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Abstract. In this paper, we develop a new strategy aimed at obtaining high-

order asymptotic models for transport equations with highly-oscillatory solu-

tions. The technique relies upon recent developments averaging theory for
ordinary differential equations, in particular normal form expansions in the

vanishing parameter. Noteworthy, the result we state here also allows for the

complete recovery of the exact solution from the asymptotic model. This is
done by solving a companion transport equation that stems naturally from

the change of variables underlying high-order averaging. Eventually, we ap-

ply our technique to the Vlasov equation with external electric and magnetic
fields. Both constant and non-constant magnetic fields are envisaged, and as-

ymptotic models already documented in the literature and re-derived using our
methodology. In addition, it is shown how to obtain new high-order asymptotic

models.

1. Introduction. In a large variety of situations, one is confronted to the resolu-
tion of a family of transport equations of the form

∂tf(t, y) + F ε(y) · ∇yf(t, y) = 0, f(0, y) = f0(y) ∈ R, t ∈ R, y ∈ Rn, (1)

indexed by a small positive parameter ε, whose occurrence in real-life models often
lies at the core of numerous theoretical and numerical difficulties encountered in
obtaining a(-n) (approximate-) solution. The nature of the difficulties (both the-
oretical and numerical) triggered by the presence of ε may vary according to the
form of the vector field y 7→ F ε(y) ∈ Rn. In this article, we shall address the
highly-oscillatory situation where it can be split into two parts

F ε(y) =
1

ε
ω(y)G(y) +K(y) (2)
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where the flow (t, y0) 7→ Φt(y0) associated with the differential equation

ẏ(t) = G(y(t)), y(0) = y0, (3)

is assumed to be periodic, regardless of the specific trajectory (i.e. independently
of the initial condition y0 at time t = 0) and where y 7→ ω(y) is a scalar func-
tion bounded from below by a positive constant. Owing to the 1/ε-term in front
of the vector field G, the solution of the transport equation evolves in a highly-
oscillatory regime as soon as ε becomes small, which is specifically the regime under
investigation here. Since our ultimate goal is the design of high-order uniformly
accurate numerical methods (i.e. methods whose computational cost and accuracy
are not influenced by the value of ε), the identification of the asymptotic models is
a pre-requisite: this is the task addressed in this work.

Examples of highly-oscillatory equations of the form (1) are numerous [2, 3,
4, 5, 13, 14, 15, 16]. It is obviously out of the scope of this introductory paper
to treat all of them: we will rather concentrate on the following model that will
constitute hereafter our target application, namely the Vlasov equation with
strong magnetic field

∂tf(t, x, v) + v · ∇xf(t, x, v) +

(
E(x) +

1

ε
v ×B(x)

)
· ∇vf(t, x, v) = 0, (4)

where x ∈ R3 and v ∈ R3 denote respectively the spatial and velocity variables,
f : R × R3 × R3 7→ R is the distribution function, i.e. the density of particles at
time t, position x and velocity v, and where E : R3 7→ R3 and B : R3 7→ R3 are
respectively the electric and magnetic fields, assumed to be external at this stage
(i.e. not coupled with f through Maxwell equations for instance).

Our first objective is this paper is to derive formal asymptotic models for equa-
tion (1) with F ε satisfying (2) and ω ≡ 1. Rather then merely obtain the limit
equation where ε tends to zero, we demand higher-order terms in powers of ε. The
methodology we propose relies on recent results from the theory of averaging for
highly-oscillatory ordinary differential equations [20, 21], and more precisely on nor-
mal forms obtained as ε-expansions. Such series have been derived with the help
of B-series in [6, 7, 9] or somehow more simply in [17, 18, 19] with word-series1.
The underlying results we shall lean onto will be presented in Section 3, but prior
to that, we shall show in Section 2 how the splitting of the vector field F ε into two
commuting vector fields naturally leads to two independent transport equations2.
The corresponding first result (for constant ω) will be stated in Section 4.

In Section 5, we will address the much more involved situation of a varying
frequency (ω non-constant in (2)), which requires to work in an augmented space.
In particular, the main result of this paper will be stated there. It allows to rewrite
the original transport equation (1) as a set of four non-stiff equations for a phase
function (S) and a profile function (h). This procedure is inspired from the recent
work [11], although the context here is different. The two equations for the profile
function are the counterpart of the averaged equation obtained elsewhere in the
literature. However, solving the equation for the phase function S allows to recover

1Although the effect of truncating the aforementioned formal series has been fully analysed

in subsequent papers [7, 8], it is out of the scope of this first paper to present a complete error

analysis.
2The aim of this section is to introduce the rationale underlying our methodology, i.e. the idea

that decomposing the vector field F ε in (1) into two commuting vector fields allows to separate

the stiff and non-stiff parts of the transport equation.
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exactly the complete solution of (1). This part is up to our knowledge completely
new. Since we use series-expansions, it is possible to write down explicitly and in a
systematic way the terms appearing in the four equations for S and h. In Section 6,
we shall eventually envisage our target application (4) and show how to obtain the
terms of these developments. Firstly, in Section 6.1, we will consider the case of a
constant magnetic field B(x) ≡ B in (4) with a physical space of dimension two, as
it appears to be a simple application of the results of Section 4. Secondly, in Section
6.2, we will address the more involved situation of a varying magnetic field (B non-
constant in (4)), which requires a preliminary treatment of the transport equation,
as exposed in Section 5. At last, we shall treat equation (4) in full generality, i.e.
in three dimensions and with a general magnetic field, and compare the equations
we obtain with our methodology to results previously published in the literature.

2. Decomposition of a transport equation. Let us consider the Liouville equa-
tion

∂tf(t, y) + F (y) · ∇yf(t, y) = 0,

associated to a split vector field of the form

F = F1 + F2,

and let us make the fundamental assumption that the Lie bracket of F1 and F2

vanishes, that is to say that

∀y ∈ Rn, [F1, F2](y) := (∂yF1)(y) F2(y)− (∂yF2)(y) F1(y) = 0.

This commutation of vector fields further manifests itself as the commutation of the
two flows3 associated with F1 and F2, or as the commutation of the Lie operators
associated with F1 and F2. More precisely, denoting LF1

and LF2
the operators

defined, for any smooth function g ∈ C∞(Rn;Rm) by

∀y ∈ Rn, LF1
(g)(y) = ∂yg(y)F1(y) and ∀y ∈ Rn, LF2

(g)(y) = ∂yg(y)F2(y),

we have4

LF1
LF2

= LF2
LF1

, (5)

i.e. more explicitly

∀g ∈ C∞(Rn;Rm), LF1

(
LF2

(g)
)

= LF2

(
LF1

(g)
)
.

The method of characteristics immediately gives for any smooth solution of (1)

∀t ∈ R, f(t, ·) = exp (−tLF1+F2)(f0), (6)

which, owing to relation (5), can also be written as

∀t ∈ R, f(t, ·) = exp (−tLF1
) exp (−tLF2

)(f0) = exp (−tLF2
) exp (−tLF1

)(f0).
(7)

A somehow natural step forward now consists in separating the two times in previous
relation and defining the new function with additional variable τ

f̃(t, τ, ·) = exp (−τLF1
) exp (−tLF2

)(f0) = exp (−tLF2
) exp (−τLF1

)(f0). (8)

We are now in position to state the following proposition, which shows that the
augmented function f̃ is in fact the unique solution of a system of two independent
equations.

3These flows are assumed to be defined for all t ∈ R and all y ∈ Rn without further notice.
4Owing to the general well-known formula LF1

LF2
− LF2

LF1
= L[F1,F2].
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Proposition 1. Consider the system composed of the following two transport equa-
tions

∀(t, τ, y) ∈ R× R× Rn, ∂τ f̃(t, τ, y) + F1(y) · ∇y f̃(t, τ, y) = 0 (9)

and

∀(t, τ, y) ∈ R× R× Rn, ∂tf̃(t, τ, y) + F2(y) · ∇y f̃(t, τ, y) = 0, (10)

together the with initial condition f̃(0, 0, y) = f0(y). If the condition [F1, F2] = 0 is
satisfied, this system has a unique solution, which furthermore satisfies

∀(t, y) ∈ R× Rn, f̃(t, t, y) = f(t, y).

Proof. We first note that, if a solution f̃ exists, then equations (9) and (10) can

be solved in any order. Hence, we can obtain the value of f̃(t, τ, y) by first solving

(9) for t = 0 from the initial value f̃(0, 0, y) = f0(y) -this furnishes f̃(0, τ, y)- and
then by solving (10) for fixed τ from this initial value. Insofar as the solution exists,
it is thus unique. Now, define

f̃(t, τ, ·) = exp (−τLF1
) exp (−tLF2

)(f0) = exp (−tLF2
) exp (−τLF1

)(f0).

It is easy to check that it satisfies both (9) and (10) by considering successively the

first and the second form. The function f̃ defined above is thus the unique solution
of system (9-10). Finally,

∂t

(
f̃(t, t, y)

)
+F · ∇y f̃(t, t, y) = ∂tf̃(t, t, y) + ∂τ f̃(t, t, y) + F · ∇y f̃(t, t, y)

= ∂tf̃(t, t, y) + F1 · ∇y f̃(t, t, y) + ∂τ f̃(t, t, y) + F2 · ∇y f̃(t, t, y)

= 0.

