of the two serie§(a) and S(B) is
again a serie§(af), i.e.

vge 2, Sa)|SB)ld] = (S)S(B)) g = aB)ig (2.3)

whereaf3 = (a®f)ocA.
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Proof. The proof of this result is given in Theorem 24 of [Mur05]. O

Given an algebra map € Alg(s#,R), we denote by3 = loga the map defining the correspond-
ing vector field (see [Mur05] or [CHVO05] for a formal definiticand explicit formulas). Following
[CMSS94], we will use the property that the valueoof= expf for a forestu € %\ {e} can be obtained
as the solution at = 1 of the differential equation

We end up this introductory section with a technical restitol generalizes Lemma 3 in [CFMO06]
for coloured trees and a lemma giving an alternative express the co-product for trees of the form
tio---otm, Whereo is the so-called Butcher prodédcand is meant to operate from right to left in
expressions likg otpo--- oty

LEMMA 2.2 Forany(w,...,aN) € (2N, we have

h'S S(w)X(+y) =),
v=1
wheredw is defined by
w(E = 0,
m
Vu=t;--tne #, «(u) = Wy (B () [t
m i; (ti) ( 1 Dg, )

Proof. Consider the expression (2.1) for the co-product. Nowglet #* be such tha§f3,) =
hX(«y). Sincefy(u) =0 unlesu= «,, we have
N N
zwvlsv =3 (@ op)(80) - zwv @)+ 5 T e (WBu(s) = (B (D)

11

For forests oin > 2 trees, we obtain:

Aty .tn) =t1...thn® e+ LBV,
I

wherev; € Z isaforest; =s; ... 5 of subtrees;, ..., s of 1 <k < mtrees amongdt, . . . .ty and where
u; is the forest obtained when removiugfromty .. .tm. As before, sincg, (u) = 0 unlessu = », the
only remaining terms are those for whikk=1,vi = « ;) andu; =t;...tj_1B~ ()it - tm O

LEMMA 2.3 Fort € .7 andu,v,w € .%#, define

(Ut)o(Vvaw) = (uv®tow),
Alt) = Alt)—toe

2|f t, andt, are two treest; ot, is the tree obtained by grafting the roottgfnto the root of;.
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then it holds that for arbitrary tre¢s ...t € .77, one can write

Aftyo---oty) = B(ty,....tm) Qe (2.5)
m-1 _ _

+zA(tlo~~-otj)(5(tj+10---otm)®e)+A(t1)0~~-0A(tm),
=1
m k
Oty otm) = Y (=DM § D(two...otm). (2.6)

k=1 O=j1<<jks |

Proof. From the definitions of\ and ofA, we easily get

A(ov):e® oy, A(tOW):A(t)OA(W),

The identity (2.5) can then be proven by inductionman O

3. Preservation of exact invariants

Given a differential equation of the form (1.1), we suppds# there exists a functidrfy) of y, which
is kept invariant along any exact solution of the ODE coroesfing to any individual vector field"!,
v =1...,N. We wish to derive conditions for a B-series integra¢e) to preservd, i.e.

| =10B(a) = S(a)[l].

In terms ofS-series, this reads

Sa—id)i]=0,

whereid € s#* is such thatd (u) = 1 for u= e andid(u) = 0 for u # e. In other wordsg — id should
be an element of the annihilating left idedl[l] of I: | being an invariant for each"!, we have:

Vv e {1,--- N}, (anTfV =0, (3.1)

that is to say, the Lie-derivative bflong any vector field V! is null. In terms of elementary differential
operators, this is nothing else but saying that

X(+0)[I] =0, (32)

Since for any series of differential operat®gv;), S(w),..., S(awn) acting respectively oX(«1)[l],
X(e2)[1], ... X(*n)[I] we have

N

> Slav)[hX(«y)[1]] = S(@)[I] =0,

v=1

the inclusion{d € J#*;3w € #*, d = W'} C Z|l] follows.
We now look for conditions od such thaid = w/. Writing this equality for trees gives

Vte 7, O(t)=w(t) = w,n (B (1))
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which is equivalent to
Vv e {l...,N},Vue .Z, w(u) =3B} (u)). (3.3)

Given an arbitrary € s7*, define thew, € #* by (3.3), thend = «' if and only if for all forests with
at least two trees,

sw-w - iiwu(ti>(8<ti>gtj),
by (3.3) iZé(BZ(ti>(B(ti)DtJ~)). (3.4)

Using more conventional notations, the necessary and ismfficondition for the existence of € 77~
such thatd = ' obtained above can be rewritten as

Oty tm) = ]Zlé<tj o (tl--~tj71tj+l- . .tm)), (35

wheretj o (t1...tj_itj;1...tm) denotes the tree obtained by grafting the roots af.,tj_1, tj, ...,tm ONto
the root oft;.
We have thus proven the following statement.

