
Lecture 3: Functional languages
Operational Semantics & Typing systems

Simon Castellan

SOS, Master Recherche Science Informatique, U. Rennes 1

2020-2021

Simon Castellan SOS Type Systems 1 / 44

Introduction

Functional languages

I Functions become first-class objects, eg.
let rec map f = function
| [] -> []

| t :: q -> f t :: map f q

in
map (fun x -> x + 1) [1; 2; 3]

I Data is usually structured around sum types and product types:
type bool = True | False
type coord = int * int

I Examples: OCaml, Haskell, Scala, ...
I Most of them come with a typing system preventing easy mistakes:
map (fun x -> x + 1) ["foo"]

Typing systems are basic forms of automatic program analysis:
Well-typed programs do not go wrong.

Simon Castellan SOS Type Systems 2 / 44

Introduction

This lecture

1 Presentation of the λ-calculus, an idealised core functional language
It’s functions all the way down

2 Presentation of the simple types and their properties
3 Discuss some extensions.

References

I Benjamin C. Pierce : Types and Programming Languages. MIT Press, 2002
I Luca Cardelli. Type systems. Handbook of Computer Science and

Engineering. CRC Press, 1996.

Simon Castellan SOS Type Systems 3 / 44

Lambda calculus

Outline

1 Lambda calculus

Syntax

Semantics

2 Simply Typed Lambda Calculus

3 Extensions

Simon Castellan SOS Type Systems 4 / 44

Lambda calculus

Outline

1 Lambda calculus

Syntax

Semantics

2 Simply Typed Lambda Calculus

3 Extensions

Simon Castellan SOS Type Systems 5 / 44

Lambda calculus

The lambda calculus

I Idealised functional languages focussing on functions:
I Function application: f x
I Function definition (λ x. ...)
I Rules for evaluating functions called β-reduction

(λx. x + 1) 2→ 2 + 1 (→ 3)

I Lambda calculus introduced by Church in 30’s concurrently with Turing
machine.

I Original motivation: foundations of mathematics.

Simon Castellan SOS Type Systems 6 / 44

Lambda calculus

The lambda calculus

I Idealised functional languages focussing on functions:
I Function application: f x
I Function definition (λ x. ...)
I Rules for evaluating functions called β-reduction

(λx. x + 1) 2→ 2 + 1 (→ 3)

I Lambda calculus introduced by Church in 30’s concurrently with Turing
machine.

I Original motivation: foundations of mathematics.

Simon Castellan SOS Type Systems 6 / 44

Lambda calculus Syntax

Syntax of the pure λ-calculus
Expressions (or terms):

t ::= x variable
| (λ x. t) lambda abstraction
| (t t) application

Some notations:

I λ x y.t for λ x.(λ y. t).
I Application has higher precedence than abstraction:
λ x. x y reads λ x.(x y)

I Application is left-associative: t1 t2 t3 reads ((t1 t2) t3)

I Abstraction right-associative: λ x. λ y. λ z. . . . reads (λ x. (λ y. (λ z. . . .)))

I Minimal language, but still Turing-complete!
I In particular: integers, and structured types can be encoded in it, eg.

integer n ∈N is encoded as λf . λx. f (f . . . (fx)) with n applications of f .
I For now, we consider the untyped version.

Simon Castellan SOS Type Systems 7 / 44

Lambda calculus Syntax

Syntax of the pure λ-calculus
Expressions (or terms):

t ::= x variable
| (λ x. t) lambda abstraction
| (t t) application

Some notations:

I λ x y.t for λ x.(λ y. t).
I Application has higher precedence than abstraction:
λ x. x y reads λ x.(x y)

I Application is left-associative: t1 t2 t3 reads ((t1 t2) t3)

I Abstraction right-associative: λ x. λ y. λ z. . . . reads (λ x. (λ y. (λ z. . . .)))

I Minimal language, but still Turing-complete!
I In particular: integers, and structured types can be encoded in it, eg.

integer n ∈N is encoded as λf . λx. f (f . . . (fx)) with n applications of f .
I For now, we consider the untyped version.