The initial condition f̃(0, 0, ·) = f0 and a uniqueness argument then allow to con-
clude. �

3. Averaging of ordinary differential equations in a nutshell. Since our
approach for averaging the transport equation (1) consists in averaging first the
characteristics and then rewrite the corresponding Liouville equations, we hereafter
recall the main results upon which we shall lean. In this paper, we content ourselves
with formal expansions, thus neglecting at this stage the occurrence of error terms.
This is justified by the fact that, under appropriate smoothness assumptions, these
errors actually become of size εn for any fixed n, or even exponentially small (i.e.
bounded by Ce−C/ε for some positive constant C). A completely rigorous treatment
of these error terms for ordinary differential equations can be found for instance in
[7].

3.1. A normal form theorem. Consider the highly-oscillatory differential equa-
tion

ẏ = F ε(y) :=
1

ε
G(y) +K(y) (11)

i.e. equation (2) with ω ≡ 1, where both vector fields G and K are assumed to
be smooth5. As already alluded to in the Introduction section, the fundamental
assumption (H) required to go any further is that

5Either of class Ck or analytic. The precise smoothness assumption determines the type of
error bounds, either polynomial or exponential in ε and is thus not essential here.
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(H) G generates a periodic flow Φτ , regardless of the specific trajectory (i.e.
with a period which remains independent of the initial value). By convention, we
will suppose here that this period is 2π.

Since the Lie bracket of G and K has here no reason to vanish, we can not
reproduce right away the analysis conducted in previous section. It is precisely the
aim of averaging to rewrite F ε as the sum of two commuting fields6. As already
emphasized, this is in general possible only up to small error terms, so that the
theorem stated below is to be understood in a formal sense.

Theorem 3.1. Suppose that the vector field F ε can be split according to equation
(11) and that G satisfies assumption (H). Then there exist two vector fields Gε and
Kε such that

(i) F ε = 1
εG

ε +Kε;
(ii) the Lie bracket of Gε and Kε vanishes, i.e. [Gε,Kε] = 0;

(iii) the vector field Gε generates a flow τ 7→ Φετ which is 2π-periodic, regardless
of the specific trajectory, i.e.

∀(t, y) ∈ R× Rn, Φεt+2π(y) = Φεt (y).

This result brings us back to Section 2 and indeed allows to split equation (1) into
two equations of the form (9-10); details will be given in Section 4. We conclude this
subsection with a few additional statements related to the conservation of geometric
properties by stroboscopic averaging.

Theorem 3.2. Suppose that the vector field F ε can be split according to equation
(11) and that G satisfies assumption (H). Then the two vector fields Gε and Kε of
Theorem 3.1 have the following properties:

(i) if both G and K are divergence-free vector fields, then so are Gε and Kε;
(ii) if both G and K are Hamiltonian vector fields, then so are Gε and Kε;

(iii) if both G and K are Poisson vector fields with the same structure matrix

Rn 3 y 7−→ Ω(y) ∈ Rn×n

defining a Poisson bracket (i.e. skew symmetric and satisfying Jacobi identity
and Leibniz’ rule)

{P,Q} = (∇P )TΩ∇Q,
then Gε and Kε are also Poisson vector fields with structure matrix Ω.

Remark 1. The properties of Theorem 3.2 are intimately linked to the choice of
stroboscopic averaging (see [9, 10]), which is the only averaging procedure preserving
geometric properties of the initial vector field F ε.

3.2. Expansions in powers of ε of the vector fields Gε and Kε. Since we wish
in particular to identify the asymptotic behaviour of (1) in the limit when ε tends
to zero as well as higher-order terms in ε, it is essential to consider ε-expansions of
the various functions appearing in Theorem 3.1. Since this was precisely the point
of view adopted in [9, 10], we shall again quote the following result7:

6At least, this is one way to envisage averaging for ordinary differential equations and this is
the point of view adopted both in [9] and in the recent series of papers by Murua and Sanz-Serna

[17, 18, 19].
7Note again that an alternative proof of this result may be found in [17] and [18].
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Theorem 3.3. Consider the Fourier series of

Kτ (y) =

(
∂Φτ
∂y

(y)

)−1

(K ◦ Φτ )(y) =
∑
k∈Z

eikτ K̂k(y). (12)

The averaged vector field Kε admits the following formal ε-expansion

Kε =

+∞∑
r=1

εr−1K [r] =

+∞∑
r=1

εr−1

r

∑
(i1,...,ir)∈Zr

β̄i1···ir [. . . [K̂i1 , K̂i2 ], K̂i3 ], . . . , K̂ir ] (13)

where the coefficients β̄ are universal (problem-independent). Similarly, the vector
field Gε admits the following formal ε-expansion

Gε = ε(F ε −Kε). (14)

Remark 2. The fact that geometric properties of Gε and Kε are inherited from
F ε may also be seen as a direct consequence of the form of previous expansions,
which are linear combinations of embedded Lie-brackets of the K̂k’s. For instance,
if both G and K are Poisson vector field with structure matrix Ω(y) then Kτ is of
the form

Kτ (y) = Ω(y)∇yHτ (y) with Hτ (y) =
∑
k∈Z

eiτ Ĥk(y)

and all Fourier coefficients K̂k(y) = Ω(y)∇yĤk(y) are also Poisson vector fields for
the structure matrix Ω(y). Since

∀(k, l) ∈ Z2, [K̂k, K̂l] = Ω(y)∇y{Ĥk, Ĥl}

where {·, ·} denotes the Poisson bracket operation, it is then immediate to see that
both Gε and Kε are Poisson vector fields with Hamiltonians given by formulas (13)

and (14) where Lie brackets are replaced by Poisson brackets and the K̂k’s by the

Ĥk’s. Similarly, if div (G) = div (K) = 0, then div (K̂k) = 0 for all k ∈ Z and a
standard computation shows that

∀(k, l) ∈ Z2, div
(

[K̂k, K̂l]
)

= 0

so that again both Gε and Kε are divergence-free.

In order to be able to derive the expansions of Gε and Kε, it still remains to
give the value of the coefficients β̄ appearing in formula (13). This is the purpose
of next proposition.

Proposition 2. The coefficients β̄ can be computed recursively from the following
formulas, which hold for all values of j ∈ Z∗, r, s ∈ N∗ and (l1, . . . , ls) ∈ Zs:

β̄0 = 1, β̄j = 0,
β̄0r+1 = 0, β̄0rj = i

j

(
β̄0r−1j − β̄0r

)
,

β̄jl1···ls = i
j

(
β̄l1···ls − β̄(j+l1)l2···ls

)
, β̄0rjl1···ls = i

j

(
β̄0r−1jl1···ls − β̄0r(j+l1)l2···ls

)
.
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For the sake of illustration and later use, we now give the first terms of Kε =
K [1] + εK [2] + ε2K [3] +O(ε3), as stated in [6]:

K [1] = K̂0,

K [2] =
∑
k>0

i

k

(
[K̂k, K̂−k] + [K̂0, K̂k − K̂−k]

)
,

K [3] =
∑
k 6=0

1

k2

(
[[K̂k, K̂0], K̂0] + [[K̂−k, K̂k], K̂k] − 1

2
[[K̂−2k, K̂k], K̂k] + [[K̂0, K̂k], K̂−k]

)
−

∑
0 6=m 6=−l 6=0

1

l(m+ l)
[[K̂0, K̂l], K̂m] +

∑
k<−|l|

1

lk
[[K̂k, K̂l], K̂−l]

−
∑

0>k<m,m+k 6=0

1

km
[[K̂k, K̂−k], K̂m]

−
∑

0 6=m 6=±l 6=0,m>−m−l<l

1

m(m+ l)
[[K̂−m−l, K̂l], K̂m]. (15)

Remark 3. The following expressions of the first three terms of the averaged
equation have also been derived in various places and do not use Fourier coefficients:

K [1](y) =
1

2π

∫ 2π

0

Kτ (y)dτ, K [2](y) =
−1

4π

∫ 2π

0

∫ τ

0

[Ks(y),Kτ (y)]dsdτ,

K [3](y) =
1

8π

∫ 2π

0

∫ τ

0

∫ s

0

[[Kr(y),Ks(y)],Kτ (y)]drdsdτ

+
1

24π

∫ 2π

0

∫ τ

0

∫ τ

0

[Kr(y), [Ks(y),Kτ (y)]]drdsdτ.

Further terms can be formally obtained by using a non-linear Magnus expansion
[1]. Each of these is a linear combination of iterated integrals of iterated brackets
of Kτ .

As an illustration, we derive below the expressions of Gε and Kε for a simple
example. We thus consider the following vector field

F ε(y) =

(
v

1
εJv + E

)
(16)

where x = (x1, x2)T ∈ R2, v = (v1, v2)T ∈ R2, y = (x1, x2, v1, v2)T ∈ R4, E ∈ R2

and

J =

(
0 1
−1 0

)
.