LEMMA 3.1 ConsideN vector fieldsf[Vl, v = 1,...,N, all having the same first integrial Let & € .#*
be such thad(e) = 0. If condition (3.5) holds for alin > 2 and allty, ... ,tn € .7, thenS(d)(l] = 0.

Next lemma is a consequence of standard arguments usedviothemindependence of elementary
differentials, see for instance [But87, HNW93].

LEMMA 3.2 Given a foresti =t;...tm € .Z of ordern, there exist polynomial mapg¥! : R" — R",
v=1,...,N of degree less tham— m+ 1 andr : R" — R of degreem such that, for any € .#,

X(W)[r](0) £ 0 iff v=u. (3.6)
THEOREM3.1 Leta € Alg(#,R). ThenS(a)[l] =1 for all (N + 1)-tuplets(f[t 12 ... fIN I of N
vector fieldsflV), v = 1,...,N, with first integrall, if and only if o satisfies the condition
m
aty)---atm) = a(tjorlti) 3.7)
=1 I#]

forallm> 2 andallty,...,tn€ 7.

Proof. The proof follows step by step the proof of the correspondegplt forN = 1. The only
difference is that, in order to prove the necessity of thedid@ns, we need to consider the following
differential system

N
y = V;fM(y), (3.8)

z

z = - 1<Dr<y)>TfM<y>, (3.9)
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where thef VI's andr are chosen so as to satisfy condition (3.6) of Lemma 3.2 alfove givenu € .Z.
It is clear that
1(y,2) =r(y)+2

is an invariant of (3.8-3.9) and of each individual system

y = M),
z = —(Or) ).
O

REMARK 3.1 If B =loga denotes the coefficients of the modified vector associaté tive S(a )-
series integrator, then an equivalent condition to (3.7) is

m
O:ZB(tjorIti) (3.10)
=1 i#]

It can be straightforwardly checked that the invariéfyt z) = g(y) + z constructed in the proof
of Theorem 3.1 is a polynomial of degree This implies that conditions (3.7) fan trees are also
necessary and sufficient for a B-series integrator to pvegeslynomial first integrals up to degree

THEOREM3.2 A B-series integrator that preserves all cubic polyrainivariants does in fact preserve
polynomial invariants of any degree.

Proof. This is a particular case of a more general result stated inaRe24 of [Mur05]. Assume that
condition (3.7) holds true for ath < n with n > 3 and considep+q=n+1 treedy,...,tp, ug,...,Uq
in .7 with g > p > 2. Denoting respectively b§, andS; the sum of the firsp terms and of the lasy
terms of the right-hand side of (3.7), we can use equatidf) (@th m= g+ 1 < nand obtain

S = Za<(ti Onj;éitj)onkuk),

_ ; a (uko (tio n#itj)n#kw) + .Z a (t o Mty M (ug),
- ; a ((uko s o (8 o n#it,-)) + (I'Iia(ti)> (I'Ika(uk)>.
A similar relation holds fof,. Hence S+ Sy — 2<I'Iia(ti )) (nka(uk)) can be written as
- g (G((Uko ITaur) o (6 o Mj4ity)) + a((tio Mjitj) o (Uko "’l;ékul)))

Now, using equation (3.7) witm = 2, we have

a((Uco M) o (i o Mixity)) +a ((ti o Mxitj) o (Uko IMacly))
= a(ukoﬂ|#ku|)a(ti Onj;,éitj),

so that, upon using (3.7) again with= p andm = g, we obtain

Z(O{(ukol'l|¢ku|)a(tioﬂ#itj)) - (I'Iia(ti)) (I‘Ika(uk)). (3.11)

)
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As a consequence, relation (3.7) holds truenfoe n+ 1 and the stated result follows by inductioi

At this stage, the question arises of whether there exishadistthat satisfy conditions (3.7) for
preservation of arbitrary first integrals. By assumptidre éxact flow of each individual equatign="
fVI(y), v=1,...,N, preserves the first integral We then notice that numerical methods formed by
composition of such flows also preserdeBy repeated application of the Baker-Campbell-Hausdorff
formula, one can see that methods of this type can be forrmaéypreted as the exact flow of a vector
field lying in the Lie-algebra generated W ,. .., fN. Conversely, any method that can be formally
interpreted in that way preservesNext theorem states that they are the only ones.

THEOREM 3.3 A B-series integrator that preserves all cubic polyradririvariants can be formally
interpreted as the exact flow of a vector field lying in the algebra generated by, ..., [N

Proof. By Theorem 3.2, a B-serid®(a) that preserves all cubic polynomials must necessarilgfyati
condition (3.7), and then the required result follows froemfark 21 in [Mur05]. O

4. Volume preserving integrators

In this section, we derive algebraic conditions for a Beintegrator to be volume-preserving. Since
it is much easier to work with the divergence operator, weirb@gth deriving the conditions for a
modified vector field to be divergence free.

