
Side-channels and
constant-time analysis

Thomas Jensen

SOS

Master Science Informatique

Univ. Rennes 1

Side channels

Programs can leak information in many ways:

• Direct and indirect information flows

‣ deducing secrets from observing intermediate and final values of the

computation.

• Side channels

‣ execution time,

‣ energy consumption, sound emission

‣ cache behaviour, branch prediction

An essential part of an attacker model is to describe what is
observable for an attacker.

Timing channels

If an attacker can observe execution time of a program then

leaks the secret, even though non-interferent.*

A concrete problem in crypto algorithms such as RSA.

J. Agat: Transforming out timing leaks, POPL 2000

if h > 0 then (while l != 0 do l := l-1) else l := 0;

* assuming l > 0

Computes
xk mod n

Timing analysis - for real
Seen in October 2019:

Power analysis

Deduce values of cryptographic keys

‣ stored on a smart card

‣ by measuring the power consumption.

At cycle 6 there is a jump if i-th bit in key is set.

But: need physical access to the card to measure current.

From: P. Kocher et al: Differential Power analysis, CRYPTO'99

Remote timing attacks

Do we need physical access to the processor? No!

Timing attacks have been done:

• between processes on the same machine,

• between virtual machines on same processor,

• *between different machines on the same network.

Example*: The OpenSSL implementation of RSA uses a
sophisticated modulo reduction (due to Montgomery) and
two different multiplication operators.

This leads to timing differences when computing gd mod q.

*Brumley and Boneh: Timing attacks are Practical, 12th Usenix Security Symposium, 2003

Remote timing attacks

Brumley and Boneh: Timing attacks are Practical, 12th Usenix Security Symposium, 2003

Cache behaviour attacks

Another important side channel:

the memory cache.

Optimised crypto implementations use the
secret key to index tables ("S-boxes").

table[key[0]]

The table is kept in cache, but certain
lines can be evicted by attacking software.

Leads to differences in loading time, and
hence to information about the key.

table[0] … table[7]

table[16] … table[23]

table[24] … table[31]

…

Rule: avoid memory accesses depending on secrets.

Memory cache with 2nd row evicted

Counter-measures

Guaranteeing constant-time

1. Program transformation for C-T.

2. Controlling compiler optimisations.

3. Languages for constant-time programming:

• HACL - a variant of F* for C-T programming.

• C and Fact.

• Intermediate and assembly languages.

4. Verifying constant-time by program analysis.

Program transformation for C-T.

Eliminate timing leaks by transforming the program into an
equivalent program with constant execution time.

One source of problem: branchings involving secrets.

Remove problem

• by inserting ghost assignments,

• by removing assignments from branches.

Transforming out timing leaks
Back to the example with
exponentiation.

For now, assume that attacker
only observes number of
execution steps - not cache
behaviour.

Remove difference in execution
time of branches by inserting
ghost ("dummy") assignments
with no effect on the end result.

J. Agat: Transforming out timing leaks, POPL 2000

"Branchless" assignment

Another technique to remove a dependency on a secret:

branchless assignments.

Example: Replace

by*

if h > 0 then x := exp

x := h * exp + (1 - h) * x

*here we assume our secret h ∈ {0,1]

A timing leak from the real world
Example from early mbdTLS: unsecure impl. of function
that returns index of last non-zero element of secret input.

• Loop starts from end of buffer input and exits as soon
as first non-zero element is found.

• This leaks the secret size of input.

static int get_zeros_padding (unsigned char *input,
 size_t input_len, size_t *data_len) {

 unsigned char *p = input + input_len -1;
 …
 while (*p == 0x00 && p > input)
 - - p;
 *data_len = (*p == 0x00) ? 0 : p - input + 1;
 …
} s e c r e t \0 \0 \0 \0 \0

p pp

Exercise
Find a loop body (complete the …) that computes length of data
and eliminates the timing leak, by iterating over the whole buffer:

i = input_len; /* length of secret input[]
done = 0
while (i > 0) {
 prev_done = done;
 done |= …
 data_len = …
 i := i - 1;
};
return data_len;

s e c r e t \0 \0 \0 \0 \0

i ii

Solution

To eliminate the timing leak, iterate over whole buffer with loop
body:

i = input_len; /* length of secret input[]
done = 0
while (i > 0) {
 prev_done = done;
 done |= (input[i-1] != 0);
 *data_len |= i * (done != prev_done)
 i := i - 1;
};
return data_len;

• Here, done changes from 0 to 1 when we reach the end of the
string (first non-null character).

• This is the only i for which done != prev_done

Compiling C-T

Even if a source program is C-T , its compiled version may no
longer be so!

Optimising compilers may:

• introduce tests on secrets,

• use instructions whose execution time depends on
arguments

‣ (on some processors, multiplication is a variable-time instruction),

• remove security-relevant code that does not affect
functional behaviour

‣ eg remove memory operations that look like dead code.

Languages for C-T

Languages for constant-time programming: controlling dependencies
on secrets. Often specifically targeted for writing crypto code:

• HACL* - a crypto library written in functional language F* and
compiled to C.

‣ introduce an abstract type of "secret" integers uint32_s that the compiler

generates constant-time instructions for.