The function F ε may be decomposed into the sum 1
εG+K with

G(y) =

(
0
Jv

)
and K(y) =

(
v
E

)
,

and the flow Φτ associated with G simply reads

Φτ (y) =

(
x

eτJv

)
.

Substituting Φτ into K then leads to

Kτ (y) =

(
eτJv
e−τJE

)
= eiτ K̂1(y) + e−iτ K̂−1(y)
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with

K̂1(y) =
1

2

(
v − iJv
E + iJE

)
and K̂−1(y) =

1

2

(
v + iJv
E − iJE

)
,

where we have used the relation eθJ = (cos θ)I + (sin θ)J and have written cos θ =
1
2 (eiθ + e−iθ) and sin θ = 1

2i (e
iθ − e−iθ). Formula (13) then gives

K [1] = K̂0 = 0,

K [2] = i[K̂1, K̂−1] = −2=
(

(∂yK̂1)K̂−1

)
=

(
JE
0

)
and all other K [r] for r ≥ 3 vanish, as can be checked by easy calculations.

4. Averaging of transport equations with constant frequency. Compiling
the arguments of the two previous sections, it is now straightforward to obtain the
following corollary, which establishes in particular the existence of a formal averaged
transport equation for problems of the form (1-2).

Corollary 1. Let F ε = 1
εG

ε+Kε be the normal form splitting of a highly-oscillating

vector field F ε = 1
εG+K satisfying (H). The solution of the transport equation

∂tf(t, y) + F ε(y) · ∇yf(t, y) = 0

may be obtained as the diagonal value (i.e. for the value τ = t/ε) of the two-scale

function f̃(t, τ, y), 2π-periodic in τ , defined as the unique solution of the following
system of two equations{

∀(t, τ, y), ∂τ f̃(t, τ, y) +Gε(y) · ∇y f̃(t, τ, y) = 0, (i)

∀(t, τ, y), ∂tf̃(t, τ, y) +Kε(y) · ∇y f̃(t, τ, y) = 0 (ii)

with initial condition f̃(0, 0, ·) = f0. Moreover, the ε-expansions of Gε and Kε

are given by formulas (13-14) of Theorem 3.3. If in addition G and K are both
divergence-free, then so are Gε and Kε, and similarly, if G and K are both Hamil-
tonian, then so are Gε and Kε, with Hamiltonians that can be obtained again from
formulas (13-14) by replacing Lie brackets by Poisson brackets.

Proof. The result follows immediately from Proposition 1 with F1 = 1
εG

ε and
F2 = Kε and from Theorem 3.3. �

Remark 4. Equation (ii) is usually referred to as the averaged transport equation.

As a straightforward illustration of this corollary, we consider the simplified case
of a set of particles evolving in a constant electric field (independent of time and
phase-space variables) and submitted to a constant magnetic field. The correspond-
ing equation

∂tf + v · ∇xf +

(
1

ε
Jv + E

)
· ∇vf = 0, (17)

-where f depends on time t ∈ R, position x ∈ R2 and velocity v ∈ R2- is obviously
of the form (1) with y = (x1, x2, v1, v2)T ∈ R4 and F ε given by (16). On the one
hand, given the extreme simplicity of the vector field F ε, the solution f(t, x, v) of
(17) can be directly written as

f0

(
x− εJ(eτJ − I)v − ε2(eτJE − E) + εtJE, eτJv − εJ(eτJ − I)E

)
(18)
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for τ = t/ε. On the other hand, using the computations at the end of previous

section, equations (i) and (ii) of Corollary 1 for f̃(t, τ, x, v) take the following form

(i) ∂τ f̃ + (εv − ε2JE) · ∇xf̃ + (Jv + εE) · ∇v f̃ = 0, (ii) ∂tf̃ + εJE · ∇xf̃ = 0.

By direct differentiation w.r.t. τ and then t, it can be checked that the function
given in formula (18) satisfies both equations (i) and (ii).

5. High-oscillations with varying frequency. In this section, we again consider
the transport equation

∂tf(t, y) + F ε(y) · ∇yf(t, y) = 0 (19)

where the vector field F ε is now of the form

F ε(y) =
1

ε
ω(y)G(y) +K(y) (20)

with G still generating a 2π-periodic flow Φτ , independently of the initial condition.
In this form, Theorem 1 does not directly apply, owing to the non-existence of a
common frequency for all trajectories (if ω varies). In order to rewrite (19) in a
more amenable form, we thus divide it by ω

1

ω(y)
∂tf(t, y) +

1

ω(y)
F ε(y) · ∇yf(t, y) = 0. (21)

Upon denoting Y = (t, y), previous equation may then be rewritten as LF̌ ε(f) = 0,
where

LF̌ ε(f) = (∂Y f) F̌ ε (22)

is the Lie derivative of f in the direction of the augmented vector field

F̌ ε(Y ) =

(
1

ω(y)
1

ω(y)F
ε(y)

)
=

1

ε

(
0

G(y)

)
+

(
1

ω(y)
1

ω(y)K(y)

)

:=
1

ε
Ǧ(Y ) + Ǩ(Y ). (23)

In particular, note that Ǧ still generates a 2π-periodic flow.

5.1. Immersion as the stationary solution of an extended equation. Our
first idea is to interpret the function f(t, y) = f(Y ) as the (stationary) solution to
the following augmented transport equation on g(s, Y ):

∂sg(s, Y ) + F̌ ε(Y ) · ∇Y g(s, Y ) = 0, g(0, Y ) = f(Y ) = f(t, y).

This means that

g(s, ·) = exp (−sLF̌ ε) f = f for all s ≥ 0.

Since Ǧ generates a 2π-periodic flow, the averaging Theorem 3.1 ensures that

F̌ ε =
1

ε
Ǧε + Ǩε,

where Ǧε still generates a 2π-periodic flow and [Ǧε, Ǩε] = 0. Proceeding as in
Section 2, we then get two equations for

g̃(s, τ, ·) = exp (−τLǦε) exp (−sLǨε) f
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of the form

(i) ∂sg̃(s, τ, Y ) + Ǩε(Y ) · ∇Y g̃(s, τ, Y ) = 0 (24)

(ii) ∂τ g̃(s, τ, Y ) + Ǧε(Y ) · ∇Y g̃(s, τ, Y ) = 0 (25)

which can be solved one after another in any order, since [Ǧε, Ǩε] = 0. Note the
usual relation g̃(s, s/ε, Y ) = g(s, Y ) = f(Y ). However, there is here no known
initial condition at s = τ = 0, since g̃(0, 0, Y ) = g(0, Y ) = f(t, y) is precisely the
unknown of the original problem.

5.2. Eliminating the extra-variable s. Our objective in this subsection is to
transform the two equations (24-25) into new equations which do not involve the
variable s and are provided with a proper initial condition, namely f0(y). We will
then show how to recover the original solution f(t, y) using only these new equations.
To this aim, we will introduce a phase-function (t, τ, y) 7→ S(t, τ, y) in the spirit of
[11], which will be defined later on as the solution of a transport equation, and a
profile-function (t, τ, y) 7→ h(t, τ, y) defined by

h(t, τ, y) = g̃(S(t, τ, y), τ, t, y), (26)

that will also be shown to satisfy a companion transport equation. Our starting
point is the following set of relations

∂th = (∂sg̃(S, τ, t, y)) ∂tS + ∂tg̃(S, τ, t, y),

∂τh = (∂sg̃(S, τ, t, y)) ∂τS + ∂τ g̃(S, τ, t, y),

∂yh = (∂sg̃(S, τ, t, y)) ∂yS + ∂y g̃(S, τ, t, y),

where we have omitted the obvious arguments of functions h and S and which may
be straightforwardly obtained. Together with equations (24) and (25), they lead
immediately to

Ǩε
1(y)∂th(t, τ, y) + Ǩε

2(y) · ∇yh(t, τ, y)

= (∂sg̃(S, τ, t, y))
(
Ǩε

1(y)∂tS(t, τ, y) + Ǩε
2(y)∂yS(t, τ, y)− 1

)
,

and

∂τh(t, τ, y) + Ǧε1(y)∂th(t, τ, y) + Ǧε2(y) · ∇yh(t, τ, y)

= (∂sg̃(S(t, τ, y), τ, t, y))
(
Ǧε1(y)∂tS(t, τ, y) + Ǧε2(y)∂yS(t, τ, y) + ∂τS(t, τ, y)

)
,

where the index 1 in Ǩε
1 and Ǧε1 refers to the first components of Ǩε and Ǧε, while

the index 2 in Ǩε
2 and Ǧε2 refers to all remaining components of Ǩε and Ǧε. Now,

in order to eliminate the variable s from the previous two equations, one has to
choose S such that

Ǩε
1(y)∂tS(t, τ, y) + Ǩε

2(y) · ∇yS(t, τ, y) = 1,
∂τS(t, τ, y) + Ǧε1(y)∂tS(t, τ, y) + Ǧε2(y) · ∇yS(t, τ, y) = 0,

(27)

and then

Ǩε
1(y)∂th(t, τ, y) + Ǩε

2(y) · ∇yh(t, τ, y) = 0,
∂τh(t, τ, y) + Ǧε1(y)∂th(t, τ, y) + Ǧε2(y) · ∇yh(t, τ, y) = 0,

(28)

with initial conditions

S(0, 0, y) = 0, h(0, 0, y) = f0(y). (29)
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From these functions S and h, one can recover the distribution function f(t, y) as
follows: for any given (t, y), define τ(t, y) as a solution of

τ(t, y) =
S(t, τ(t, y), y)

ε
.