4.1 Divergence-free B-series

Considem divergence free vector fields, v = 1,...,N. A B-seriesB(3) with coefficientsg satisfy-
ing B(e) =0

hit!
te; WB(UF(U

is divergence-free if and only if (using the linearity of ttieergence operator)

1l
te; Gh(t)[}(t)div(F(t)) =0. 4.1)

The first problem we are thus confronted with is computingdikergence of each elementary differen-
tial vector field appearing in (4.1).

4.1.1 Aromatictrees Inorder to conveniently represent @#(t)) fort € .7, we introduce the follow-
ing aromatictrees, which are certain connected oriented graphs witfcgele. Before defining them,
we observe that coloured rooted trees can be interpretedrasected oriented graphs with coloured
vertices as follows. Givehe .7, letV be the set of vertices df then, the seE C V x V of arcs of
the oriented graph identified withis the set of pairsi, j) € V xV such that the vertekis a child of
the vertexj (i.e. j is the parent of). Thus, the root of is the only vertex €V such that there is no

i € V with (r,i) € E. Furthermore, for each vertéx V\{r}, there exist a unique sequence of vertices
i1,---»im €V (m> 1) such thati, j1),(j1,J2),---,(im-1, im), (im,r) € E. Typically, a coloured rooted
tree is graphically represented with the root at the botfaihn@ graph, and the children of each vertex
positioned above it. When depicted as coloured orientedhgrahere is no need to draw the children



12 of 24 P. CHARTIER AND A. MURUA

of a vertex in any particular position with respect to theitiparent. Below, a coloured rooted tree is
depicted in both the usual way and as a coloured orientedhgrap

G 1

Similarly, a forestt; -- -t of coloured rooted trees can be identified with a colourednteid graph
whose connected components are identified with the rootestir, . . ., tm,.

Definition 4.1 An aromatictreeo is a coloured oriented graph with exactly one cycle, suchiffel
the arcs in the cycle are removed, then the resulting cotboriented graph is identified with a forest
ty - - -tm Of coloured rooted trees(. .. ,tm € 7). If the arcs ofo that form the cycle go from the root f
to the root oftj+1 (i =1,...,m— 1) and from the root ofi,, to the root oft; then we writeo = (t1 - - - tm).
Note thato = (t1---tm) = (- -tmts---ti_q) for all i € {2,...,m}. The order|o| of an aromatic tree
0= (t1...tm) is the number of its vertices, that jg| = |t1| + --- + |tm|. The set of aromatic trees is
denoted«”.7 and the set ofi-th order aromatic trees/ 7.

EXAMPLE 4.2 For the aromatic tree

we have thab = (tatatitz) = (totatots), where

tlzwzv, tzzo»o:i.

Definition 4.3 For any aromatic tree = (13...tm) € &7.7, C(0) is the unordered list of trees obtained
from o by breaking any edge of the cycle. If we denoteiferl,....m, 5 =tjotj;j0...otnotyo...otj_1,
where the grafting operation is meant to operate from rigteft, then:

C(0) = {st,-...Sm}- (4.2)

Now, let 1y, be the circular permutation dfL, ..., m} and let6 be

0=#{1€{0....m=1}1 (g taym) = (ot |,

so that, for each, there ared copies ofs in the listC(0). Then the symmetry coefficient ofis defined
aso(0) = 0[], 0(t).

ExAMPLE 4.4 Consider again the aromatic tre@nd the coloured rooted tregst, in Example 4.2.
In that casep = 2, and thus the symmetry coefficientd$o) = 20 (t1)?a(t2)2 = 2. As for the list of
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coloured rooted trees in Definition 4B(0) = {s1,%,S3,%} where

S = z ! ytlotzotlotz
» - Zi IZ - @\>>>i = totyotzoly,
S = ‘ = \y = t1otrotjoty.

Fort = [ty,...,t]y € 7, we shall use the notations of [AMSS97]

I+1¢[v]
F*(t) = %(F(tl)“..,l:(n)),

so that

dF(t) _ F*(t) Frt) F*(t2)  F*(tm)

o) ~ o) i Ot) Ok) T Oltm) #3)

Definition 4.5 (Elementary divergence) The divergence diio) associated with an aromatic tree-
(t1...tm) is defined by:

div(0) :Tr(F*(tl)...F*(tm)). (4.4)
It can be easily seen from the definition of @y for o € <77 that one has

div((tl...tm)> - div((tn'.nu) N .tn,n(m))), | €N. (4.5)

