
Operational Semantics

Simon Castellan
https://sicastel.gitlabpages.inria.fr/m2-sos

SOS, Master Recherche Science Informatique, U. Rennes 1

2021-2022

Simon Castellan https://sicastel.gitlabpages.inria.fr/m2-sosSOS Operational Semantics 1 / 44

A mostly wrong history of bridge building

1 Once upon a time: bridge-building recipes

2 Nowadays: Maths and physics to the rescue.

Sketch Mathematical Models
Physics

Calculuations: does it stand? is it resistant?

I What is a mathematical representation of a bridge?
I How do you go from the sketch to the model?
I How do you check for safety (it stands)?
I How do you check against attacks (ie. different scenario)?

Simon Castellan https://sicastel.gitlabpages.inria.fr/m2-sosSOS Operational Semantics 2 / 44

Meanwhile, in computer science
1 We have the recipes:

2 What about the fancy science?

In its infancy!

Program Mathematical Models
Semantics

Formal methods

Semantics can make formal properties about programs:
“The program P computes factorial”{ ∀n ∈N, ~P�(n) = n!.

Simon Castellan https://sicastel.gitlabpages.inria.fr/m2-sosSOS Operational Semantics 3 / 44

Meanwhile, in computer science
1 We have the recipes:

2 What about the fancy science? In its infancy!

Program Mathematical Models
Semantics

Formal methods

Semantics can make formal properties about programs:
“The program P computes factorial”{ ∀n ∈N, ~P�(n) = n!.

Simon Castellan https://sicastel.gitlabpages.inria.fr/m2-sosSOS Operational Semantics 3 / 44

Meanwhile, in computer science
1 We have the recipes:

2 What about the fancy science? In its infancy!

Program Mathematical Models
Semantics

Formal methods

Semantics can make formal properties about programs:
“The program P computes factorial”{ ∀n ∈N, ~P�(n) = n!.

Simon Castellan https://sicastel.gitlabpages.inria.fr/m2-sosSOS Operational Semantics 3 / 44

The tradeoff of semantics

A model is a mathematical point of view: there are many models.

Abstraction Accuracy wrt reality
compromise

More abstract Easier to reason with, to prove properties.
More accurate Can state more properties.

Example 1 (Spectre)
Spectre is a recent attack using the branch prediction of processors.

(No current models cannot state the property: “This program is resistant to
the Spectre attack”.)

Simon Castellan https://sicastel.gitlabpages.inria.fr/m2-sosSOS Operational Semantics 4 / 44

In this course

Two parts:

1 Semantics: How can we model program execution?

1 Case study on a idealised language, While: different methods of giving
semantics

2 A more concrete example: semantics of an idealised Java Virtual Machine
3 Semantics of idealised functional languages: λ-calculus

2 Analysis & Security: How can we use these models to guarantee the
correction or certain security properties?

Simon Castellan https://sicastel.gitlabpages.inria.fr/m2-sosSOS Operational Semantics 5 / 44

In this course

Two parts:

1 Semantics: How can we model program execution?
1 Case study on a idealised language, While: different methods of giving

semantics
2 A more concrete example: semantics of an idealised Java Virtual Machine
3 Semantics of idealised functional languages: λ-calculus

2 Analysis & Security: How can we use these models to guarantee the
correction or certain security properties?

Simon Castellan https://sicastel.gitlabpages.inria.fr/m2-sosSOS Operational Semantics 5 / 44

Lecture 1: Semantics of While

Lecture 1: Semantics of While 6 / 44

While: An imperative toy language

Outline

1 While: An imperative toy language

2 Semantics of expressions in While

3 Operational semantics of While

4 Natural semantics of While

5 Equivalence of the two semantics

6 Extensions of While

Lecture 1: Semantics of While 7 / 44

While: An imperative toy language

A problem

int fact(int n) {
int result = 1;
while(n > 1) {
result = n * result;

n = n - 1;

}

return result;
}

Lecture 1: Semantics of While 8 / 44

While: An imperative toy language

A problem

int fact(int n) {
int result = 1;
while(n > 1) {
result = n * result;

n = n - 1;

}

return result;
}

How to show that this program is correct?