Simon Castellan SOS Type Systems 7 / 44

Lambda calculus Syntax

Examples of terms

I The identity function id = λ x. x

I Constant functions K = λ x. λ y. x

I Generalized application S = λ f. λ g. λ x. f x (g x)

I Double : λ f. λ x. f (f x)

I Omega = (λ x. x x) (λ x. x x)

Simon Castellan SOS Type Systems 8 / 44

Lambda calculus Syntax

Variable scope (1/2)

Definition 1 (Variable binding)
An abstraction (λ x. t) binds the variable x in its body t.
Variable x is then said to be bound in t.

The variables bound by lambdas are “placeholders” and can be renamed
without changing the term.

Example: (λ x. x) and (λ y. y) represent the same function.

Definition 2 (α equivalence, informally)
Lambda terms that are equal up to renaming of bound variables are said to be
alpha-equivalent.

NB: In the following, we will consider Lambda terms modulo α-equivalence.

Simon Castellan SOS Type Systems 9 / 44

Lambda calculus Syntax

Variable scope (2/2)

A variable is free in a term if is not bound by an enclosing abstraction.

Definition 3 (Free variables)
The set FV(t) of free variables of a term t is inductively defined as

FV(x) = { x }

FV(t1 t2) = FV(t1) ∪ FV(t2)
FV(λ x.t) = FV(t) \ { x}

Definition 4 (Closed term)
A lambda term is said to be closed if it has no free variable.

Simon Castellan SOS Type Systems 10 / 44

Lambda calculus Semantics

Operational semantics: β-reduction
The (only) computation step is β-reduction: calling a function.

Definition 5 (β-reduction)

(λ x.t) u→β t[x := u]

Definition 6 (Substitution)
t[x := u] denotes the term t in which we substituted u for variable x.

x[x := t] = t
y[x := t] = y

t1 t2[x := t] = t1[x := t] t2[x := t]
(λ y.t1)[x := t] = λ y. t1[x := t] y , x and y < FV(t)

and alpha conversion of (λ y.t1) to make side condition satisfied.

Side conditions for binders:
I don’t break abstractions: (λ x.λ x. x) y 6→β λ x.(x[x := y]) = λ x. y
I avoid variable capture: (λ x.λ z. x) z 6→β λ z.(x[x := z]) = λ z. z

Simon Castellan SOS Type Systems 11 / 44

Lambda calculus Semantics

β-reduction: exercises

Suppose for the moment that β-reduction can apply anywhere in a term.

Exercise 2.1 (In class)
Show that Omega reduces to itself.

Exercise 2.2
Reduce the lambda expression (S K) K.
Indication: don’t expand the definition of K too early.

Simon Castellan SOS Type Systems 12 / 44

Lambda calculus Semantics

β-reduction: Confluence
Definition 7 (Redex)
A sub-term of the form (λx.t) u is called a redex (reducible expression).
This is where β-reduction rule applies.

Definition 8 (β normal form)
A term is in normal form if no β-reduction can apply inside the term.

A term may have more than one redex. Ex: the term id (id (λ z.id z))
where id = λ x. x contains 3 redexes. There are thus different strategies for
evaluating a lambda term.

Theorem 9 (Church-Rosser or confluence for→∗β)

If t→∗β t1 and t→∗β t2, then there exists t ′ such that t1 →∗β t ′ and t2 →∗β t ′.

This implies the unicity of β-normal forms, modulo α-equivalence.

Simon Castellan SOS Type Systems 13 / 44

Lambda calculus Semantics

Operational semantics : evaluation order

There are different strategies for evaluating a lambda term.

Full β-reduction.
Non-deterministically reduces any possible redex.

Normal order reduction.
Reduce the left-most outer-most1 redex first.
Intuition: don’t evaluate arguments before the function is actually called.
Example: id (id (λ z.id z))→ id (λ z.id z)→ λ z.(id z)→ λ z. z

Call-by-name (and the memoized variant of call-by-need).
Normal order reduction but never under a λ-abstraction.
Example: id (id (λ z.id z))→ id (λ z.id z)→ λ z.(id z)

1A outer-most redex is a redex not contained in another redex
Simon Castellan SOS Type Systems 14 / 44

Lambda calculus Semantics

Operational semantics : evaluation order

Call-by-value.

Intuitively: evaluate the arguments to functions before applying the function.
Evaluate outermost redex whose argument (right term) is in normal form.
No evaluation under λ-abstractions.