This is the very reason for considering aromatic trees agsyc

REMARK 4.1 An alternative way of defining diw) for an aromatic tree is as follows. Givero € «/.7,
with m=|o|, represented as a coloured oriented graph with the setickisd = {i1,...,im} as the set
of vertices, coloured according to a mépV — {1,...,N}, and the setof ards CV x V. Let for each
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i €V denoteg; = f-Mi ji» Wherev = &(i) (the colour of the verteR, {ja,....Ji} ={j €V (j,i) €eE},
and f["]' , (y) is the partlal derivative of thith component off[Vl(y) with respect to the components

yit ,y“ ofye R", then, it is not difficult to see that

div(o z Oiy - Oipn-

4.1.2 Divergence-free conditions and first consequencége are now in position to write in a conve-
nient way the divergence of the modified vector fi§icyiven as a B-serieB(). We first observe that,

asdifVy=0forallv=1,...,N, thenTr(F*(t)) = 0 for allt € .7. We thus have, by taking (4.3)
into account,

[t]

div(B(B)) = tZ}B(t)Uh(t)div(F(t))_ BONTr(

te.
_ t] F*(ty) F*(t2)  F*(tm)
T eons 5 (Gt ot ot

= It div((ty.. tm))
terJB(t)h mgztp.;m:t o(t1) - o(tm)

B nglhnoe;7 ( z B(t)) dol-v(i)o))

In teC(o)

o
m
—
—
~—
N——

THEOREM 4.6 A modified field given by the B-serid®(3) is divergence-free up to order if the
following condition is satisfied:

B(t) = 0 for all aromatic trees € «7.7 with |o| < p. (4.6)
teC(o)

THEOREMA4.7 Conditions (4.6) are necessary conditions for a veati-to be divergence-free.

Proof. We will prove that, giveno € &7 with |o] = n, there exist divergence free vector fields
fvl R — }R” v=1,...,N andyp € R" such that digo)(yo) = 1 and for arbitraryoc <77\ {0},
div(6) (yo) =

Giveno e dﬂn, we consideo = (0,...,0)T ¢ R", andflV/ :R" - R", v = 1,...,N, constructed
as follows. Leto be represented as a coloured oriented graph with the sertadfes/ = {1,...,n},
coloured according to a map: V — {1,...,N}, and the set of arcE C V x V. Then, for eaclv =
1,...,Nand each = 1,...,n, theith component Vi (y) of fVl(y) (y= (y*,...,y")T) is defined as

. yl, if &(i) =
fM'(y)={ (i,iljleoE

otherwise.

Each such vector fieldV! is divergence free, as the main diagonal of its Jacobianixriatidentically
null). The required result then follows, by taking Remark #to account, from the observation that,

giveni, ji,....,ji eV ={1,...,n}, f| V]' (o) # 0 if and only if {j1,..., ji} (j1,-.., ji being distinct)

.....

coincides with the setj eV : (j,i) e E}. O
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LEMMA 4.1 The conditions for 2-cycles and 3-cycles are equivdtettie conditions for the preserva-
tion of all cubic polynomial invariants.

Proof. For two-cycles and three-cycles, condition (4.6) can béerias
V(t1,t2) € F2, b(tyoty) +b(taoty) =0, 4.7)
and
V(t1,to,t3) € 73, b(tyotpots) + b(taotgoty) +b(tzotyoty) =0 (4.8)

respectively. Condition (4.7) is the symplecticity coiatit As for condition (4.8), taking into account
condition (4.7) and the induced relations

b(tiotzots) = —b((tzotz)ots),
b(tpotzoty) = —b((tzoty)oty),
b(tgotjoty) = —b((tyoty)ots),

it can be rewritten as
V(t1,t2,13) € 73, b(ty otats) + btz otyts) 4+ b(tzotyty) = 0,

which, together with (4.7), is the condition obtained in ME6] with N = 1 for modified fields to have
solutions which preserve cubic invariants. O

4.2 \Volume-preserving B-series

The aim of this section is to rewrite the necessary and sefficionditions (4.6) obtained for the modi-
fied field in terms of the coefficients of the B-series of thehodtitself.

A B-series that can be formally interpreted as the exact flioanector field lying in the Lie-algebra
generated byfX! ..., fIN is trivially volume-preserving (as the Lie bracket of digence-free vector
fields is also divergence-free). We can already state thewfimig result on the non-existence of non
trivial B-series methods preserving the volume:

THEOREM4.8 A volume-preserving B-series integrator can be foryriatierpreted as the exact flow of
a vector field lying in the Lie-algebra generated 3y, ..., fN.

Proof. This is a direct consequence of Lemma 4.1 and Theorem 3.3. O

Definition 4.9 Consider an aromatic tree= (t;...ty). If we remove 1< k < m edges of the cycle
0, we obtain a foresti with k trees. We denote bgy(0) thelist of all possible forests obtained by
removing anyk edges frono.