Lecture 1: Semantics of While 8 / 44

While: An imperative toy language

A problem

int fact(int n) {
int result = 1;
while(n > 1) {
result = n * result;

n = n - 1;

}

return result;
}

How to show fact(n) always evaluates to n!?

Lecture 1: Semantics of While 8 / 44

While: An imperative toy language

A problem

int fact(int n) {
int result = 1;
while(n > 1) {
result = n * result;

n = n - 1;

}

return result;
}

1 What is fact(n) ?
2 How does it evaluate/compute?

Lecture 1: Semantics of While 8 / 44

While: An imperative toy language

A problem

int fact(int n) {
int result = 1;
while(n > 1) {
result = n * result;

n = n - 1;

}

return result;
}

1 What is fact(n) ? { Formal language
2 How does it evaluate/compute? { Semantics

Lecture 1: Semantics of While 8 / 44

While: An imperative toy language

Idealising a language

Real life programming languages are complex.
{ The specification of the C language: 500 pages.

In semantics, we start a small set of features and grow over time.

The standard starting point, imperative programming:

I Variables (of type int)
I Assignments of arithmetic expressions (involving variables) to variables
I Conditionals on boolean expressions derived from variables
I While statements

We create an idealised language that combines this features, While.

Lecture 1: Semantics of While 9 / 44

While: An imperative toy language

Idealising a language

Real life programming languages are complex.
{ The specification of the C language: 500 pages.

In semantics, we start a small set of features and grow over time.

The standard starting point, imperative programming:

I Variables (of type int)
I Assignments of arithmetic expressions (involving variables) to variables
I Conditionals on boolean expressions derived from variables
I While statements

We create an idealised language that combines this features, While.

Lecture 1: Semantics of While 9 / 44

While: An imperative toy language

Idealising a language

Real life programming languages are complex.
{ The specification of the C language: 500 pages.

In semantics, we start a small set of features and grow over time.

The standard starting point, imperative programming:

I Variables (of type int)
I Assignments of arithmetic expressions (involving variables) to variables
I Conditionals on boolean expressions derived from variables
I While statements

We create an idealised language that combines this features, While.

Lecture 1: Semantics of While 9 / 44

While: An imperative toy language

The While language
n ∈ Num x ∈ Var integers and variables
a ∈ Aexp arithmetic expressions

a ::= n | x | a1 + a2 | . . .
b ∈ Bexp boolean expressions

b ::= true | false | a1 = a2 | a1 > a2
| not b | b1 and b2 | . . .

c ∈ Cmd commands (i.e. programs)
c ::= x := a | skip | c1 ; c2

| if b then c1 else c2 | while b do c

This definition is called a BNF grammar:
I Different syntactic categories
I Certain basic categories are assumed: numbers, variables.
I Valid programs are described by abstract syntax trees (ASTs);

Example 2 (Factorial in While)
result:=1; while n>1 do (result := n * result; n := n -1).

Lecture 1: Semantics of While 10 / 44

While: An imperative toy language

Different semantics of While
We now would like to prove that our factorial program is correct:

1 It always terminates
2 If n is equal to k ∈N before the execution, at the end result = k!

Different families of models based on memory states σ ∈ Var→ Z:

I Denotational: programs become functions on memory states.

~P� = σ 7→ σ[n 7→ 1, result 7→ σ(n)!]

I Axiomatic: programs become memory predicate transformers.

{n = k}P{n = 1 and result = k!}

I Operational: programs are executed by a mathematical machine.

(P,σ)→∗ σ[n 7→ 1, result 7→ σ(n)!]
Actually the statements are wrong . . . Why?
This course: focus on operational semantics.