Then f can be obtained from the relation

h(t, τ(t, y), y) = g̃

(
S(t, τ(t, y), y),

S(t, τ(t, y), y)

ε
, t, y

)
,

= g(S(t, τ(t, y), y), t, y)

= f(t, y).

Lemma 5.1. Assume that y 7→ Ǩε
1(y) does not vanish and consider the two vector

fields

Ǎε :=
1

Ǩε
1

Ǩε
2 and B̌ε := Ǧε2 −

Ǧε1
Ǩε

1

Ǩε
2 ,

together with the two scalar functions

α̌ε :=
1

Ǩε
1

and β̌ε := − Ǧ
ε
1

Ǩε
1

.

Then the following two relations hold true

LǍβ̌ = LB̌α̌ and LǍLB̌ = LB̌LǍ. (30)

Proof. Owing to Theorem 3.3, the two vector fields Ǩε and Ǧε have a vanishing
Lie bracket (with respect to the Y = (t, y) variable). This implies that

∂yǨ
ε
1(y) Ǧε2(y)− ∂yǦε1(y) Ǩε

2(y) = 0 and ∂yǨ
ε
2(y) Ǧε2(y)− ∂yǦε2(y) Ǩε

2(y) = 0.
(31)

By definition of α̌ε and β̌ε, the first relation may be rewritten as

∇yβ̌ε · Ǎε −∇yα̌ε · B̌ε = 0 (32)

which proves the first statement of the lemma. Now, given a smooth vector field
L : Rn → Rn, a scalar function a : Rn → R and δy a vector of Rn, the relation

(∂y(aL)) δy = (∇ya · δy)L+ a(∂yL) δy

holds true and may be used to compute the Lie bracket of Ǎε and B̌ε as follows

[Ǎε, B̌ε] =∂y(α̌εǨε
2)
(
Ǧε2 + β̌εǨε

2

)
− ∂yǦε2 (α̌εǨε

2)− ∂y(β̌εǨε
2) (α̌εǨε

2)

=
(
∇yα̌ε ·

(
Ǧε2 + β̌εǨε

2

))
Ǩε

2 + α̌ε(∂yǨ
ε
2)
(
Ǧε2 + β̌εǨε

2

)
− α̌ε(∂yǦε2) Ǩε

2 − α̌ε
(
∇yβ̌ε · Ǩε

2

)
Ǩε

2 − α̌εβ̌ε(∂yǨε
2) Ǩε

2 .

Using the second half of (31), the equality above simplifies to

[Ǎε, B̌ε] =
(
∇yα̌ε · Ǧε2 + β̌ε∇yα̌ε · Ǩε

2 − α̌ε∇yβ̌ε · Ǩε
2

)
Ǩε

2

=
(
∇yα̌ε · B̌ε −∇yβ̌ε · Ǎε

)
Ǩε

2

where the scalar term in factor of Ǩε
2 now vanishes owing to (32). This implies the

second statement of the lemma and completes its proof. �
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Theorem 5.2. Consider the functions S(t, τ, y) and h(t, τ, y) satisfying the follow-
ing two separate systems of equations

Ǩε
1(y)∂tS(t, τ, y) + Ǩε

2(y) · ∇yS(t, τ, y) = 1, (33)

Ǩε
1(y)∂τS(t, τ, y) +

(
Ǩε

1(y)Ǧε2(y)− Ǧε1(y)Ǩε
2(y)

)
· ∇yS(t, τ, y) = −Ǧε1(y), (34)

S(0, 0, y) = 0, (35)

and

Ǩε
1(y)∂th(t, τ, y) + Ǩε

2(y) · ∇yh(t, τ, y) = 0, (36)

Ǩε
1(y)∂τh(t, τ, y) +

(
Ǩε

1(y)Ǧε2(y)− Ǧε1(y)Ǩε
2(y)

)
· ∇yh(t, τ, y) = 0, (37)

h(0, 0, y) = f0(y). (38)

If the function y 7→ Ǩε
1(y) does not vanish, then the following statements hold:

(i) system (36-37-38) has a unique solution h, periodic w.r.t. τ ;
(ii) system (33-34-35) has a unique solution S, periodic w.r.t. τ ;

(iii) the formal expansion of the solution f(t, y) of problem (19-20) satisfies

f(t, y) = h(t, τ(t, y), y),

where the function (t, y) 7→ τ(t, y) ∈ R is implicitly defined (locally) by the
relation

ετ(t, y) = S(t, τ(t, y), y).

Proof. A straightforward computation shows that the four equations (33),
(34), (36), (37) are equivalent to the four equations in (27) and (28). Hence, if
the separate systems (36-37) and (33-34) have unique solutions, they are clearly
periodic w.r.t. τ . Now, proving the first statement requires to show that equations
(36) and (37) can be solved in any order, i.e. that LǍε and LB̌ε commute, which
is ensured by previous lemma. If h is the solution of (36-37-38), then h(·, 0, ·) is in
particular the solution of the Cauchy problem (36-38) and thus reads

h(t, 0, ·) = exp(−tLǍε)f0.

Equation (37), which is a transport equation in variables (τ, y) with fixed parameter
t, can then be uniquely solved. Given the initial data h(t, 0, ·) = exp(−tLǍε)f0, this
yields

h(t, τ, ·) = exp(−τLB̌ε) exp(−tLǍε)f0. (39)

Hence, if a solution of (36-37-38) exists, it is necessarily of this form and thus unique.
Conversely, one has, according to previous lemma

exp(−tLǍε) exp(−τLB̌ε)f0 = exp(−τLB̌ε) exp(−tLǍε)f0

and by differentiating the left-hand side w.r.t. t and the right-hand side τ , it may be
checked that h given in (39) is indeed solution -thus the unique solution- of system
(36-37-38). This proves (i).

Proceeding similarly for system (33-34-35), we first solve (33-35) for fixed τ = 0.
This yields

S(t, 0, ·) = exp
(
− tLǍε

)
S(0, 0, ·) +

∫ t

0

exp
(
(s− t)LǍε

)
ds α = tϕ

(
− tLǍε

)
α,
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where ϕ(z) = ez−1
z is holomorphic on C. The function S so-obtained then serves as

initial condition for the evolution in τ through equation (34). This then leads to

S(t, 0, ·) = exp
(
− τLB̌ε

)
tϕ
(
− tLǍε

)
α+ τϕ

(
− τLB̌ε

)
β

= τϕ
(
− τLB̌ε

)
β + tϕ

(
− tLǍε

)
α− t τ ϕ

(
− tLǍε

)
ϕ
(
− τLB̌ε

)
LB̌εα

where we have used the commutation of LǍε and LB̌ε . Solving the equations in
reverse order would have led to the symmetric variant

S(t, 0, ·) = τϕ
(
− τLB̌ε

)
β + tϕ

(
− tLǍε

)
α− t τ ϕ

(
− tLǍε

)
ϕ
(
− τLB̌ε

)
LǍεβ,

which, owing to Lemma 5.1 (LǍεβ = LB̌εα), coincides with the first one. This
proves (ii).

It remains to prove (iii). From (26) and the definition of h and g̃, we have

∀ (t, τ, y), h(t, τ, y) = g̃ (S(t, τ, y), τ, t, y) and g̃

(
S(t, τ, y),

S(t, τ, y)

ε
, t, y

)
= f(t, y),

so that the value of f(t, y) can be recovered from h and S through the formula

∀ (t, τ, y), f(t, y) = h(t, τ(t, y), y),

provided that τ(t, y) satisfies

ετ(t, y) = S(t, τ(t, y), y).

Given the periodicity of S w.r.t. τ , this equation always has a solution τ(t, y). �

Remark 5. (truncated averaged models) If one keeps, in the expansions of the
averaged fields Ǎε and B̌ε (defined in Lemma 5.1), only the terms of order less than
(or equal to) n in ε, then the question arises whether the corresponding truncated
averaged models8 have a solution in the exact sense, and whether this solution is
periodic w.r.t. τ . Generally speaking, the transport operators associated with the
truncated fields Ǎn and B̌n (i.e. Ǎε = Ǎn + O(εn+1), B̌ε = B̌n + O(εn+1)) do not
commute exactly. More precisely, we only have [Ǎn, B̌n] = O(εn+1). However, one
can define an approximate solution by first solving

∂τh+ B̌n(y) · ∇yh = 0, h(0, 0, y) = f0(y)

for fixed t = 0 (in this way we obtain a solution hn(0, τ, y) defined for all τ), and
then solving

∂th+ Ǎn(y) · ∇yh = 0, h(0, τ, y) = hn(0, τ, y)

in order to get a solution h1
n(t, τ, y) defined for all τ and t. At this stage, it is worth

emphasizing that the function h1
n does not satisfy exactly the first equation for all

t (only for t = 0), since [Ǎn, B̌n] 6= 0. Nevertheless, it does satisfy it up to terms
of size εn+1. In particular, if one solves the two equations in reverse order, the
function h2

n obtained does not coincide with h1
n exactly, but only up to terms of size

εn and we have h1
n − h2

n = O(εn+1). In this sense, the result in previous theorem is
at this stage only formal.