Observe tha€; (o) is denoted byC(0) in Subsection 4.2.

THEOREM4.10 Consider a B-series integrator with coefficiemtsB(a) preserves the volume up to
orderp if and only if the following conditions hold for all £ n< p:

Vo= (t1...tm) € FTn, g(—l)k+1 > a(u=0. (4.9)
k=1 ueCy(0)
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Proof. Assume thap} € s#* is such thaB(e) = 0 and that, for arbitrarts, ...,tm € 7,

According to Lemma 2.3, we have fay = €'# as defined in (2.4)

ar(tio---otm) = (UT®B) (tio---otm) (4.10)

= Z t(tro-- r(5(tj+1°"'°tm))+(UT®B)(A_(t1)°"'°A(tm))a

where we have used the assumption {h@) = 0. Thus

m m-1

m
Zdr(td<1)°"'°tﬂ(m)> = IZ(‘ZldT(tn‘(l)o"'Otn'(j))aT(é(tn‘(j—H)O"'Otn‘(m))))
= = =

(0 @B)(Dltra)) 00 Alty(m))-

+

e

SinceA_(tn.(l)) o--- oA_(tﬂ.(m)) is a linear combination of terms of the form

m
DY Zy(1) 00 Zyi (), (4.11)

whereu € .% andz,...,zn € .7, the second term of previous sum vanishes and we get

m-1

o (t "'Otn'(j)) ar(é(tn‘(Hl)O"'Otn'(m)))’
j=1

uv's

m .
=1

or equivalently,

x~

DS Gty 0ot (gy) [] oty 0 o tr () =0,

1 0=j1<<jks1 i=

M3
M=

=
Il

which after integration leads to the stated result. O

4.2.1 Conditions for additive Runge-Kutta methodm this section, we consider additive Runge—

Kutta methods as described in [AMSS97]. Denoting the cdeffis by(ai[‘ljj,bi[ll), (al'\J”,bI ), W
can define recursively '

®O(ey) = (1, LT ERS, (4.12)

O([ta---tmlv) |'1A“‘ (4.13)

We then havex ([ty . ..tm]y) = (bV)T @ (t;). Now, consider two trees andt, in .7. From the definition
of @, we easily get

D(tyoty) = (ty) - AR p(ty)
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where- denotes the componentwise product of vectors. More gdneia any mtreesty, ...ty of 7,
it comes

P(tyoty...oty) = O(t) AR D(ty) .. AFII (1),

where the products (matrix-vector product or componergwesctor product) operate from right to left.
DenotingX; = diag(®(t;)), we can thus write

atyoty...otm) =e' BHtIx, AU, ... AlH(tm)]X e

and the coefficients (u) for u € Ci((t1...tm)) all have the form

)]

k
[ty ;) e
rl(eTB O K gy AT 1))

wherel € {1,... m}and 1= j1 < jo < ... < jk=m+1.

Definition 4.11 An aromaticmulti-index p = (|[1"l . .i%’m]) is an oriented cycle where the vertices of

the cycle are theolouredlndlce3|[ }, il ,|R§"‘}. We denote by

Cl(p) = {(igvjh]v"'aimm])v (i[ZVZ]a Il[%/m]alg_‘/l]% }

the set of ordered multi-indices obtained by removing aryeeaf the cycle. If two edges of the cycle
are removed, then we get pairs of ordered coloured multeésj and we denote by

Calp) = { (5715, .. imif ), .. )

the set of such pairs; more generally, we denot€hy), k= 1,...,mthe set ofk-uplets of ordered
coloured multi-indices obtained by removing dngdges of the cycle.

Definition 4.12 Given an arbitrary ordered coloured multi-index= i[l"l] . il[v'], we define

i) =

andifu = (m,...,ak) is ak-uplets of ordered multi-indices, then

—ﬁw(wj).

Then, the volume preserving condition for timecycle p = (i} il -'L}]”“]) reads

3

(-)*! Y @(u)=0, foreach(iy?,. - i) e {1, s}™ (4.14)

k=1 veC(p)

It can be straigthforwardly obtained from the conditions fioe m-cycleso = (t;...tn) by letting
t1,...,tm be arbitrary trees of colours respectively,...,vm. As a matter of fact, each matrix =
diag(®(t)) then spans the whole set of diagonal matrices and the ctXie = &, leads to (4.14).
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EXAMPLE 4.13 e For the coloured multi-indep = (il2/j[V2!), we obtain the conditions

bi[Vl]ai[JVz] + bEVZ] a[j\illl _ bi[Vl] bEVZ] —0,

vi,vo=212 i,j=1...,s (4.15)
i.e. the symplecticity conditions for additive Runge-Kuthethods [AMSS97].