Lecture 1: Semantics of While 11 / 44

While: An imperative toy language

Different semantics of While
We now would like to prove that our factorial program is correct:

1 It always terminates
2 If n is equal to k ∈N before the execution, at the end result = k!

Different families of models based on memory states σ ∈ Var→ Z:

I Denotational: programs become functions on memory states.

~P� = σ 7→ σ[n 7→ 1, result 7→ σ(n)!]

I Axiomatic: programs become memory predicate transformers.

{n = k}P{n = 1 and result = k!}

I Operational: programs are executed by a mathematical machine.

(P,σ)→∗ σ[n 7→ 1, result 7→ σ(n)!]
Actually the statements are wrong . . . Why?
This course: focus on operational semantics.

Lecture 1: Semantics of While 11 / 44

While: An imperative toy language

Different semantics of While
We now would like to prove that our factorial program is correct:

1 It always terminates
2 If n is equal to k ∈N before the execution, at the end result = k!

Different families of models based on memory states σ ∈ Var→ Z:

I Denotational: programs become functions on memory states.

~P� = σ 7→ σ[n 7→ 1, result 7→ σ(n)!]

I Axiomatic: programs become memory predicate transformers.

{n = k}P{n = 1 and result = k!}

I Operational: programs are executed by a mathematical machine.

(P,σ)→∗ σ[n 7→ 1, result 7→ σ(n)!]
Actually the statements are wrong . . . Why?
This course: focus on operational semantics.

Lecture 1: Semantics of While 11 / 44

While: An imperative toy language

Different semantics of While
We now would like to prove that our factorial program is correct:

1 It always terminates
2 If n is equal to k ∈N before the execution, at the end result = k!

Different families of models based on memory states σ ∈ Var→ Z:

I Denotational: programs become functions on memory states.

~P� = σ 7→ σ[n 7→ 1, result 7→ σ(n)!]

I Axiomatic: programs become memory predicate transformers.

{n = k}P{n = 1 and result = k!}

I Operational: programs are executed by a mathematical machine.

(P,σ)→∗ σ[n 7→ 1, result 7→ σ(n)!]

Actually the statements are wrong . . . Why?
This course: focus on operational semantics.

Lecture 1: Semantics of While 11 / 44

While: An imperative toy language

Different semantics of While
We now would like to prove that our factorial program is correct:

1 It always terminates
2 If n is equal to k ∈N before the execution, at the end result = k!

Different families of models based on memory states σ ∈ Var→ Z:

I Denotational: programs become functions on memory states.

~P� = σ 7→ σ[n 7→ 1, result 7→ σ(n)!]

I Axiomatic: programs become memory predicate transformers.

{n = k}P{n = 1 and result = k!}

I Operational: programs are executed by a mathematical machine.

(P,σ)→∗ σ[n 7→ 1, result 7→ σ(n)!]
Actually the statements are wrong . . . Why?

This course: focus on operational semantics.

Lecture 1: Semantics of While 11 / 44

While: An imperative toy language

Different semantics of While
We now would like to prove that our factorial program is correct:

1 It always terminates
2 If n is equal to k ∈N before the execution, at the end result = k!

Different families of models based on memory states σ ∈ Var→ Z:

I Denotational: programs become functions on memory states.

~P� = σ 7→ σ[n 7→ 1, result 7→ σ(n)!]

I Axiomatic: programs become memory predicate transformers.

{n = k}P{n = 1 and result = k!}

I Operational: programs are executed by a mathematical machine.

(P,σ)→∗ σ[n 7→ 1, result 7→ σ(n)!]
Actually the statements are wrong . . . Why?
This course: focus on operational semantics.

Lecture 1: Semantics of While 11 / 44

Semantics of expressions in While

Outline

1 While: An imperative toy language

2 Semantics of expressions in While

3 Operational semantics of While

4 Natural semantics of While

5 Equivalence of the two semantics

6 Extensions of While

Lecture 1: Semantics of While 12 / 44

Semantics of expressions in While

Interpretation of values
Define the sets and functions used to describe the meaning of expressions.

