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Feedback stabilization of an oscillating vertical

cylinder by POD Reduced-Order Model

Gilles Tissot, Laurent Cordier, Bernd R. Noack

PPRIME Institute, CEAT 43 route de l’aérodrome, 86036 Poitiers, France
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Bernd.Noack@univ-poitiers.fr

Abstract. The objective is to demonstrate the use of reduced-order models (ROM) based on
proper orthogonal decomposition (POD) to stabilize the flow over a vertically oscillating circular
cylinder in the laminar regime (Reynolds number equal to 60). The 2D Navier-Stokes equations
are first solved with a finite element method, in which the moving cylinder is introduced via
an ALE method. Since in fluid-structure interaction, the POD algorithm cannot be applied
directly, we implemented the fictitious domain method of Glowinski et al. [1] where the solid
domain is treated as a fluid undergoing an additional constraint. The POD-ROM is classically
obtained by projecting the Navier-Stokes equations onto the first POD modes. At this level,
the cylinder displacement is enforced in the POD-ROM through the introduction of Lagrange
multipliers. For determining the optimal vertical velocity of the cylinder, a linear quadratic
regulator framework is employed. After linearization of the POD-ROM around the steady flow
state, the optimal linear feedback gain is obtained as solution of a generalized algebraic Riccati
equation. Finally, when the optimal feedback control is applied, it is shown that the flow
converges rapidly to the steady state. In addition, a vanishing control is obtained proving the
efficiency of the control approach.

1. Flow configuration
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Figure 1. Cylinder wake in vertical
oscillation.

The cylinder wake is a common generic configuration to
test control methods which can be further implemented
in more complex engineering applications. The
stabilization of this flow consists in targeting and
maintaining the unstable steady solution by control.
Here, we consider the cylinder wake in fluid-structure
interaction and suppose that the control is introduced
by vertical oscillations of the cylinder, as sketched in
figure 1. Let u be the velocity field and usteady be the
targeted steady state, the objective is to determine the
best cylinder vertical velocity Vc(t), taken as control
parameter, such that we minimize

J (Vc(t)) =

∫ T

0
‖u−usteady‖2 dt+α

∫ T

0
y2c (t) dt+β

∫ T

0
V 2
c (t) dt
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where yc is the cylinder vertical position. The cost functional J is regularized to avoid very
large, then unphysical, controls. Indeed, the role of the parameter α is to penalize too large
cylinder displacements and then to enforce the cylinder to stay near the central position, while
β penalizes too strong control actions.

2. Linear control framework
The determination of the control law is done with a linear control theory approach [2]. This

framework relies on the existence of a linear model E
dz

dt
= Az+Bc, where z is the state of the

system and c the control law to be determined. Considering that the state of the system is fully
and perfectly known, the linear quadratic regulator (LQR) method is considered. The objective
of the LQR problem is to determine the best control law c, such that the cost functional

J LQR(z, c) =
1

2

∫ T

0
‖Fz(t)‖2 dt+

1

2

∫ T

0
‖c(t)‖2R dt (1)

is minimized. In (1), F is a matrix defining the objective to minimize, and R penalizes the
control c through the norm ‖ · ‖2R = (R·, ·) where (·, ·) denotes the inner product. The feedback
control law that minimizes the value of J LQR is c = Kz where the feedback gain K is found
after solving a Riccati equation related to (1). For an infinite time horizon, the minimization of
(1) leads to the generalized algebraic Riccati equation (GARE) given by

A∗XE + E∗XA− E∗XBR−1B∗XE + FF ∗ = 0, (2)

where A∗ is the adjoint matrix of A. The optimal feedback gain is then K = −R−1B∗XE where
X is solution of (2). For large-scale problems, as the one arising from spatial discretization of
the Navier-Stokes equations with finite element methods, the resolution of the GARE given by
(2) is still unfeasible [3]. One way is to obtain low-rank solutions of GAREs based on simulations
of linear systems coupled with Proper Orthogonal Decomposition (POD) [4]. An alternative is
to derive a reduced-order model (ROM) for the dynamics [5].

3. Flow modelling for optimal control in fluid-structure interaction
3.1. Fictitious domain approach
For the fluid-structure interaction problem, we consider a Lagrange-multiplier-based fictitious-
domains method as in [1]. For that, let the whole computational domain Ω = Ωf (t) ∪ Ωs(t) be
constituted by the fluid domain Ωf (t) and by an immersed body Ωs(t), with Ωf (t) ∩Ωs(t) = ∅.
The principle is to consider the whole domain as a fluid, governed by the Navier-Stokes equations,
and to treat the solid in Ωs(t) as a fluid subject to an additional constraint. The full system is
then defined as 

∂u

∂t
+ (u.∇)u = −∇p+

1

Re
∆u ∀x ∈ Ω

∇.u = 0 ∀x ∈ Ω

u(x, t) =

(
0

Vc(t)

)
∀x ∈ Ωs(t).