8i.e. the models obtained by removing all the terms of size εp for p ≥ n+ 1.
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5.3. An illustrative elementary example. Our aim here is to illustrate the
result of Section 5 on an elementary example for which exact solutions can be easily
obtained. Consider the following transport equation

∂tf +

(
1

ε
ω(y)Jy + y

)
· ∇yf = 0, f(0, y) = f0(y), (40)

where y ∈ R2, and where

ω(y) = 1 + |y|2 = 1 + y2
1 + y2

2 and J =

(
0 1
−1 0

)
.

This equation can be solved as follows: let ϕεt (y) be the flow of the characteristics
equation

ẏ =
1

ε
ω(y)Jy + y.

By taking its inner product by y, we have immediately |ϕεt (y)| = exp(t)|y|, so that

ϕεt (y) = exp(t) exp

(
1

ε

(
t+ (e2t − 1)

|y|2

2

)
J

)
y.

As a consequence, the explicit solution of (40) reads

f(t, y) = f0

(
exp

(
−t− 1

ε

(
t+ (1− e−2t)

|y|2

2

)
J

)
y

)
. (41)

Now, we observe that the two fields ω(y)Jy and K(y) = y do not commute, and in
order to transform the problem into a highly-oscillatory problem with y-independent
frequency, one has to divide equation (40) by ω and immerse the equation on f into
an augmented one for the unknown g(s, t, y)

∂sg +
1

ω(y)
∂tg +

(
1

ε
Jy +

y

ω(y)

)
· ∇yg = 0, g(0, t, y) = f(t, y). (42)

Unlike the fields ω(y)Jy and K, we now observe that the two augmented fields

Ǧ(y) = (0, Jy)T and Ǩ(y) =
(

1
ω(y) ,

y
ω(y)

)T
do commute. This means that equation

(42) is already written in a normal form and therefore the averaged fields in this
case are simply

Ǧε = (0, Jy)T , Ǩε = (Ǩε
1 , Ǩ

ε
2)T , with Ǩε

1 =
1

ω(y)
, Ǩε

2 =
y

ω(y)
.

We now apply Theorem 5.2 in this particular case. The solution h = h(t, 0, y) to

∂th+ y · ∇yh = 0, h(0, 0, y) = f0(y),

is h(t, 0, y) = f0(e−ty). As a consequence, the solution h = h(t, τ, y) to

∂τh+ Jy · ∇yh = 0, h(t, 0, y) = f0(e−ty),

is
h(t, τ, y) = f0(e−te−τJy). (43)

The solution S = S(t, 0, y) to

∂tS + y · ∇yS = ω(y), S(0, 0, y) = 0,

is simply S(t, 0, y) = t+ (1− e−2t) |y|
2

2 , so that the solution S = S(t, τ, y) to

∂τS + Jy · ∇yS = 0, S(t, 0, y) = t+ (1− e−2t)
|y|2

2
,
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is constant w.r.t. τ , given that |eτJy|2 = |y|2, i.e.

S(t, τ, y) = t+ (1− e−2t)
|y|2

2
. (44)

Theorem 5.2 asserts that f(t, y) = h(t, τ(t, y), y) where τ(t, y) is given by ετ(t, y) =

t+ (1− e−2t) |y|
2

2 , an assertion which can be easily checked on our explicit example.

6. Application to Vlasov equations with a strong magnetic field. In this
section, we consider the case of particles submitted to a strong magnetic field and
evolving in an electric field E(x) depending on the position x only. We recall here-
inafter the corresponding equation (4) on the distribution function f = f(t, x, v),
t ≥ 0, x ∈ R3, v ∈ R3:

∂tf + v · ∇xf +

(
E(x) + v × B(x)

ε

)
· ∇vf = 0, f(0, x, v) = f0(x, v), (45)

which is closely related to the illustrative example of Section 4, though with the
additional difficulty that E and B may vary. We further assume here that E derives
from a potential U , i.e. that E(x) = −∇xU(x).

6.1. Constant magnetic field. Over a first phase, we assume that the magnetic
field is constant. This means that, up to constant rotation, we have B(x) =
(0, 0, b(x))T and b(x) ≡ b. Upon rescaling the time t → t/b in f , i.e. consid-
ering the equation for f(t/b, x, v) instead of f(t, x, v) we may even assume that
b = 1. We further assume in this first phase that the potential U depends only on
the orthogonal direction (to B) of x, that is on the first two components (x1, x2)
of x. This means that the electric field E(x) is orthogonal to B and depends only
on (x1, x2). Assume finally that the initial data f0 only depends on (x1, x2) and
(v1, v2), a property which is therefore propagated by the flow (45). All these as-
sumptions allow us to restrict ourselves to a 2D× 2D setting and to rewrite (45) in
the form (1) with n = 4, y = (x, v) ∈ R2 × R2 and

F ε(y) =

(
v

1
εJv + E(x)

)
=

1

ε
G+K with G(y) =

(
0
Jv

)
and K(y) =

(
v

E(x)

)
.

We now repeat the steps followed for the example of Section 4, starting first with
the flow Φτ (associated with G)

Φτ (y) =

(
x

eτJv

)
.

The time-dependent vector field Kτ then writes

Kτ (y) =

(
eτJv

e−τJE(x)

)
= eiτ K̂1(y) + e−iτ K̂−1(y)

with

K̂1(y) =
1

2

(
v − iJv

E(x) + iJE(x)

)
and K̂−1(y) =

1

2

(
v + iJv

E(x)− iJE(x)

)
.

Formula (13) then gives

K [1] = K̂0 = 0,

K [2] = i[K̂1, K̂−1] = −2=
(

(∂yK̂1)K̂−1

)
=

(
JE

1
2 (∆U)Jv

)
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where we used computed successively

∂K̂1

∂y
=

1

2

(
0 (I − iJ)

−(I + iJ)∇2
xU 0

)
and9

∂K̂1

∂y
K̂−1 =

1

4

(
(I − iJ)2E

−(I + iJ)∇2
xU(I + iJ)v

)
=

1

4

(
2(I − iJ)E

−
(
∇2
xU − J∇2

xUJ + i(J∇2
xU +∇2

xUJ)
)
v

)
=

1

4

(
2(I − iJ)E

−
(
∇2
xU + det(∇2

xU)I + i∆UJ
)
v

)
.

At second order in ε, equation (i) of Corollary 1 for f̃(t, τ, x, v) thus has the following
form

∂τ f̃ + ε(v − εJE) · ∇xf̃ + ((1− ε2∆U)Jv + εE) · ∇v f̃ = 0

while equation (ii) is simply

∂tf̃ + εJE · ∇xf̃ +
ε

2
(∆U)Jv · ∇v f̃ = 0. (46)

This transport equation coincides, up to a rescaling in time, with the asymptotic
model derived in [14]. We emphasize that, according to Remark 5, these two equa-
tions have to be understood in the approximate sense, which means that they cannot
be satisfied exactly in general, but can only be solved approximately allowing errors
of order ε2.

Let us now stress that, although it may seem natural at first sight, the splitting of
F ε considered so far does not allow for the preservation of the Poisson structure of
the original equation which becomes apparent by assuming that E(x) = −∇xU(x)
and writing

F ε(y) = Ωε(x)∇yH(y) with Ωε(x) =

(
0 I
−I 1

εJ

)
and H(y) =

1

2
‖v‖2 + U(x).

As a matter of fact, choosing G(y) =

(
0
v

)
for the stiff term corresponds to a

splitting of the structure matrix Ωε(x) and of the vector field as follows

1

ε
G(y) =

(
0 0
0 1

εJ

)
∇yH(y) and K(y) =

(
0 I
−I 0

)
∇yH(y),

so that even though both G and K are Poisson vector fields they do not share the
same structure. It follows that the systems of Corollary 1 are not Poisson. Never-
theless, another choice is possible that allows to maintain the geometric structure.

9Note that if S is a 2× 2 symmetric matrix then

JS + SJ =

(
0 1
−1 0

)(
α γ

γ β

)
+

(
α γ

γ β

)(
0 1

−1 0

)
= (α+ β)J

so that J∇2U +∇2UJ = (∆U)J and

JSJ =

(
0 1

−1 0

)(
α γ

γ β

)(
0 1

−1 0

)
= − det(S)I.
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It consists in a splitting of the Hamiltonian H(y) in

H(y) = A(y) +H(y) with A(y) =
1

2
‖v‖2 and H(y) = V (x)

resulting into the new splitting of F ε in

G(y) = εΩε(x)A(y) =

(
εv
Jv

)
and K(y) = Ωε(x)H(y) =

(
0

E(x)

)
.