e For the cycleo = (v jlvaKklVal), we get,

15lval | (vl [ 3]

Jk akl k ak| alj | bEVZ]aEk I[<V3]ak|
_|_bi[Vl] bEVZ] bl[(V3] _

V]_] Vl]

a” a”

0, Vl,Vz,V3=1,...,3, I,j,k:L...,S

e Assume that we have one colour only. Taking j = k in previous conditions gives
bi(3aZ — 3bai +b?) =0, i=1...,5 (4.16)

which has no other real solution thepn= b, = ... = bs = 0. This condition is by itself sufficient

to prove that there exists no volume-preserving RungesKmethods and as consequence, that
no Runge-Kutta method can preserve polynomial invariahtiegree greater than or equal to 3
(see [CIZ97, Zan98] and Theorem IV 3.3. of [HLWO02]).

4.3 Systems with additional structure

We have so far obtained negative result about the existeheelume-preservingN-colour B-series
integrators, apart from the trivial case of composition xéda flows of divergence-free vector fields
(more precisely, apart from methods that can be formallgrpreted as the exact flow of a vector field
in the Lie algebra generated by the original vector fieldhigplitting). In the present subsection, we
consider three particular cases where the vector figld§v = 1, ..., N) have additional structure, such
that volume-preserving B-series methods exist apart fioenttivial case of composition of volume-
preserving flows.

The first case we consider, is when edéfiis actually a Hamiltonian vector field (hence divergence-
free), so that, obviously, any symplectic B-series methmuliad to such decomposition of the original
vector field is divergence-free (conservation of the symtpieform implies conservation of the vol-
ume form). We show algebraically that in that case, our valtpreservation conditions reduce to the
symplecticity conditions in [AMSS97].

The second case we consider is a class of divergence-fresrsysplit in two parts with a particular
structure already considered in the literature (see [HL\WOR] such case, some symplectic methods
(one-stage symplectic additive RK methods, and two-stgggpkectic RK methods) turn out to be
volume-preserving.

New volume-preserving methods for divergence-free systgplit in three parts with a particular
structure (generalization of the previous case) are censitlas a third case. Similar results could be
obtained for further generalizations of divergence-fyestesms splitirN > 4 parts without any difficulty.

4.3.1 Hamiltonian systems For f = 3N K-10H, whereK is assumed to be an invertible skew-
symmetric matrix, we have the following fundamental reiati

Vte 7, (KF*(1)" =KF*(t). (4.17)
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Now, let us consider the transposition operataiefined onez.7 as follows
Vo= (t1...t%x) € #7,7(0) = (ttk_1...11). (4.18)
Due to relation (4.17), we have
Vo= (t1...ty) € #7, div(o) = (—1)kdiv(1(0)). (4.19)

This can be easily seen by considering the following idgntit

div(o) = Tr(F*(tl)...F*(tk)):Tr(F*(tk)T...F*(tl)T)
- (—1)kTr(KF*(tk)K*1...KF*(t1)K*1>.

THEOREM4.14 Supposé is a sum of Hamiltonian parts (in possibly non-canonicatfoire. K is just
assumed to be an invertible skew-symmetric matfiX)= K —20OH[V!. If the Hamiltonian conditions on
the modified vector-field(b)

Y(u,v) € 72, b(uov)+b(vou) =0, (4.20)
or equivalently the symplecticity conditions on the B-ssrintegratoB(a)
V(uv) € 72, a(uov)+a(vou)=a(u)a(v), (4.21)
are satisfied, then the flofy, is divergence-free and the integrator volume-preserving.

Proof. Conditions for 2-cycles are satisfied by assumption. Nowsiter ak-cycle o = (t;...t),
k € N*, then di1(0)) = (—1)div(0). The two conditions corresponding ¢candt(0) can be merged
into one:

S bWw+(-1¢ 5 buw=o0. (4.22)
ueC(o) ueC(1(0))

Now, consider a trea € C(0), for instanceu =tjotyo...oty. The treev=tyoty_10...0t; belongs to
C(1(0)) and we havés(u) = (—1)k~1b(v) sinceu andv belong to the same class foée treesand that
the distance between their rootkif 1. Hence,

b(u) + (—1)*b(v) = (1+ (—1)* )b(u) =0 (4.23)

and condition (4.22) is satisfied. O

4.3.2 Two-cycles systemsln this section, we consider the special situation of systefithe form

p = f(g
{q = 9(p) ’ (4.24)

wheref andg are smooth functions. In the framework of split systems, arewrite them as

(8)-t¥a+r=m), (4.25)
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with

f[ﬂ(q):( f%q) > andfld(p) = ( g(op) )