I Values : integers and booleans

Z B = {tt, ff}

I Interpretation function for constants

N ∈ Num→ Z

I A memory state or environment, σmaps variables to values

σ ∈ State = Var→ Z

Reading the value of variable x in σ σ(x)
Updating σ by setting a new value v for x σ ′ = σ[x 7→ v]

I Semantics of expressions

A ∈ Aexp→ State→ Z B ∈ Bexp→ State→ B

Expressions denote functions from states to integer values.
Notation: A(a)(σ) traditionally written A[[a]]σ.

Lecture 1: Semantics of While 13 / 44

Semantics of expressions in While

Arithmetic expressions
Remember: The set of arithmetic expressions is defined inductively

a ∈ Aexp ::= n | x | a1 + a2 | . . .

A~.� is defined by induction on the definition of Aexp,
following the structure of expressions.

A ∈ Aexp→ State→ Z
A[[n]]σ = N[[n]]
A[[x]]σ = σ(x)
A[[a1 + a2]]σ = A[[a1]]σ+A[[a2]]σ

Note: + is the syntactic operator, + is the sum operator defined on integers.

The semantics is compositional: the meaning of a syntactic construction is defined
from the meaning of its constituent parts.

Lecture 1: Semantics of While 14 / 44

Semantics of expressions in While

Boolean expressions

Similarly, define B~.� by induction on the definition of Bexp.

B ∈ Bexp→ State→ B
B[[true]]σ = tt
B[[false]]σ = ff
B[[a1 = a2]]σ = A[[a1]]σ = A[[a2]]σ
B[[a1< a2]]σ = A[[a1]]σ < A[[a2]]σ
B[[not b]]σ = ¬(B[[b]]σ)
B[[b1 and b2]]σ = B[[b1]]σ ∧ B[[b2]]σ

where ¬, ∧, = are operators defined on booleans and integers.

Lecture 1: Semantics of While 15 / 44

Semantics of expressions in While

Proof technique
The set of arithmetic expressions Aexp is defined inductively

a ::= n | x | a1 + a2 | . . .

Structural induction
To prove a property P of all arithmetic expressions:

1 Base cases: show the property for each atomic expression
2 Inductive cases : show the property for each composite expression, under

the hypothesis that it holds on its constituent parts.

Formally, the induction principle for arithmetic expressions is :

∀n ∈ Num,P(n)
∧ ∀x ∈ Var,P(x)
∧ ∀a1, a2 ∈ Aexp,P(a1)∧ P(a2)⇒ P(a1 + a2)

⇒ ∀a ∈ Aexp,P(a)

Vocabulary: the above P(a1) and P(a2) are called the induction hypotheses.
Lecture 1: Semantics of While 16 / 44

Semantics of expressions in While

Exercises
Exercise 2.1
Let σ ∈ State and x ∈ Var such that σ(x) = 3. Show that B[[not(x = 1)]]σ = tt.

Exercise 2.2
We extend the language Aexp with the unary minus operator and the construction
-a. Extend the semantic function A to give a compositional semantics for this
construction.

Exercise 2.3
We extend the language Bexp with the construction b1 or b2.
I Extend the semantic function B to give a compositional semantics for this

construction.
I Prove that for all b belonging to the extended language there exists a b belonging

to the original language such that:

B[[b]] = B[[b]]

Lecture 1: Semantics of While 17 / 44

Operational semantics of While

Outline

1 While: An imperative toy language

2 Semantics of expressions in While

3 Operational semantics of While
Overview
Small-step transition relation,
inductively

4 Natural semantics of While

5 Equivalence of the two semantics

6 Extensions of While

Lecture 1: Semantics of While 18 / 44

Operational semantics of While

Operational semantics

References

I G. Winskel, The Formal Semantics of Programming Languages MIT Press,
1993 (chapters 2 and 3)

I H.R. Nielson and F. Nielson, Semantics with Applications - A Formal
Introduction, Wiley 1992. (chapter 2)

I G. Plotkin, A Structural Approach to Operational Semantics, Technical
Report, Aarhus University, 1981.