Note that whereas the notation adopted does not reflect it, the vector field G itself
now depends on ε. The flow Φτ associated to G then reads

Φτ (y) =

(
x+ εJ−1(eτJ − I)v

eτJv

)
and is clearly again 2π-periodic, so that we can again apply Corollary 1 and theorems
3.2 and 3.3 with

Kτ (y) = Ωε(y)∇yHτ (y) where Hτ (y) = U(x+ εJ−1(eτJ − I)v).

It then follows that

H [1](y) = Ĥ0(y) =
1

2π

∫ 2π

0

U(x+ εJ−1(eτJ − I)v)dτ

and

K [1](y) =
1

2π

(
0 I
−I 1

εJ

)( ∫ 2π

0
∇xU(x+ εJ−1(eτJ − I)v)dτ

ε
∫ 2π

0
J(e−τJ − I)∇xU(x+ εJ−1(eτJ − I)v)dτ

)

=

(
ε
∫ 2π

0
J(e−τJ − I)∇xU(x+ εJ−1(eτJ − I)v)dτ

−
∫ 2π

0
e−τJ∇xU(x+ εJ−1(eτJ − I)v)dτ

)
so that equation (ii) of Corollary 1 for f̃(t, τ, x, v) now writes

∂tf̃+ε

∫ 2π

0

J(I − e−τJ)E(x+ εJ−1(eτJ − I)v)dτ · ∇xf̃

+

∫ 2π

0

e−τJE(x+ εJ−1(eτJ − I)v)dτ · ∇v f̃ = 0. (47)

In contrast with equation(46), the occurrence of ε in (47) is not the indication of
a second-order approximation, but rather of a first-order approximation preserving
the geometric structures of the original Vlasov equation. The corresponding equa-
tion (i) of Corollary 1 can be also deduced immediately, as well as second-order
versions of (i) and (ii) from

H [2](y) =
−1

4π

∫ 2π

0

∫ τ

0

{Hs(y), Hτ (y)}dsdτ

=
−1

4π

∫ 2π

0

∫ τ

0

(∇yHs(y))TΩε(x)∇yHτ (y)dsdτ.

6.2. Magnetic field with varying intensity and constant direction. Over
this second phase, we still work in a 2D × 2D setting and keep the same notations
as in the previous section. However, we address here the case of a magnetic field
with varying intensity b(x) and constant direction B(x) = (0, 0, b(x))T . Note that
due to divergence free property of B(x), the function b depends only on (x1, x2).
In order to handle this case of varying intensity b(x), one has to proceed as in
Section 5. We first immerse the problem into an augmented one by adding a new
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parametrization variable s, then we derive averaging models at different orders for
this augmented problem, and finally eliminate the extra-variable s from the averaged
models and show how the original distribution function is recovered. In order to do
so, we assume that b(x) should not vanish for any x in R2 and we will make this
assumption for the remaining of this section. The augmented distribution function
g(s, t, x, v) satisfies

∂sg +
1

b(x)
∂tg +

1

b(x)
v · ∇xg +

(
1

ε
Jv − 1

b(x)
∇xU(x)

)
· ∇vg = 0. (48)

The original distribution function f(t, x, v) is then viewed as a stationary solution
of this evolution equation in s. Denoting Y = (t, x1, x2, v1, v2) ∈ R5 the now
extended phase-space variable, we equivalently write (48) as follows

∂sg(s, Y ) + F̌ ε(Y ) · ∇Y g(s, Y ) = 0

where

F̌ ε(Y ) =


1
b(x)
1
b(x)v

1
εJv −

1
b(x)∇xU(x)


is the extended vector field. We may now resume the derivation of the equations
(i) and (ii) of Theorem 1, by first splitting F̌ ε into F̌ ε = 1

ε Ǧ+ Ǩ with

Ǧ(Y ) =

 0
0
Jv

 and Ǩ(Y ) =
1

b(x)

 1
v

−∇xU(x)

 .

It is clear that Ǧ now generates a 2π-periodic flow

Φ̌τ (Y ) = Φ̌τ

 t
x
v

 =

 t
x

eτJv


whose period is independent of the trajectory. The function Ǩτ becomes

Ǩτ (Y ) =
1

b(x)

 1
eτJv

e−τJE(x)


and the corresponding Fourier modes are all vanishing except the modes 1, −1 and
0 (the additional one w.r.t. the case of a constant field):

K̂0(Y ) =

 1
b(x)

0
0

 , K̂1(Y ) =
1

2b(x)

 0
(I − iJ)v

(I + iJ)E(x)

 ,

and

K̂−1(Y ) =
1

2b(x)

 0
(I + iJ)v

(I − iJ)E(x)

.
According to Theorem 1, we thus have

K [1](Y ) = K̂0(Y )

and

K [2] = i
(

[K̂1, K̂−1] + [K̂0, K̂1 − K̂−1]
)

= −2=([K̂0, K̂1])− 2=
(

(∂Y K̂1)K̂−1

)
.
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Omitting the argument x in E, U and b, and denoting simply ∇ for ∇x, we have

∂K̂0

∂Y
=
−1

b2

 0 ∇T b 0
0 0 0
0 0 0

 ,

and

∂K̂1

∂Y
=

1

2b2

 0 0 0
0 −(I − iJ)v∇T b b(I − iJ)
0 −b(I + iJ)∇2U + (I + iJ)∇U ∇T b 0


so that (∂Y K̂1)K̂−1 i given by

1

4b3

 0 0 0
0 −(I − iJ)v∇T b b(I − iJ)
0 −b(I + iJ)∇2U + (I + iJ)∇U ∇T b 0

 0
(I + iJ)v
(I − iJ)E


=

1

4b3

 0
−(I − iJ)v∇T b (I + iJ)v + b(I − iJ)2E

−b(I + iJ)∇2U (I + iJ)v + (I + iJ)∇U ∇T b (I + iJ)v


and finally

−2=
(

(∂Y K̂1)K̂−1

)
=

1

2b3

 0
(∇b · Jv)v − (∇b · v)Jv + 2bJE

−ε(∇b · v)J∇U − ε(∇b · Jv)∇U + b(∆U)Jv

 .

Besides, we have

(∂Y K̂0)K̂1 =
−1

2b3

 0 ∇T b 0
0 0 0
0 0 0

 0
(I − iJ)v
(I + iJ)E


=
−1

2b3

 ∇b · v − i∇b · Jv0
0


and

(∂Y K̂1)K̂0 =
1

2b3

 0 0 0
0 −(I − iJ)v∇T b b(I − iJ)
0 −b(I + iJ)∇2U + (I + iJ)∇U ∇T b 0

 1
0
0


= 0

so that

−2=([K̂0, K̂1]) =
−1

b3

 ∇b · Jv0
0

 .

Finally, at first order in ε, we have

Ǩε = K [1] + εK [2] =
1

b

 1− ε ∇b·Jvb2

−ε (∇b·v)
2b2 Jv + ε (∇b·Jv)

2b2 v − ε 1
bJ∇U

− ε(∇b·v)
2b2 J∇U − ε(∇b·Jv)

2b2 ∇U + ε∆U
2b Jv

 =

(
Kε

1

Kε
2

)
,

and

Ǧε = ε(F̌ ε − Ǩε) =
1

b

 0
εv

bJv − ε∇U

 .
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Therefore the transport equations10 on h are at first order in ε:

∂th+
ε

2b

(
∇b · Jv

b
v − ∇b · v

b
Jv − 2J∇U

)
· ∇xh

− ε

2b

(
∇b · v
b

J∇U +
∇b · Jv

b
∇U − (∆U)Jv

)
· ∇vh = 0, (49)

and

∂τh+
ε

b
v · ∇xh+

(
Jv − ε

b
∇U

)
· ∇vh = 0, (50)

with the initial condition h(0, 0, y) = f0(y). Similarly the transport equations on S
are

∂tS +
ε

2b

(
∇b · Jv

b
v − ∇b · v

b
Jv − 2J∇U

)
· ∇xS

− ε

2b

(
∇b · v
b

J∇U +
∇b · Jv

b
∇U − (∆U)Jv

)
· ∇vS = b(x)

(
1 + ε

∇b · Jv
b2

)
,

(51)

and

∂τS +
ε

b
v · ∇xS +

(
Jv − ε

b
∇U

)
· ∇vS = 0, (52)

with the initial condition S(0, 0, y) = 0. Again, we wish to put the stress on the fact
that these two truncated models in h and S should be understood in the sense of
Remark 5.

Now we make some important comments on these transport equations. The
transport equation (49) coincides with the gyro-kinetic model that has been derived
in [14] in the particular case of constant b. It also contains all the terms in the models
recently derived in [5] in the case of varying b = b(x) when restricted to the 2D×2D
geometry. However, in addition to the fact that our averaged models keep all the
variables (x, v), our approach provides more information through the phase S and
the dependence in τ . These informations are necessary to correctly reconstruct
the full original distribution function f (and not only the averaged model) at first
order in ε. This reconstruction may be performed through the relation f(t, x, v) =
h(t, τ(t, x, v), x, v) + O(ε2) where τ(t, x, v) is a solution to ετ = S(t, τ, x, v). Up to
our knowledge, no such construction can be found in the literature.