‣ use the type system to prevent dependencies on uint32_s

• QHASM portable assembly language (http://cr.yp.to/
qhasm.html)

• Fact - a DSL for writing cryptographic algorithms in idiomatic,
high-level C.

val eq_mask: x:uint32_s ! y:uint32_s ! Tot (z:uint32_s {
if reveal x = reveal y then reveal z = 0xfffffffful

else reveal z = 0x0ul})

http://cr.yp.to/qhasm.html
http://cr.yp.to/qhasm.html

FaCT

FaCT: a domain-specific language for writing constant-time
programs.

FaCT :

• a subset of C,

• a program transformation to C-T based on information
flow analysis.

Cauligi et al: FaCT: A DSL for Timing-Sensitive Computation, PLDI'19, ACM Press

Early termination

for (i=0;i<n;i++)
 d |= x[i] ^ y[i];
return (1 & ((d-1)>>8)) - 1;

Consider comparing two secret arrays x and y.

for (i from 0 to n)
if (x[i] != y[i])
 return -1;

return 0;

We would like to write this:

But to be constant-time, programmers write this:

Memory access

if (swap != 0) {
 for(i from 0 to 5) {
 secret tmp = a[i];
 a[i] = b[i];  
 b[i] = tmp;
}}

Copy a to b if secret swap is true

In FaCT:

instead of the "classical" solution:

for (i=0;i<5;++i) {  
 x = swap & (a[i] ^ b[i]);
 a[i] ^= x;  
 b[i] ^= x;
}

FaCT language

S ::= S;S | x=e | x=f(e ︎) | e:=e | if(e) {S} else {S}  
 | for(x from e to e){S} | return e

Statements:

Expressions:

e ::= true | false | n | x | e⊕e | e[e] | len e |
…
| ctselect(e,e,e)  

Constant-time select ctselect(b,e1,e2) returns the value of second or third

argument, depending on the value of b.

The compiler will guarantee that ctselect is compiled to constant-time code.

FaCT type system

The FaCT type system works over types (int, bool, arrays)
with security levels (public, secret)

Programmers can annotate variables to indicate secret and
public data.

The type system will reject programs which

• are not information flow secure or

• cannot be transformed to constant-time.

Typing rules for expressions - a selection

• ctselect is typable for all security levels.

• the security level of result is upper bound of levels of arguments

• array access is safe if index is public.

• the index must be in bound

Public safety

Public safety
Problem: the C-T transformation may introduce safety problems:

assume(secret_index <= len buf);
if (i < secret_index)
 buf[i] = 0;…

should not be transformed into
cond = (i<secret_index);
buf[i] = ctselect(cond, 0, buf[i]);

because it introduces a potential buffer overflow

Public safety: the safety of a program must not depend on secret data.

Extend the type system with path conditions to enforce public safety

Typing of statements return
context

Only iterate over public bounds:

Classical if rule:

Return deferral
Early returns that depend on secrets may leak information:

if (sec) { return 1; }  
// long-running computation ...

FaCT will transform this into ifs that depend on secret info.
secret rval = 0;  
secret bool notRet = true;  
if (sec) { rval = 1; notRet = false; }
if (notRet) {
// long-running computation ...
}  
return rval;

Doesn't solve the problem - but now we only have to deal with if.

Branch removal
Turn secret if into straight-line code:

if (sec1) {a[1]=3;}
else if (sec2) {a[2] = 4;}

becomes

a[1] = ctselect(sec1 , 3, a[1]);
a[2] = ctselect(~sec1 & sec2, 4, a[2]);

Transformation rules for branch removal
Transformation rules of the form

where p is a control predicate (= under what condition is S executed).

Security proof

Define leakage (ie what the attacker can observe) as a trace
of events e*:

• the branches taken,

• the memory accessed.

Big-step leakage semantics P : (𝛒,𝛔) ⟶ (𝛒',𝛔')

Definition: A program is C-T if leakage does not depend on
secret input.

Theorem: Transformation P → P' produces a C-T program.
Proof:

• Prove ⊢ P and ⊢ P →rd P' then ⊢rd P'

• Prove ⊢rd P and P →ct P' then ⊢ct P'

e*

no early returns

no branch on secrets

Limits of FaCT
The FaCT type system will reject some programs that can be
transformed to C-T.

if (sec) (x = l1 ; y = t[x]) else skip
FaCT rejects

because branch removal would produce the unsecured
x = ctselect(sec,l1,x);
y = ctselect(sec,t[x],y)

But a secure C-T transformation exists:
xt = l1 ; yt = t[xt];
xf = x ; yf = y;
x = ctselect(sec,xt,xf);
y = ctselect(sec,yt,yf)

Exercise

Consider the following program :

FaCT will reject it (memory access with secret index!)

Can you find a C-T equivalent?

(Hint: increase the scope of the if)

if (sec) x = l1 else x = l2; y = t[x];

Summary

Side channels are manifold - and arise regularly in software.

Particularly critical in optimised cryptographic primitives.

Timing differences can be observed

• on processors

• across processors

• and even across networks.

Different measures to eliminate certain side channels

• program to avoid timing leaks

‣ no test on secrets and

‣ no access memory with secrets.

• transform and verify constant-time of implementations.