I G. Kahn, Natural Semantics, In Proc. of the Symposium on Theoretical
Aspects of Computer Science, LNCS 247, pp. 22–39, Springer-Verlag,
1987.

Lecture 1: Semantics of While 19 / 44

Operational semantics of While Overview

Operational semantics
Describe how the execution of While programs is done, operationally.

The operational semantics of a language is defined by an abstract machine,
formalised as a transition system.

Transition system
A transition system is a triple (Γ , T,{) where
I Γ is a set of configurations (states of the machine)
I T ⊆ Γ is a set of final configurations
I { ⊆ Γ × Γ is a transition relation

Two main styles of definitions for the transition relation:
I Small-step semantics Structural Operational Semantics (SOS)

Relation→ describes all intermediate, individual steps
I Big-step semantics Natural semantics (NS)

Relation ⇓ describes how to obtain the final result of computation

Lecture 1: Semantics of While 20 / 44

Operational semantics of While Overview

Transition systems: some definitions
Transition system
A transition system is a triple (Γ , T,{) where
I Γ is a set of configurations
I T ⊆ Γ is a set of final configurations
I { ⊆ Γ × Γ is a transition relation

A transition system (Γ , T,{) is said

I deterministic when relation{ is functional

γ{ γ1 and γ{ γ2 implies γ1 = γ2

I non-blocking when relation{ is total on Γ \ T

for all γ ∈ Γ \ T, there exists γ ′ such that γ{ γ ′

The notion of program execution will be defined on top of{.

Lecture 1: Semantics of While 21 / 44

Operational semantics of While Overview

Transition systems for While: configurations

To run a While program, we need a command c ∈ Cmd, and a state σ ∈ State.

For While, configurations are defined:

I Γ = {(c,σ) | c ∈ Cmd,σ ∈ State} ∪ State
I Final configurations : T = State

So, either :

I (c,σ){ (c ′,σ ′)
execution of c has not terminated, and (c ′,σ ′) is left to execute

I or (c,σ){ σ ′

execution of c has terminated in the final configuration σ ′

Next slides: define two transition relations, following the structure of While
commands

Lecture 1: Semantics of While 22 / 44

Operational semantics of While Overview

Small-step transition relation

Cmd 3 c ::= x := a | skip | c1 ; c2

| if b then c1 else c2 | while b do c

Easy for atomic commands:
I Executing skip terminates in 1 step and doesn’t modify the state.

For all possible σ, we have (skip ,σ)→ σ

I Executing an assignment terminates in 1 step, and updates the state.
For all possible σ, x, and a, we have (x := a,σ)→ σ[x 7→ A[[a]]σ]

For compound commands, like sequences ?

(c1 ; c2,σ)→ ???

Intuitively, we have to first execute c1 in small-step.
I The transition relation needs to be defined inductively!

Lecture 1: Semantics of While 23 / 44

Operational semantics of While Overview

Small-step transition relation, inductively
Inductively defined relations are usually formalised by a rule system.

A rule is of the form :

RuleName if . . . (side conditions)
premise1 . . . premisen

conclusion

where premisei and conclusion are elements of the relation being defined.1

It reads: ”If premise1 and . . . premisen, and if side conditions are satisfied, then
conclusion”. Premises must be, in turn, justified by rules.
I the conclusion holds whenever there is a finite derivation tree whose

leaves are axioms of the system.

For the transition relation{, rules are of the form:

RuleName if . . . (side conditions)
γ0 { γ ′0 . . . γi { γ ′i

γj { γ ′j
1A rule with no premise is called an axiom.

Lecture 1: Semantics of While 24 / 44

Operational semantics of While Small-step transition relation, inductively

Structural operational semantics (SOS)
Rule system defining the small-step transition relation.

Precisely: these are rule schemas, to be instantiated on particular commands
and states.