In our example, call-by-value leads to:

id (id (λ z.id z))→ id (λ z.id z)→ λ z.id z

Most programming languages use this strategy (simpler to implement,
predictable wrt. side-effects)

Try the lambda calculus reduction workbench!
http://www.itu.dk/people/sestoft/lamreduce/index.html

Simon Castellan SOS Type Systems 15 / 44

http://www.itu.dk/people/sestoft/lamreduce/index.html

Lambda calculus Semantics

Operational semantics with CBV

Exercise 2.3 (In class)
Define a transition system for the pure lambda calculus such that its transition
relation follows the call-by-value strategy.
Is it equivalent to call-by-name?

Simon Castellan SOS Type Systems 16 / 44

Lambda calculus Semantics

Running λ-terms: Closures.
Executing λ-terms using β-reduction is not efficient due to substitutions.

I A first idea: add an environment ρ ∈ Env := Var→ Term:

〈(λx. t) u〉 → 〈t, ρ[x := u]〉
〈x, ρ〉 → 〈ρ(x), 〉

. . .

Problem: x evaluates in an invalid environment:

〈(λy.λf . f 1) 2 (λx. x + y), y 7→ 0〉

I We use closures:
Closure := Term× Env

Env := Var→ Closure

〈(λx. t) u, ρ〉 → 〈t, ρ[x := (u, ρ)]〉
〈x, ρ〉 → ρ(x)

In the previous example, the environment stores the closure

(λx.x + y, y 7→ 0)

Simon Castellan SOS Type Systems 17 / 44

Lambda calculus Semantics

Running λ-terms: Closures.
Executing λ-terms using β-reduction is not efficient due to substitutions.

I A first idea: add an environment ρ ∈ Env := Var→ Term:

〈(λx. t) u〉 → 〈t, ρ[x := u]〉
〈x, ρ〉 → 〈ρ(x), ??〉

. . .

Problem: x evaluates in an invalid environment:

〈(λy.λf . f 1) 2 (λx. x + y), y 7→ 0〉

I We use closures:
Closure := Term× Env

Env := Var→ Closure

〈(λx. t) u, ρ〉 → 〈t, ρ[x := (u, ρ)]〉
〈x, ρ〉 → ρ(x)

In the previous example, the environment stores the closure

(λx.x + y, y 7→ 0)

Simon Castellan SOS Type Systems 17 / 44

Lambda calculus Semantics

Running λ-terms: Closures.
Executing λ-terms using β-reduction is not efficient due to substitutions.

I A first idea: add an environment ρ ∈ Env := Var→ Term:

〈(λx. t) u〉 → 〈t, ρ[x := u]〉
〈x, ρ〉 → 〈ρ(x), ρ〉

. . .

Problem: x evaluates in an invalid environment:

〈(λy.λf . f 1) 2 (λx. x + y), y 7→ 0〉

I We use closures:
Closure := Term× Env

Env := Var→ Closure

〈(λx. t) u, ρ〉 → 〈t, ρ[x := (u, ρ)]〉
〈x, ρ〉 → ρ(x)

In the previous example, the environment stores the closure

(λx.x + y, y 7→ 0)

Simon Castellan SOS Type Systems 17 / 44

Lambda calculus Semantics

Running λ-terms: Closures.
Executing λ-terms using β-reduction is not efficient due to substitutions.

I A first idea: add an environment ρ ∈ Env := Var→ Term:

〈(λx. t) u〉 → 〈t, ρ[x := u]〉
〈x, ρ〉 → 〈ρ(x), ρ〉

. . .

Problem: x evaluates in an invalid environment:

〈(λy.λf . f 1) 2 (λx. x + y), y 7→ 0〉

I We use closures:
Closure := Term× Env

Env := Var→ Closure

〈(λx. t) u, ρ〉 → 〈t, ρ[x := (u, ρ)]〉
〈x, ρ〉 → ρ(x)

In the previous example, the environment stores the closure

(λx.x + y, y 7→ 0)
Simon Castellan SOS Type Systems 17 / 44

Simply Typed Lambda Calculus

Outline

1 Lambda calculus

Syntax

Semantics

2 Simply Typed Lambda Calculus

3 Extensions

Simon Castellan SOS Type Systems 18 / 44

Simply Typed Lambda Calculus

Outline

1 Lambda calculus

Syntax

Semantics

2 Simply Typed Lambda Calculus

3 Extensions

Simon Castellan SOS Type Systems 19 / 44

Simply Typed Lambda Calculus

Problems of the untyped λ-calculus

I Historical problem: some terms diverge.