Note that partitioned Runge-Kutta methods for systemsefahm (4.24) can be interpreted as additive
methods for (4.25). Now, consider B-series with two colpwih black vertices (corresponding fd)
and white vertices (corresponding t&): due to the special form of (4.25), not all trees@fneed to
be considered: if = [t1,...,tm] ., thenF(t) vanishes as soon as one of tfie has a black root. The
same obviously holds for trees with a white root so that ordgd with vertices oélternatecolours
need to be considered. As for elementary divergences assdavith aromatic trees, a lot also vanish:
if u=[v,...,Vm]., andv=[uy,...,un], have respectively a black and a white rdét,u) andF*(v)
have the following forms:

m+1 (1

F*(U) — ;zpc];:WI_(F(Vl),...,F(Vm)) = ( 8 rl(%q) )a
ontifl2

F*(V) — W(F(ul)7"'3|:(um)): < u(87q) g>’

with n = %(F(vl),...,F(vm)) andu = %(F(uﬁ,...f(um)). Aromatic cycles composed of

an odd number of trees are consequently irrelevant.

LEMMA 4.2 Leto be an aromatic tree of the fora= (t1-- -ty 1) with | € N. Then the corresponding
elementary divergence do) is zero.

Proof. Sinceois composed of an odd number of trees, there exist two cotigedreesty andty, 1 in
o (or possiblyty ;1 andt;), with roots of the same colour, say for instance black. Thenhave

F* (b F (tern) = ( 8 nk(g,q) ) < g ’7k+1ép7Q) > < g 8)’

and dio) = 0. O

THEOREM4.15 A one-stage additive Runge-Kutta method forme@af, bt) = (6;,1) and(A? bl2) =
(62,1) is volume-preserving for systems of the form (4.24) if antyah 6, = 1— 64, i.e. if and only if
the method is symplectic.

Proof.  Consider an aromatic multi-indes = (i[ll] ...i[zzl]) composed of Rindices with colours in

black/white order and lat = (@, ..., k) € Ck(p). Since all quantities are scalar, the inditﬁgs. s i[zzl]
take one and only value 1. Hencekifandk, denote the number of cuts before a respectively black and
white root, we have

k
W)= w(m) =6, e,
D )= 6,96,

and such a value afi(v) can be obtained in

(6 )() @20
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different ways fromp with k = k; + ko cuts. Hence, the condition for volume preservation becomes

21
[ I I—ky Al —k
_1 k ( ) ( > 9 19 2 N O’
kZl( ) kg +k22: k, kl k2 ! 2

0<kykp <1

(61—1)(2—1) =616, <= B =1— 6. (4.27)
O

THEOREM4.16 Two-stage symplectic Runge-Kutta methods are volpraserving for separable sys-
tems of the form (4.24).

Proof. Consider a 2-stage Runge-Kutta method with coefficientimate R>*? andb € R?. One of
the following two situations occur: eith@(«) =eand®( /)= Ae:= care linearly independent or for
alltreest € .7, @(t) is co-linear toe. As matter of fact, ieandc are not linearly independent, being in a
space of dimension 2 implies that= Aefor A € R, and an easy induction then shows ttht) = A (t)e,
whereA (t) € R for eacht € &7 The discussion in Subsection 4.2.1 shows that (4.9) holds given
m> 2 and for allo= (t;---tm) € &/.7, if it holds in the particular case whetg...,tm € {«, / }.

Let us write now the conditions for the modified vector fieldiwtoefficientsB = log(a) to be
volume-preserving for the special situation of a cyole- (t;...t;m) with an even number of trees
chosen in the sete, / }:

2m
=
We first recall that, owing to the symplecticity conditionse has

Btaa otaz o---otaem) = =Bty em otr @m-1) ©--- otz (1)-
One can easily check that the condition (4.28) is automticatisfied provided that, ..., tom €

{e. j }.
Following the proof of Theorem 4.10 in the particular casewely, ...,tom € { «, / }, one observes
that A(ty () o~ 0 Aty ) is a linear combination of terms of the form (4.11), with)...,zm €

{+, ]} (this is due to the fact thal(«) = e® « andA(/)) =e® [/ + « ® «). We thus have that,
as (4.28) holds whenevey,...,tom € {+, / }, then the volume preserving condition (4.9) holds for
0= (t1,...,tom) if t1,...,tom € { », / }, which concludes the proof. O