ASSIG
(x := a,σ)→ σ[x 7→ A[[a]]σ]

SEQ1
(c1,σ)→ σ ′

(c1 ; c2,σ)→ (c2,σ ′)

SKIP
(skip ,σ)→ σ

SEQ2
(c1,σ)→ (c ′1,σ ′)

(c1 ; c2,σ)→ (c ′1 ; c2,σ ′)

IFT if B[[b]]σ = tt
(if b then c1 else c2,σ)→ (c1,σ)

IFE if B[[b]]σ = ff
(if b then c1 else c2,σ)→ (c2,σ)

WHI
(while b do c,σ)→ (if b then (c ; while b do c) else skip ,σ)

Lecture 1: Semantics of While 25 / 44

Operational semantics of While Small-step transition relation, inductively

Small-step executions and semantics

A small-step execution of a While command is a sequence of configurations

γ0, . . . ,γp, . . . such that, for each i,γi → γi+1

We write :
→∗ Reflexive and transitive closure of→ : finite number of transitions
→+ Transitive closure of→ : finite, non-zero number of transitions
→i Exactly i transitions

Execution of (c,σ) is said
I to terminate iff there exists σ ′ such that (c,σ)→∗ σ ′

I to loop iff there exists an infinite transition sequence starting from (c,σ)

Lecture 1: Semantics of While 26 / 44

Operational semantics of While Small-step transition relation, inductively

Exercises

Exercise 3.1 (In class)
Show that for all σ with σ(n) > 1:

(P,σ)→∗ σ ′

with σ ′(result) = σ(n)! where P is the factorial program.

Exercise 3.2 (At home)
Give an SOS to the arithmetic expressions (Aexp) of the While language. Is your
corresponding transition system deterministic? Explain why.

Lecture 1: Semantics of While 27 / 44

Natural semantics of While

Outline

1 While: An imperative toy language

2 Semantics of expressions in While

3 Operational semantics of While

4 Natural semantics of While

5 Equivalence of the two semantics

6 Extensions of While

Lecture 1: Semantics of While 28 / 44

Natural semantics of While

Forgetting the intermediate steps

Our semantics allows to view commands as state transformers:

Definition 3
Command c turns state σ into state σ ′ when (c,σ)→∗ σ ′.
We write 〈c,σ〉 ⇓ σ ′.

Can we define the relation 〈c,σ〉 ⇓ σ ′ directly (by induction)?

{ Yes: it is called natural semantics.

Lecture 1: Semantics of While 29 / 44

Natural semantics of While

Natural (or big-step) semantics (NS)
Rule system defining the big-step transition relation.

Focuses on final state reached: no elementary computation step described. So,
the transition relation is such that ⇓⊆ (Cmd× State)× State ⊆ Γ × T

ASSIG
(x := a,σ) ⇓ σ[x 7→A[[a]]σ]

SKIP
(skip ,σ) ⇓ σ

SEQ
(S1,σ) ⇓ σ ′ (S2,σ ′) ⇓ σ ′′

(S1 ; S2,σ) ⇓ σ ′′

IFT if B[[b]]σ = tt
(S1,σ) ⇓ σ ′

(if b then S1 else S2,σ) ⇓ σ ′

IFE if B[[b]]σ = ff
(S2,σ) ⇓ σ ′

(if b then S1 else S2,σ) ⇓ σ ′

WHI1 if B[[b]]σ = tt
(S,σ) ⇓ σ ′ (while b do S,σ ′) ⇓ σ ′′

(while b do S,σ) ⇓ σ ′′

WHI2 if B[[b]]σ = ff
(while b do S,σ) ⇓ σ

Lecture 1: Semantics of While 30 / 44

Natural semantics of While

Big-step executions and semantics

A big-step execution of a While command is simply a derivable (c,σ) ⇓ σ ′

Execution of (c,σ) is said
I to terminate iff there exists σ ′ such that (c,σ) ⇓ σ ′

I to loop/block iff there is no state σ ′ such that (c,σ) ⇓ σ ′

Semantics of commands: partial function Snat ∈ Cmd→ State ↪→ State

Snat[[c]]σ = σ ′ if (c,σ) ⇓ σ ′

Commands c1 and c2 are semantically equivalent iff

∀σ,σ ′. (c1,σ) ⇓ σ ′ ⇔ (c2,σ) ⇓ σ ′

Lecture 1: Semantics of While 31 / 44

Natural semantics of While

Exercises

Exercise 4.1
Show that the NS semantics of the factorial program gives the expected behaviour.