I Pragmatic problem: When extending with concrete datatypes, lots of
blocking configurations: e.g. 1 2

{ Simple-type discipline: typing system guaranteeing:

I All programs terminate (we lose Turing-completeness)
I No unwanted blocking configurations with datatypes.

Simon Castellan SOS Type Systems 20 / 44

Simply Typed Lambda Calculus

What is a type system

I Type theory was invented to eliminate certain logical paradoxes by
classifying certain logical constructions as non-sense.

I Static semantics (can be computed without running the program)
I Lots of languages have some kind of type systems: C, Ada, Caml, Java.
I Others, like LISP and Prolog, are un-typed languages (even though typed

versions exist).
I A possible definition of a type system:

A type system is a syntactic and efficient method for proving the absence of
certain kinds of program behaviour, by classifying expressions according to
the value they compute.

Simon Castellan SOS Type Systems 21 / 44

Simply Typed Lambda Calculus

What are types used for?
1 Error detection. Application of a function to wrong number of

arguments, application of integer functions to floats, use of undeclared
variables in expressions, functions that do not return values, division by
zero array indices out of bounds...

2 Abstraction. Facilitate the structuring of program into modules.
3 Documentation.
4 Language safety. Is the level of abstraction promised by a high-level

language really ensured (eg. no low-level access to elements of an array)?
Caml is safe; C isn’t.

5 Performance. Information about the type of an expression enables the
compiler to generate more efficient code (optimal choice of numerical
operators, elimination of certain run-time checks).

6 Program static analysis : more generally, types keep track of static
information about run-time values. A type checker can prevent insecure
information flows, nonterminating recursion, or sorting algorithms that
don’t sort...

Simon Castellan SOS Type Systems 22 / 44

Simply Typed Lambda Calculus

The simply-typed lambda calculus
We consider an extended version with booleans and integers.

Syntax:

Terms :
t ::= true | false | if t then t else t

| 0 | succ t | pred t | iszero t
| x

| λ x : A. t
| t t

with types annotating abstraction variables.

(Simple) Types :

A ::= Nat | Bool | A→ A.

Simon Castellan SOS Type Systems 23 / 44

Simply Typed Lambda Calculus

Operational semantics
States : terms

Values (final configurations) :

nv ::= 0 | succ (nv)
v ::= nv | true | false | λ x : A.t

Transition relation:

pred 0→ 0 pred (succ nv)→ nv

iszero 0→ true iszero (succ nv)→ false

t→ t ′

succ t→ succ t ′
t→ t ′

pred t→ pred t ′
t→ t ′

iszero t→ iszero t ′

if true then t1 else t2 → t1 if false then t1 else t2 → t2

t→ t ′

if t then t1 else t2 → if t ′ then t1 else t2

t1 → t ′1
t1 t2 → t ′1 t2

t2 → t ′2
v t2 → v t ′2

(λ x : A.t) v→ t[x := v]
Simon Castellan SOS Type Systems 24 / 44

Simply Typed Lambda Calculus

Typing rules
Judgments of the form

Γ ` t : A “term t has type A in the context Γ”

Γ is an context { x : A1, y : A2, . . .}, in which variables appear at most once.

The ternary relation Γ ` t : A is defined inductively by a rule system.
Justifying the well-typing of an expression : exhibit a finite derivation tree.

Tt
Γ ` true : Bool

Tf
Γ ` false : Bool

Tz
Γ ` 0 : Nat

Tp Γ ` t : Nat
Γ ` pred t : Nat

Tiz Γ ` t : Nat
Γ ` iszero t : Bool

Tsu Γ ` t : Nat
Γ ` succ t : Nat

Tif
Γ ` t : Bool Γ ` t1 : A Γ ` t2 : A

Γ ` if t then t1 else t2 : A

Tvar
x : A ∈ A
Γ ` x : A

Tabs
Γ , x : A ` t : B

Γ ` λ x : A.t : A→ B

Tapp
Γ ` t1 : A→ B Γ ` t2 : A

Γ ` t1 t2 : B
Simon Castellan SOS Type Systems 25 / 44

Simply Typed Lambda Calculus

Exercises

Exercise 3.1 (In class)
Show that (λ x: Bool . x) true is well-typed

Exercise 3.2 (In class)
Check that
f: Bool → Bool `

λ x: Bool . f(if x then false else x) : Bool → Bool

Simon Castellan SOS Type Systems 26 / 44

Simply Typed Lambda Calculus

Type safety

Theorem 10 (Type safety)
For all well-typed term t, either

1 t diverges: there is an infinite sequence of reduction starting from t
2 t normalises to a value.