6.3. Magnetic field in 3D with varying intensity and varying direction.
We now consider the transport kinetic equation in its general form (4) and in a
3D × 3D setting. This means in particular that now we allow variations of B
in both amplitude and direction. Our aim in this part is to extend our previous
approach to this more general case.

We first immerse the model (4) into an augmented problem in the unknown
g(s, t, x, v), as follows

∂sg +
1

|B(x)|
∂tg +

v

|B(x)|
· ∇xg +

(
E(x)

|B(x)|
+

1

ε
v × B(x)

|B(x)|

)
· ∇vg = 0 (53)

with the initial condition g(0, t, x, v) = f(t, x, v). The main interest of this form is

that the oscillatory part in the variable s is now driven by the vector field v× B(x)
|B(x)| ,

which, as we shall see, generates a periodic flow with a constant period 2π. More
precisely, the trajectories

10An easy calculation using polar coordinates shows that the magnetic moment is preserved.
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ẋ(s) = 0, v̇(s) = v(s)× B(x(s))

|B(x(s))|
, (x(0), v(0)) = (x0, v0) ∈ R3 × R3,

are all periodic with the same period 2π independently of (x0, v0).
In particular the period does not depend on the trajectory although the unit

vector B(x)
|B(x)| depends on this trajectory. Indeed let e0 be a unit vector and let

(e1, e2, e0) be an orthonormal basis such that e0 × e1 = e2 and e1 × e2 = e0.
The matrix representing the skew-symmetric linear map Je0 : v 7→ v × e0 in the

basis (e1, e2, e0), is simply J =

(
J 0
0 0

)
. Since exp(tJ ) is 2π-periodic, the flow

exp(tJe0) is 2π-periodic. We now apply our methodology to model (53). Here the
vector field F̌ ε = 1

ε Ǧ+ Ǩ is given by

Ǩ(t, x, v) =
1

|B(x)|

 1
v

E(x)

 , Ǧ(t, x, v) =

 0
0

v × B(x)
|B(x)|

 .

We introduce the following notations

e(x) =
B(x)

|B(x)|
, Jev = v × e, Pev = (e · v)e, ∀e ∈ S2, v ∈ R3, x ∈ R3. (54)

Using Theorem 3.3, the vector field Kτ can be easily computed to get

Φτ (t, x, v) =

 t
x

exp
(
τJe(x)

)
v

 .

The following elementary identities

J 2
e = −I + Pe, JePe = PeJe = 0

imply that

Φτ (t, x, v) =

 t
x

(cos τ)v + (1− cos τ)Pe(x)v + (sin τ)Je(x)v


=

 t
x

(cos τ)v + (1− cos τ)(e(x) · v)e(x) + (sin τ)v × e(x)

 . (55)

We then deduce the expression of the Jacobian matrix ∂t,x,vΦτ = (∂tΦτ , ∂xΦτ , ∂vΦτ ):

∂t,x,vΦτ =

 1 0 0
0 I 0
0 Rτ Qτ

 ,

where
Rτ = (1− cos τ)∂x

(
Pe(x)v

)
+ (sin τ)∂x

(
Je(x)v

)
= α0 + αeiτ + αe−iτ ,

Qτ = (cos τ)I + (1− cos τ)Pe(x) + (sin τ)Je(x)

= a0 + aeiτ + ae−iτ ,

and
a0 = Pe(x), α0 = ∂x

(
Pe(x)v

)
,

2a = I − Pe(x) − iJe(x),
2α = −∂x

(
Pe(x)v + iJe(x)v

)
.
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Note that the matrix Rτ takes care with the so-called curvature terms which are
the terms coming from the space variation of the direction e(x) of the magnetic
field. In order to compute the inverse of the matrix ∂t,x,vΦτ , we observe that

(∂t,x,vΦτ )
−1

=

 1 0 0
0 I 0
0 −Q−1

τ Rτ Q−1
τ

 ,

which means that we only need to compute Q−1
τ . Using again the identity J 2

e =
−I + Pe, one may check

Q−1
τ = (cos τ)I + (1− cos τ)Pe(x) − (sin τ)Je(x),

= a0 + aeiτ + ae−iτ = Q−τ .

Now we also have

Ǩ ◦ Φτ (t, x, v) =
1

|B(x)|

 1
Qτv
E(x)

 ,

and therefore

Ǩτ (t, x, v) =
1

|B(x)|

 1
Qτv

−Q−τRτQτv +Q−τE(x)

 .

One can easily see that the Fourier expansion of Ǩτ (in the periodic variable τ) only
contains modes k ∈ Z with |k| ≤ 3. Note that we can recover the previous case (in
which B(x) had a constant direction and (x, v) ∈ R2 × R2) by taking Pe(x)v = 0,

Je(x) ≡ J =

(
J 0
0 0

)
and α = 0, which means that Rτ = 0 and Qτ = eτJ .

Although all the Fourier coefficients of Ǩτ can be derived from this expression,
we just give for simplicity the 0th mode:

K̂0(x, v) =
1

|B(x)|

 1
Pe(x)v = (e(x) · v)e(x)

(K̂0)3

 = K [1],

with

(K̂0)3(x, v) = a0E(x)− (a0α0a0 + a0αa+ a0αa+ aα0a+ aαa0 + aα0a+ aαa0)v

= Pe(x)E(x)−
[
4Pe(x)∂x

(
Pe(x)v

)
Pe(x) +

1

2
Pe(x)∂x

(
Je(x)v

)
Je(x)

−1

2
Je(x)∂x

(
Pe(x)v

)
Je(x) −

1

2
Je(x)∂x

(
Je(x)v

)
Pe(x)

−Pe(x)∂x
(
Pe(x)v

)
− ∂x

(
Pe(x)v

)
Pe(x) +

1

2
∂x
(
Pe(x)v

)]
v.

We then deduce the vector field Gε at the 0th order in ε:
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G[1] = ε(F̌ ε −K [1]) +O(ε)

= 1
|B(x)|

 0
ε
(
v − Pe(x)v

)
|B(x)|Le(x)v + ε

(
E(x)− (K̂0)3(x, v)

)
+O(ε)

=

 0
0

Le(x)v

+O(ε).

The averaged model at the 0th order in ε can now be written in terms of
h(t, τ, x, v) and S(t, τ, x, v). We have

∂th+
(
B(x)
|B(x)| · v

)
B(x)
|B(x)| · ∇xh+ (K̂0)3(x, v) · ∇vh = 0,

∂τh+
(
v × B(x)

|B(x)|

)
· ∇vh = 0,

(56)

and

∂tS +
(
B(x)
|B(x)| · v

)
B(x)
|B(x)| · ∇xS + (K̂0)3(x, v) · ∇vS = |B(x)|,

∂τS +
(
v × B(x)

|B(x)|

)
· ∇vS = 0,

with the initial conditions: h(0, 0, x, v) = f0(x, v) and S(0, 0, x, v) = 0. Note that
in the particular case where B(x) has a constant direction B(x) = b(x)e0 =
(0, 0, b(x))T , we get

∂th+ v‖∂x‖h+ E‖∂v‖h = 0,
∂τh+ Jv⊥ · ∂v⊥h = 0.

and
∂tS + v‖∂x‖S + E‖∂v‖S = b(x),
∂τS + Jv⊥ · ∂v⊥S = 0,

where we used the standard notations v‖ = v · e0, E‖ = E · e0 and

v = (v1, v2, v‖) = (v⊥, v‖), E = (E1, E2, E‖) = (E⊥, E‖), ∂v⊥h = (∂v1h, ∂v2h),

and the same notations for the space variable x. Observe that the exact solution of
the two equations for S (for the 0th order in ε) is simply S(t, τ, x, v) = b(x)t.

The averaged equations at the first order in ε can also be derived in the case of
a magnetic field B(x) with constant direction B(x) = (0, 0, b(x))T , with b(x) > 0.
In this case we have Rτ = 0, e(x) is the constant unit vector e0, |B(x)| = b(x), and
therefore

Ǩτ (t, x, v) =
1

b(x)

 1
Qτv

Q−τE(x)

 .

The non-zero Fourier modes in τ of this quantity Ǩτ are

K̂0 =
1

b

 1
a0v
a0E

 , K̂1 =
1

b

 0
av
aE

 , K̂−1 =
1

b

 0
av
aE

 .