Exercise 4.2 (At home)
The While language is extended with the construction repeat S until b. Extend
the NS accordingly.

Lecture 1: Semantics of While 32 / 44

Natural semantics of While

Proof technique associated with NS

Induction principle for derivation trees
...

P1
P2

P

1 Prove the property for the the axioms of the rule system
2 For each rule, prove the property for the conclusion of the rule, under the

hypothesis that the property holds for each of the premises, and that side
conditions are satisfied.

Intuition: the property is proved:
I to hold for the leaves of the tree,
I and to propagate to any possible derivable conclusion.

Lecture 1: Semantics of While 33 / 44

Natural semantics of While

Exercises
Exercise 4.3 (At home)
Prove that the NS of While is deterministic.

Exercise 4.4 (At home)
Prove that c1 ; (c2 ; c3) and (c1 ; c2) ; c3 are semantically equivalent.
Hint: induction is not necessary here.

Exercise 4.5 (At home ?)

Prove that
while b do c

and
if b then (c ; while b do c) else skip

are semantically equivalent.
Hint: induction is not necessary here.

Lecture 1: Semantics of While 34 / 44

Equivalence of the two semantics

Outline

1 While: An imperative toy language

2 Semantics of expressions in While

3 Operational semantics of While

4 Natural semantics of While

5 Equivalence of the two semantics

6 Extensions of While

Lecture 1: Semantics of While 35 / 44

Equivalence of the two semantics

An equivalence of two semantics
Theorem
For all c and all σ, we have 〈c,σ〉 →∗ σ ′ iff 〈c,σ〉 ⇓ σ ′.

The theorem is a direct consequence of the following two lemmas:

Lemma 4

For all command c and states σ,σ ′

(c,σ) ⇓ σ ′ ⇒ (c,σ)→∗ σ ′

Lemma 5

For all command c and states σ,σ ′

(c,σ)→k σ ′ ⇒ (c,σ) ⇓ σ ′

Lecture 1: Semantics of While 36 / 44

Equivalence of the two semantics

Proof of Lemma 4

Goal: for all command c and states σ,σ ′ (c,σ) ⇓ σ ′ ⇒ (c,σ)→∗ σ ′.

By induction on the derivation tree of (S,σ) ⇓ σ ′.

Case (x := a,σ) ⇓ σ[x 7→ A[[a]]σ]
Immediate from the SOS axiom (x := a,σ)→ σ[x 7→ A[[a]]σ]

Case
(S1,σ) ⇓ σ ′ (S2,σ ′) ⇓ σ ′′

(S1 ; S2,σ) ⇓ σ ′′

Thus
(S1,σ)→∗ σ ′ and (S2,σ ′)→∗ σ ′′ (by induction hypothesis)

(S1 ; S2,σ)→∗ (S2,σ ′)

(S1 ; S2,σ)→∗ σ ′′ (by composition of transition sequences)

Lecture 1: Semantics of While 37 / 44

Equivalence of the two semantics

Proof of Lemma 4

Case

WHI1 b/c B[[b]]σ = tt
(S,σ) ⇓ σ ′ (while b do S,σ ′) ⇓ σ ′′

(while b do S,σ) ⇓ σ ′′

The induction hypothesis gives us that

(S,σ)→∗ σ ′ and (while b do S,σ ′)→∗ σ ′′

According to the SOS, we have the following derivation:

(while b do S,σ) → (if b then (S ; while b do S) else skip ,σ)
→ (S ; while b do S,σ)

Composing the transition sequences, we obtain

(while b do S,σ)→∗ σ ′′

Other cases same idea (exercise)

Lecture 1: Semantics of While 38 / 44

Equivalence of the two semantics

Proof of Lemma 5

Goal: for all S,σ, k,σ ′, (S,σ)→k σ ′ ⇒ (S,σ) ⇓ σ ′.