This means that reduction will not get stuck on for instance succ true .

Lemma 11 (Progress)
If ` t : A then either t is a value, or it can do a reduction t→ t ′.

Lemma 12 (Subject reduction)
If Γ ` t : A and t→ t ′ then Γ ` t ′ : A.

Simon Castellan SOS Type Systems 27 / 44

Simply Typed Lambda Calculus

Type safety

Theorem 10 (Type safety)
For all well-typed term t, either

1 t diverges: there is an infinite sequence of reduction starting from t
2 t normalises to a value.

This means that reduction will not get stuck on for instance succ true .

Lemma 11 (Progress)
If ` t : A then either t is a value, or it can do a reduction t→ t ′.

Lemma 12 (Subject reduction)
If Γ ` t : A and t→ t ′ then Γ ` t ′ : A.

Simon Castellan SOS Type Systems 27 / 44

Simply Typed Lambda Calculus

Some properties of the type system
Lemma 13

1 If Γ ` true : A, then A = Bool .
2 If Γ ` succ t : A, then A = Nat and Γ ` t : Nat .
3 . . .

Lemma 14 (Unicity of types)
Let Γ be a context and let t be a term with all free variables defined in Γ . Then, there
exists at most one type T such that Γ ` t : T.

Lemma 15 (Canonical forms)
Consider a well-typed closed value ` v : A.
I If A = Nat , then v is a numerical value (defined by nv ::= 0 | succ nv).
I If A = Bool , then v is either true or false
I If A = A1 → A2, then v is of the form form λ x : A1.t with x : A1 ` t : A2.

Simon Castellan SOS Type Systems 28 / 44

Simply Typed Lambda Calculus

Some properties of the type system
Lemma 13

1 If Γ ` true : A, then A = Bool .
2 If Γ ` succ t : A, then A = Nat and Γ ` t : Nat .
3 . . .

Lemma 14 (Unicity of types)
Let Γ be a context and let t be a term with all free variables defined in Γ . Then, there
exists at most one type T such that Γ ` t : T.

Lemma 15 (Canonical forms)
Consider a well-typed closed value ` v : A.
I If A = Nat , then v is a numerical value (defined by nv ::= 0 | succ nv).
I If A = Bool , then v is either true or false
I If A = A1 → A2, then v is of the form form λ x : A1.t with x : A1 ` t : A2.

Simon Castellan SOS Type Systems 28 / 44

Simply Typed Lambda Calculus

Progress (proof 1/2)

Theorem (Progress)
For any closed ` t : A, either t is a value or there exists t ′ such that t→ t ′.

Proof: By induction on the derivation of the typing ` t : A.

Base cases are either values or non-closed terms. Immediate.

Case succ t. In this case, T = Nat and we have that t : Nat . By induction
hypothesis, two possibilities. Either t is a value and, by the Canonical Form
lemma, an integer, in which case succ t is also a value. Or t→ t ′ and by the
semantic rules for→we have succ t→ succ t ′.

Case if is an exercise.

Simon Castellan SOS Type Systems 29 / 44

Simply Typed Lambda Calculus

Progress (proof 2/2)

Case t1 t2. By induction hypothesis (t1), we get :

1 either t1 → t ′1. In this case, t1 t2 → t ′1 t2 by the semantic rule.
2 or t1 is a value v1. Now (IH about the type derivation for t2), there are two

cases :
I If t2 → t ′2, then v1 t2 → v1 t ′2 by semantic rule.
I If t2 is also a value, say v2, then by Canonical Form lemma, v1 is of the form
λ x : A1.u and the rule for β-reduction applies.

Other Cases exercises.