The computation of Kε at first order in ε can then be derived from Theorem 3.3 as
follows. We know from Theorem 3.3 that Ǩε = K [1] + εK [2] with

K [1] = K̂0, K [2] = −2=
(

(∂Y K̂1)K̂−1

)
− 2=

(
[K̂0, K̂1]

)
.
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Since

∂Y K̂1 =

 0 0 0
0 −a

(
v ⊗ ∇bb2

)
a
b

0 a∂x
(
E
b

)
0

 , ∂Y K̂0 =

 0 − (∇b)T
b2 0

0 −a0

(
v ⊗ ∇bb2

)
a0
b

0 a0∂x
(
E
b

)
0


we get for 2=

(
(∂Y K̂1)K̂−1

)
1

2b

 0
−(I − P)

(
v ⊗ ∇bb2

)
J v + J

(
v ⊗ ∇bb2

)
(I − P)v − 2

bJE
(I − P)∂x

(
E
b

)
J v + J ∂x

(
E
b

)
(I − P)v


where we have denoted P = Pe0 and J = Je0 . We also have

2=
(

[K̂0, K̂1]
)

=
1

b

 J v · ∇bb2
P
(
v ⊗ ∇bb2

)
J v − J

(
v ⊗ ∇bb2

)
Pv

−P∂x
(
E
b

)
J v − J ∂x

(
E
b

)
Pv

 ,

therefore

K [2] =
1

b

 −J v · ∇bb2
1
2

(
J v · ∇bb2

)
(I − 3P)v − 1

2

(
(I − 3P)v · ∇bb2

)
J v + 1

bJE
− 1

2 (I − 3P)∂x
(
E
b

)
J v − 1

2J ∂x
(
E
b

)
(I − 3P)v

 ,

and

Ǩε =K [1] + εK [2] +O(ε2)

=
1

b

 1− εJ v · ∇bb2
v‖e0 + ε

2

[(
J v · ∇bb2

)
(I − 3P)v −

(
(I − 3P)v · ∇bb2

)
J v
]

+ ε
bJE

E‖e0 − ε
2

[
(I − 3P)∂x

(
E
b

)
J v + J ∂x

(
E
b

)
(I − 3P)v

]


+O(ε2).

We finally deduce the field Gε at first order in ε

Ǧε = ε(F̌ ε −K [1] − εK [2]) +O(ε2) =

 0
0
J v

+
ε

b

 0
v⊥
E⊥

+O(ε2).

Therefore, the evolution in time t of h at the first order in ε is driven by the following
equation (with the above described notations)[

1− εJv⊥ ·
∂x⊥b

b2

]
∂th+ v‖

[
1− εJv⊥ ·

∂x⊥b

b2

]
∂x‖h+

[
E‖ + ε∂x⊥

(
E‖

b

)
· v⊥

]
∂v‖h

− ε

2b

[
|v⊥|2J

∂x⊥b

b
− 2JE⊥

]
· ∂x⊥h

+
ε

2

[(
∂x⊥b

b2
· JE⊥

)
v⊥ + 2v‖∂x‖

(
E⊥
b

)
− ∂x‖

(
E⊥
b

)
Jv⊥

]
· ∂v⊥h = 0,

which simplifies into

∂th+ v‖∂x‖h+

[
E‖ + εE‖Jv⊥ ·

∂x⊥b

b2
+ ε∂x⊥

(
E‖

b

)
· v⊥

]
∂v‖h

− ε

2b

[
|v⊥|2J

∂x⊥b

b
− 2JE⊥

]
· ∂x⊥h

+
ε

2

[(
∂x⊥b

b2
· JE⊥

)
v⊥ + 2v‖∂x‖

(
E⊥
b

)
− ∂x‖

(
E⊥
b

)
Jv⊥

]
· ∂v⊥h = 0.

(57)
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Note that we have used the identity∇x·B = 0 which implies that b(x) = b(x⊥). This
provides an asymptotic model which is identical to the one recently derived in [5] or,
up to a rescaling in time, to the one derived in [12]. However our approach provides
more informations since this equation still contains all the original variables (x, v)
of the distribution function and has to be coupled with an equation describing its
dependence on a periodic variable τ which has to fit with a suitable phase function
S. As we shall see, this equation in τ will provide a suitable initial data for equation
(57). The second equation on h writes

∂τh+ Jv⊥ · ∂v⊥h+
ε

b
v⊥ · ∂x⊥h+ ε

E⊥
b
· ∂v⊥h = 0. (58)

The system of the two equations (57-58) is subjected to the initial data h(0, 0, x, v) =
f0(x, v).

Once again, we recall that system (57-58) with initial condition h(0, 0, x, v) =
f0(x, v) is only valid up to ε2 terms, and solutions to this system have to be under-
stood in the sense of Remark 5.

Similarly the equations on S are

∂tS + v‖∂x‖S +

[
E‖ + εE‖Jv⊥ ·

∂x⊥b

b2
+ ε∂x⊥

(
E‖

b

)
· v⊥

]
∂v‖S

− ε

2b

[
|v⊥|2

∂x⊥b

b
− 2JE⊥

]
· ∂x⊥S

+
ε

2

[(
∂x⊥b

b2
· JE⊥

)
v⊥ + 2v‖∂x‖

(
E⊥
b

)
− ∂x‖

(
E⊥
b

)
Jv⊥

]
· ∂v⊥S

= b+ εJv⊥ ·
∂x⊥b

b
,

(59)
and

∂τS + Jv⊥ · ∂v⊥S +
ε

b
v⊥ · ∂x⊥S + ε

E⊥
b
· ∂v⊥S = 0, (60)

with the initial data S(0, 0, x, v) = 0.
We now observe that S(t, τ, x, v) = b(x)t+O(ε), and therefore it is more conve-

nient to write these equations in terms of

S̃(t, τ, x, v) =
S(t, τ, x, v)− b(x)t

ε

and get

∂tS̃ + v‖∂x‖ S̃ +

[
E‖ + εE‖Jv⊥ ·

∂x⊥b

b2
+ ε∂x⊥

(
E‖

b

)
· v⊥

]
∂v‖ S̃

− ε

2b

[
|v⊥|2

∂x⊥b

b
− 2JE⊥

]
· ∂x⊥ S̃

+
ε

2

[(
∂x⊥b

b2
· JE⊥

)
v⊥ + 2v‖∂x‖

(
E⊥
b

)
− ∂x‖

(
E⊥
b

)
Jv⊥

]
· ∂v⊥ S̃

= Jv⊥ ·
∂x⊥b

b
,

and

∂τ S̃ + Jv⊥ · ∂v⊥ S̃ + ε
t

b
v⊥ · ∂x⊥b+

ε

b
v⊥ · ∂x⊥ S̃ + ε

E⊥
b
· ∂v⊥ S̃ = 0,

with the initial data S̃(0, 0, x, v) = 0. We then recover the solution f by the relation

f(t, x, v) = h(t, τ(t, x, v), x, v),
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where (t, x, v) 7→ τ(t, x, v) ∈ R is implicitly defined (locally) from S̃ by the equation

τ(t, x, v) =
b(x)t

ε
+ S̃(t, τ(t, x, v), x, v).

Acknowledgments. This work has been carried out within the framework of the
EUROfusion Consortium and has received funding from the Euratom Research and
Training Programme 2019-2020. The views and opinions expressed herein do not
necessarily reflect those of the European Commission.

REFERENCES

[1] S. Blanes, F. Casas, J.A. Oteo, J. Ros, A pedagogical approach to the Magnus expansion,
European Journal of Physics 31, 907-918, 2010.

[2] M. Bostan, The Vlasov-Maxwell system with strong initial magnetic field. Guiding-center

approximation, Multiscale Model. Simul. 6, 1026-1058, 2007.
[3] M. Bostan, Transport equations with disparate advection fields. Application to the gyrokinetic

models in plasma physics, J. Differential Equations, 249, 2010.
[4] M. Bostan, Multi-scale analysis for linear first order PDEs. The finite Larmor radius regime,

SIAM J. Math. Anal., 48, No. 3, pp.2133-2188, 2016.

[5] M. Bostan, Gyro-kinetic Vlasov equation in three dimensional setting. Second order approx-
imation, SIAM J. Multiscale Model. Simul., 8, No. 5, pp. 1923-1957, 2010.

[6] P. Chartier, A. Murua, J.-M. Sanz-Serna, Erratum to: Higher-order averaging, formal series

and numerical integration II: the quasi-periodic case, Found Comput Math 17, 2017.
[7] P. Chartier, A. Murua, J.-M. Sanz-Serna, Higher-order averaging, formal series and numerical

integration III: error bounds, Found Comput Math 15, 2015.

[8] P. Chartier, A. Murua, J.-M. Sanz-Serna, A formal series approach to averaging: exponentially
small error estimates, Discrete and Continuous Dynamical Systems (DCDS-A), 32, no. 9,

2012.

[9] P. Chartier, A. Murua, J.-M. Sanz-Serna, Higher-order averaging, formal series and numer-
ical integration II: the quasi-periodic case, Found Comput Math 4, 2012.

[10] P. Chartier, A. Murua, J.M. Sanz-Serna, Higher-order averaging, formal series and numerical
integration I: B-series, Found Comput Math 10, 2010.

[11] N. Crouseilles, S. Jin, M. Lemou, Nonlinear Geometric Optics method based multi-scale nu-

merical schemes for highly-oscillatory transport equations, Math. Mod. Meth. App. Sc. 27,
pp. 2031-2070, 2017.

[12] P. Degond, F. Filbet, On the asymptotic limit of the three dimensional Vlasov-Poisson system
for large magnetic field : formal derivation, J. Stat. Physics 165, pp. 765-784, 2016.
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