Proceed by induction on the length of the transition sequence of (S,σ)→k σ ′:

I If k = 0 then (S,σ) and σ ′ should be identical. Vacuously holds.
I Otherwise, suppose the lemma holds for all k 6 k0 and prove it for a

sequence of length k0 + 1.
We proceed by case analysis on the command S :

Case x := a. This command reduces in one step to a final state (so
k0 = 0) by SOS axiom ASSIG. Result then follows from NS
axiom ASSIG.

Lecture 1: Semantics of While 39 / 44

Equivalence of the two semantics

Proof of Lemma 5
Case (S1 ; S2,σ)→k0+1 σ ′′

There exists k1 and k2 such that

(S1,σ)→k1 σ ′ and (S2,σ ′)→k2 σ ′′ with k1 + k2 = k0 + 1

By induction hypothesis,

(S1,σ) ⇓ σ ′ and (S2,σ ′) ⇓ σ ′′

By the NS rule SEQ, we conclude that (S1 ; S2,σ) ⇓ σ ′′.
Case (while b do S,σ)

→ (if b then (S ; while b do S) else skip ,σ) →k0 σ ′′

From the induction hypothesis, we get

(if b then (S ; while b do S) else skip ,σ) ⇓ σ ′′

In Exercise 4.5, we proved this command semantically
equivalent to while b do S, hence (while b do S,σ) ⇓ σ ′′.

Other cases same technique
Lecture 1: Semantics of While 40 / 44

Extensions of While

Outline

1 While: An imperative toy language

2 Semantics of expressions in While

3 Operational semantics of While

4 Natural semantics of While

5 Equivalence of the two semantics

6 Extensions of While

Lecture 1: Semantics of While 41 / 44

Extensions of While

Extension of While (1) : termination operator
We extend the While language with the command abort .

Informal description: the command halts execution of the program.

One way of modeling abort : semantic rules stay unchanged and the
configurations of form (abort ,σ) are blocking.

I SOS: abort is different from skip and from while true do skip .
I NS: abort is different from skip but equivalent to while true do skip .

One solution that allows the NS to distinguish between termination by
abort and non-termination: introduce special state σabort and

(abort ,σ) ⇓ σabort

But: must modify all other rules to take σabort into account!

Lecture 1: Semantics of While 42 / 44

Extensions of While

Extensions to While (2) : non-deterministic choice
Extend While with the non-deterministic choice operator c1 � c2.

Informal description: choose non-deterministically to execute one of c1 and c2.

The language now becomes non-deterministic.

I Formalisation as an SOS
CH1

(c1 � c2,σ)→ (c1,σ)

CH2
(c1 � c2,σ)→ (c2,σ)

I Formalisation as a NS

CH1
(c1,σ) ⇓ σ ′

(c1 � c2,σ) ⇓ σ ′

CH2
(c2,σ) ⇓ σ ′

(c1 � c2,σ) ⇓ σ ′

SOS can choose an expression that loops, while NS will always choose to
eliminate non-termination.

Ex : (x := 1) � (while true do skip)

Lecture 1: Semantics of While 43 / 44

Extensions of While

Extension of While (3) : concurrency

Add a parallel composition to commands:

c ::= ... | (c1 ‖ c2).

How can we extend the SOS semantics? The natural semantics?

Lecture 1: Semantics of While 44 / 44

	While: An imperative toy language
	Semantics of expressions in While
	Operational semantics of While
	Overview
	Small-step transition relation, inductively

	Natural semantics of While
	Equivalence of the two semantics
	Extensions of While