Simon Castellan SOS Type Systems 30 / 44

Simply Typed Lambda Calculus

Substitution lemma (proof 1/2)

To prove subject reduction, we need:

Lemma (Substitution lemma)
If Γ , x : A ` t : B and Γ ` u : A, then Γ ` t[x := u] : B.

Proof : By induction on the derivation of the judgment Γ , x : A ` t : B.

Case : t = y inferred from the judgment y : B ∈ Γ , x : A. Two sub-cases to
consider:

I x = y. Then A = B and t[x := u] = x[x := u] = u, so we need to prove
Γ ` u : A. But this typing is one of the hypotheses.

I x , y. Then, y[x := u] = y and since y : B ∈ Γ , we have
Γ ` y[x := u] : B.

Simon Castellan SOS Type Systems 31 / 44

Simply Typed Lambda Calculus

Substitution lemma (proof 2/2)
Case: t = λ y : C.t1. We can assume that y is not bound in Γ , x, y, and that
y < FV(u) (check, using alpha-renaming).

In that case, B = C→ D and the premise is Γ , x : A, y : C ` t1 : D.

But then we can also infer Γ , y : C, x : A ` t1 : D (check!) (*)

As Γ ` u : A is derivable and y not bound in Γ , then Γ , y : C ` u : A (check!)

The induction hypothesis can now be applied (*) to give

Γ , y : C ` t1[x := u] : D

and, by the typing rule for abstraction, we infer

Γ ` λ y : C.t1[x := u] : C→ D.

Now,
λ y : C.(t1[x := u]) = (λ y : C.t1)[x := u] = t[x := u]

Case: Application t = t1 t2. Exercise.
Simon Castellan SOS Type Systems 32 / 44

Simply Typed Lambda Calculus

Subject Reduction (proof 1/2)

Theorem 16 (Invariance)
If Γ ` t : A and t→ t ′, then Γ ` t ′ : A.

Proof : By induction on the derivation of t→ t ′. We use the substitution
lemma for the case of the β-reduction.

Simon Castellan SOS Type Systems 33 / 44

Simply Typed Lambda Calculus

Normalisation theorem

Theorem 17 (Normalisation of the simply-typed λ-calculus)
If Γ ` t : A then there are no infinite reduction sequences starting from t.

I The simply-typed λ-calculus is not Turing-complete but can be used in
logic

I Hence the need for recursion in functional languages.
I Proof is complex for logical reasons (Complex induction)

Simon Castellan SOS Type Systems 34 / 44

Simply Typed Lambda Calculus

Proof outline
Induction on terms does not work: termination is not compositional:

M, N terminating;M N terminating

{We need to find a stronger inductive invariant.

Idea: define a notion of good inhabitants of a type:

~Nat� := {`M : Nat | M terminates}
~A→ B� := {`M : A→ B | ∀N ∈ ~A�, M N ∈ ~B�}

This invariant is indeed stronger:

Lemma 18
If M ∈ ~A�, then M is terminating.

We can then do our induction:

Lemma 19
For all Γ `M : A, and for all (vx ∈ ~B�)x:B∈Γ , then ~M[~x := v~x]� ∈ ~A�

Proof.
By induction on M. �

Simon Castellan SOS Type Systems 35 / 44

Simply Typed Lambda Calculus

Proof outline
Induction on terms does not work: termination is not compositional:

M, N terminating;M N terminating

{We need to find a stronger inductive invariant.

Idea: define a notion of good inhabitants of a type:

~Nat� := {`M : Nat | M terminates}
~A→ B� := {`M : A→ B | ∀N ∈ ~A�, M N ∈ ~B�}

This invariant is indeed stronger:

Lemma 18
If M ∈ ~A�, then M is terminating.

We can then do our induction:

Lemma 19
For all Γ `M : A, and for all (vx ∈ ~B�)x:B∈Γ , then ~M[~x := v~x]� ∈ ~A�

Proof.
By induction on M. �

Simon Castellan SOS Type Systems 35 / 44

Extensions

Outline

1 Lambda calculus

Syntax

Semantics

2 Simply Typed Lambda Calculus

3 Extensions

Simon Castellan SOS Type Systems 36 / 44

Extensions

Outline

1 Lambda calculus

Syntax

Semantics

2 Simply Typed Lambda Calculus

3 Extensions

Simon Castellan SOS Type Systems 37 / 44

Extensions

Extensions : products
Most languages have constructions for building complex data structures.