(3)

The cylinder velocity constraint in Ωs(t) has still to be enforced. The system (3) can be
numerically solved by enforcing the constraint with Lagrange multipliers [1]. The linearization
of (3) around the steady state usteady leads to a high-fidelity model that is too large for the
direct resolution of (2). For this reason, a step of model reduction is required before searching
for an optimal control law.
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3.2. Model reduction in fluid-structure interaction
For enforcing the boundary conditions, the strategy is to first derive a reduced-order model
by Galerkin projection of (3) onto the POD modes [2], and then to apply to this model the
constraint of the domain motion expressed in the POD subspace [6]. The weak form of (3)
obtained by Galerkin projection onto the POD modes provides a drastic reduction of the number
of degrees of freedom. The Navier-Stokes equations being satisfied on the full domain Ω, (3) is
projected onto the Ngal first POD modes which are properly defined on Ω [7]. For the cylinder
motion constraint, Nc = 3 arbitrary test functions vanishing on Ωf (t) are used. These functions
are chosen to enforce the streamwise and transversal mean velocities and the mean rotation in
Ωs(t). Finally, it leads to a Nc-dimensional time-dependent linear system of constraints which
is enforced by the introduction of a Lagrange multiplier λ(t) = (λ1, . . . , λNc)

T . The reduced
system can be written as a low-order constant-linear-quadratic descriptor system given by:

dai
dt

(t) = Ci +

Ngal∑
j=1

Lijaj(t) +

Ngal∑
j=1

Ngal∑
k=1

Qijkaj(t)ak(t) +

Nc∑
j=1

(G∗(yc(t)))ij λj(t) i = [1, . . . , Ngal]

Ngal∑
j=1

(G(yc(t)))ij aj(t) = hi(Vc(t), yc(t)) i = [1, . . . , Nc],

(4)
where ai (i = 1, · · · , Ngal) are the time coefficients of the POD modes.

4. Results
4.1. POD Reduced-Order Model
Snapshots of the cylinder undergoing vertical oscillations have been generated using a moving
mesh implemented in COMSOL Multiphysics 4.3 through an ALE formulation. The forced
numerical simulation is initialized with the steady state solution usteady. For the cylinder, the
velocity Vc and the position yc are chosen such that the system first undergoes from t = 0 to
t = 100 a transient regime from the steady state to an established unactuated state. Finally,
the flow is actuated from t = 100 to t = 200 at the natural frequency. After interpolation
on a regular mesh and subtraction of the steady state, the POD analysis is performed on the
data [2]. A Galerkin projection of the Navier-Stokes equations onto the first 47 POD modes is
performed. According to section 3.2, we then add the constraints of mean vertical, horizontal and
tangential velocities inside the solid domain. Figure 2 represents the time coefficients obtained
as solutions of (4) by comparison with the temporal POD eigenfunctions. We observe that the
ROM’s dynamics in the transient, established and actuated regimes are very close to the original
dynamics. In conclusion, the constrained ROM (4) is considered to represent with a sufficient
accuracy the oscillating vertical cylinder.

4.2. Feedback control
After linearization of (4) around the steady state, the optimal feedback gain expressed in the
POD subspace is determined as solution of the low-order GARE (2). By construction, this
feedback gain is designed to stabilize the ROM (4), and not the high-fidelity model (3). However,
this feedback gain should be a good approximation of the optimal linear feedback gain solution
of the high-order GARE (2) related to (3). To check this hypothesis, we expressed this gain
in the high-order space and used the result to control the high-fidelity model (3). This control
design leads to a stabilization of the cylinder wake at Re = 60 as shown in figure 3.
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Figure 2. POD ROM of the vertical oscillating cylinder at Re = 60. The time coefficients
obtained by projection on the POD modes are in red, whereas the solutions of the POD ROM
(4) are represented in blue.

-3

-2

-1

0

1

2

3

-2 0 2 4 6 8 10 12 14

y

x

-3

-2

-1

0

1

2

3

-2 0 2 4 6 8 10 12 14

y

x

-3

-2

-1

0

1

2

3

-2 0 2 4 6 8 10 12 14

y

x

-3

-2

-1

0

1

2

3

-2 0 2 4 6 8 10 12 14

y

x

Figure 1:1

(a) Natural flow.
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(b) Flow controlled by cylinder vertical oscillation.

Figure 3. Linear feedback stabilization of the wake behind a circular cylinder at Re = 60.
Contour lines of vorticity. The dashed lines correspond to negative values.

5. Conclusion
An efficient feedback control has been developed in a moving domain configuration. The domain
motion information has been incorporated in the POD ROM enforcing an additional constraint
by Lagrange multipliers. This strategy allows the use of physical model-based control for large-
scale problems in fluid-structure interaction. We have successfully tested this control design on
the stabilization of a circular cylinder wake by vertical oscillations at Re = 60.
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