4.3.3 Three-cycles systemdn this section, we consider the special situation of systefrthe form
p = Z(
qa = 9(r) , (4.29)
t= 2(p)

whereF, G andH are smooth functions. In the framework of split systems, arwrite them as

p
( q ) = () + & (r) + f¥(p),

f
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Z(q) 0 0
flt(q) = ( 0 ),f[zJ(r) ( Z(r) ) and ¥ (p) = ( 0 )
0 0 H(p)

and consider 3-series, with black vertices (correspontirfg!), white vertices (corresponding 1¢?)
and box vertices (corresponding f&¥). However, not all trees of7.7 need to be considered: if
t=[t1,...,tm] ., thenF(t) vanishes as soon as one of ttie has a black or a box root. The same
obviously holds for trees with a white or a box root so thaydntes with vertices odlternatecolours

in the order black/white/box need to be considered. As femeintary divergences associated with
aromatic trees, a lot also vanish: uf= [vi,...,Vm|., V= [W1,...,Wn] o @andw = [ug,...,Uo]a have
respectively a black, a white and a box rdet(u), F*(v) andF*(w) have the following forms:

with

M1l 8 n(pbq,r) %
Ffu) = ———(F(W1),...,F(Vm)) = ,
W= GpgnalahoFm) =100 0 0
i dn+1f[2] 00 0
Fi(v) = W(F(Wl)ww':(wn)) = 8 8 Il(p,oq,r)
w = T (Fu ) o 0o
Fr'iw) = ———(F(u),...,F(up)) = 0 00
o(p.gr)m i &(p.gr) 0 O

with n = 525F (F(w), ... F (vin)) andu = 527 (F(wa), ... F (wn)) and€ = 227 (F(w), .. F (o).
Aromatic cycles composed of a number of trees which is notlépteiof 3 are consequently irrelevant.

LEMMA 4.3 Leto be an aromatic tree of the form= (t;...tm). If there exists an indekin {1,...,m}
for which the three consecutive tregd;1,ti2 (Or tm_1,tm,t1 if i = m—1 orty,ty,t> if i = m) have
roots that are not in the order black/white/box, then theesponding elementary divergence (@ivis
zero. In particular, ifn= 3l + 1 orm= 3l + 2, then di\0) is zero.

Proof. Consider three consecutive trees of the aromaticdrsay for instancé, t; andts, and assume
that they have roots which are not in the order black/white/B-or instance, let us suppose thahas
a black root. Ift; also has a black root, then we have

0 m(p.gr) O 0 n2(p,gr) O 0 00
Frt))F*(tz) = O 0 0 0 0 o|l=[000
0 0 0 0 0 0 000

If t, has a box root, then we have similarly
0
0],
0

0 m(p,qr) O 0 0 0
0 0 0 é&(p,gr) 0 O
(n1k2) (p..1) )

If to has a white root, then it follows that
0
0

0 ni(par) O 00 0 0
F*(ty)F*(tz)=1| O 0 0 0 0 mw(par) |=10
0 0 0 00 0 0

[oNeoNe]
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so that ift3 has not a box root, theR*(t1)F*(t2)F*(t3) = 0 once again. In all cases whaget, and

t3 have not their roots with colours in the order black/whitedbwe thus get digo) = 0. In particular,

if m=3l+1 orm= 3l + 2, then there is necessarily such a sequence of three cdineetraes and

div(o) = 0. O

THEOREM4.17 A one-stage additive Runge-Kutta method formethdf, b)) = (6;,1), (AZ,bl2) =

(62,1), and(AB, bl¥) = (63,1) is volume-preserving for systems of the form (4.29) if antydh
(61—1)(62—1)(63—1) = 616:65. (4.30)

[ .38

Proof. ~ Consider an aromatic multi-indeg = (i;"...i5') composed of Bindices with colours in
black/white/box order and led = (@, ..., k) € Ck(p). Since all quantities are scalar, the indices

i[ll],...,i?l] take one and only value 1. Hence,kif, k» and ks denote the number of cuts before a

respectively black, white and box root, we have
K I—ky gl —ko Al —k
W(v) = [ 9(@) = 66, 265 .
=

and such a value afi(u) can be obtained in

() (e ) () s

different ways fromp with k = k; + ko + k3 cuts. Hence, the condition for volume preservation becomes

3l
| | | |—ky ol —ko ol —k
(*1)k ( ) ( > < >9 19 %2 g 3:07
kzl k1+k§k3:k. kg ko ks 1 2 3

0<kykp.kg <!

i.e., if (4.30) holds. O

ExaMPLE 4.18 The method corresponding (@, 62, 65) = (0,1/2,1) (i.e. Explicit Euler / Midpoint /
Implicit Euler) can be written for systems of the form (4.28)

+
p1 = poJrhﬂ‘(qlqu)
Qi = Qo+h¥(r1)
ri = ro+hs#(po)

and is thus explicit, and it is equivalent to the compositibexact flows forf[t, {2 and 3. As ad-
ditional example, consid€ib, 62, 65) = (1/3,4/3,1/3), so that the corresponding additive RK method
reads

P = po+§5"(Q) pp = po+hZ(Q
Q = W+dY9R w = G+h¥R)
R = ro+52(P) pm Po+hZ(P)

and is not explicit.
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