Pairs (products).

Expressions t ::= . . . | (t, t) | fst(t) | snd(t)

Values v ::= . . . | (v, v)

Types A ::= . . . | A× A.

Evaluation

fst(v1, v2)→ v1 snd(v1, v2)→ v2
t1 → t ′1

fst(t1)→ fst(t ′1)
. . .

t1 → t ′1
(t1, t2)→ (t ′1, t2)

. . .

Typing rules

Γ ` t : A Γ ` u : B
Γ ` (t, u) : A× B

Γ ` t : A× B
Γ ` fst(t) : A

Γ ` t : A× B
Γ ` snd(t) : B

Simon Castellan SOS Type Systems 38 / 44

Extensions

Extensions : sums (1/2)

Sums

Example :

type open_file_result =
Opened of file_handle

| Error of string

Expressions t ::= . . . | inl t | inr t | (case t of inl x B t | inr x B t)

Values v ::= . . . | inl v | inr v

Types T ::= . . . | T + T

Simon Castellan SOS Type Systems 39 / 44

Extensions

Extensions : sums (2/2)
Evaluation

case inl v0 of inl x1 B t1 | inr x2 B t2 → t1[x1 := v0]

case inr v0 of inl x1 B t1 | inr x2 B t2 → t2[x2 := v0]

t→ t ′

case t of inl x B t1 | inr x B t2 → case t ′ of inl x B t1 | inr x B t2

t→ t ′

inr t→ inr t ′
t→ t ′

inl t→ inl t ′

Typing rules
Γ ` t : A

Γ ` inl t : A + B
Γ ` t : B

Γ ` inr t : A + B

Γ ` t : A + B Γ , x1 : A ` t1 : C Γ , x2 : B ` t2 : C
Γ ` case t of inl x1 B t1 | inr x2 B t2 : C

NB : With sum types, we no longer have type unicity
Simon Castellan SOS Type Systems 40 / 44

Extensions

Typing recursive functions

The theoretical formalisation of recursive functions is through fixpoints:

let rec fac = fun n -> if n < 2 then 1 else n * fac (n-1)

can be seen as the fixpoint of the function

fun fac -> (fun n -> if n < 2 then 1 else n * fac (n - 1))

Definition 20
A fixpoint combinator is a term fix such that fix M→M(fix M).

In the untyped call-by-value λ-calculus, there are fixpoint combinators:

fix = λf .(λx.f (λy.x x y))(λx.f (λy.x x y))

Simon Castellan SOS Type Systems 41 / 44

Extensions

Syntactic fixpoint

Of course, in a typed world, we have to add a primitive for that:

Expressions t ::= . . . | fix t

Evaluation fix (λ x : A.t)→ t[x := fix (λ x : A.t)]
t→ t ′

fix t→ fix t ′

Typing rules
Γ ` t : A→ A
Γ ` fix t : A

let rec f x = M in N becomes N(fix (λfx. M))

Simon Castellan SOS Type Systems 42 / 44

Extensions

Subtyping
Without subtyping, typing rules can be very rigid (types of arguments for
functions must match exactly):

Γ ` t : A→ B Γ ` t : A
Γ ` t u : B

Example of limitation: records (and more generally OO-features).

S is a subtype of T (written S <: T) means that any term of type S can safely be
used in a context where a term of type T is expected (or, every value described
by S is also described by T, S is more informative).

Add a new typing rule (subsumption):

A ` t : S S <: T
A ` t : T

Subtyping relation: should be reflexive and transitive.

S <: S
S <: U U <: T

S <: T
Simon Castellan SOS Type Systems 43 / 44

Extensions

Types for program analysis

Replace types by other program properties, for example, sign, interval,

The order v on the properties gives rise to a subtyping relation (reflexive and
transitive).

A ` t1 : P1 → P2 A ` t2 : P P v P1

A ` t1 t2 : P2

Other application : types represent the secrecy level of the data manipulated
by a program (Cf. lecture on Static Information Flow Control).

Simon Castellan SOS Type Systems 44 / 44

	Introduction
	Lambda calculus
	Syntax
	Semantics

	Simply Typed Lambda Calculus
	Extensions

