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Abstract. This paper surveys some techniques and tools for achieving reachability
analysis over term rewriting systems. The core of those techniques is a generic tree
automata completion algorithm used to compute in an exact or approximated way
the set of descendants (or reachable terms). This algorithm has been implemented in
the Timbuk tool. Furthermore, we show that classes with regular sets of descendants
of the literature corresponds to specific instances of the tree automata completion
algorithm and can thus be efficiently computed by Timbuk. An extension of the
completion algorithm to conditional term rewriting systems and some applications
are also presented.

Introduction

Given a term rewriting system R and two ground terms s and t,
we focus on proving automatically that s →R∗ t or s 6→R∗ t. This
problem has several applications in equational proofs used in theorem
proving or in proof assistants as well as in verification where term
rewriting systems can be used to model programs. The reachability
problem is known to be decidable for Term Rewriting Systems (TRS
for short) which are terminating. However, in automated deduction and
in verification, systems considered in practice are rarely terminating
and, even when they are, automatically proving their termination is
difficult. On the other hand, reachability is known to be decidable
on several syntactic classes of term rewriting systems (not necessarily
terminating nor confluent). On those classes, the technique used to
prove reachability is rather different and is based on the computation
of the set R?(E) of R-descendants (or R-reachable terms) of an initial
set of terms E. For those classes, R?(E) is a regular tree language and
can thus be represented using a tree automaton. Tree automata offer a
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finite way to represent infinite (regular) sets of reachable terms when
a non terminating term rewriting system is under concern.

In this paper, our aim is to propose a common, simple, efficient and
implemented algorithm for computing known decidable regular classes
as well as to construct some approximation when it is not decidable.
This algorithm is essentially a completion of a tree automata, thus
taking advantage of an algorithm similar to the Knuth-Bendix com-
pletion (Knuth and Bendix, 1970) in order not to restrict to a specific
syntactic class of term rewriting systems and tree automata in order
to deal efficiently with infinite sets of reachable terms produced by
non-terminating term rewriting systems.

This algorithm is implemented in the Timbuk tool (Genet and Viet
Triem Tong, 2001b). However, as we will see in the following, our im-
plementation does not cover every decidable class since this would have
led to an inefficient tool. As an example, for dealing with non left-linear
TRSs, one can refine the algorithm we propose by applying determin-
isation after each step of tree automata completion. In this way, one
may obtain a more general theorem covering the non left-linear case
without restriction. However, since determinisation is an exponential-
time operation, this would not be realistic in practice. Thus, we choose
to stick to the basic completion algorithm and give some conditions
sufficient for covering the non left-linear case in many practical cases.

The paper is organized as follows. In section 1 we recall the basic
notations for term rewriting systems and tree automata. Then, in sec-
tion 2 we recall the known regular classes for descendants. Section 3
presents the tree automata completion algorithm and the result for
over-approximation of R?(E) for any TRS R and any initial regular
language E. In section 4 we give some sufficient conditions for the
tree automata completion to compute exactly R?(E) for any TRS R
and any initial regular language E. In this section we also show how
regular classes of the literature can be obtained using tree automata
completion. Then in section 5 we give some formal and practical tools
for guiding the approximation construction when R?(E) is not regu-
lar. In section 6, some applications of R?(E) are presented: sufficient
completeness, strong non-termination proof and reachability testing.
In section 7, we present the algorithmic optimisation of matching in
automata in Timbuk and some indications on its efficiency. Finally, an
extension of the tree automata completion algorithm for conditional
term rewriting systems is given in section 8.
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1. Formal background

Comprehensive surveys can be found in (Dershowitz and Jouannaud,
1990; Baader and Nipkow, 1998) for term rewriting systems, in (Comon
et al., 2002; Gilleron and Tison, 1995) for tree automata and tree
language theory.

Let F be a finite set of symbols, each associated with an arity func-
tion ar, and let X be a countable set of variables. T (F ,X ) denotes the
set of terms, and T (F) denotes the set of ground terms (terms without
variables). The set of variables of a term t is denoted by Var(t). The
domain and range of a mapping will be denoted respectively by Dom
and Ran. A substitution is a mapping σ from X into T (F ,X ), which
can uniquely be extended to an endomorphism of T (F ,X ). Its domain
Dom(σ) is {x ∈ X | xσ 6= x}. A position p for a term t is a word over
N. The empty sequence ε denotes the top-most position. The set Pos(t)
of positions of a term t is inductively defined by:

− Pos(t) = {ε} if t ∈ X

− Pos(f(t1, . . . , tn)) = {ε} ∪ {i.p | 1 ≤ i ≤ n and p ∈ Pos(ti)}

If p ∈ Pos(t), then t|p denotes the subterm of t at position p and
t[s]p denotes the term obtained by replacement of the subterm t|p at
position p by the term s. For any term s ∈ T (F ,X ), we denote by
PosF (s) the set of functional positions in s, i.e. {p ∈ Pos(s) | p 6=
ε and Root(s|p) ∈ F} where Root(t) denotes the symbol at position ε
in t. Conversely, we denote by PosX (s) the set of variable positions in
s, i.e. PosX (s) = Pos(s) \ PosF (s).

A term rewriting system R is a set of rewrite rules l → r, where
l, r ∈ T (F ,X ), l 6∈ X , and Var(l) ⊇ Var(r). A rewrite rule l → r is
left-linear (resp. right-linear) if each variable of l (resp. r) occurs only
once. A rule is linear if it is both left and right-linear. A TRS R is
linear (resp. left-linear, right-linear) if every rewrite rule l → r of R
is linear (resp. left-linear, right-linear). The TRS R induce a rewriting
relation →R on terms whose reflexive transitive closure is denoted by
→?

R. The set of R-descendants of a set of ground terms E is R?(E) =
{t ∈ T (F) | ∃s ∈ E s.t. s →?

R t}. We extend this notation to terms in
the following way: R?(s) = R?({s}). We denote by IRR(R) the set of
terms irreducible by R and by R!(E) the set of R-normal forms of E,
i.e. R!(E) = R?(E) ∩ IRR(R).

Let Q be a finite set of symbols, with arity 0, called states. T (F ∪Q)
is called the set of configurations. A transition is a rewrite rule c → q,
where c ∈ T (F ∪Q) and q ∈ Q. A normalized transition is a transition
c → q where c = q′ ∈ Q or c = f(q1, . . . , qn), f ∈ F , ar(f) = n, and
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q1, . . . , qn ∈ Q. A bottom-up non-deterministic finite tree automaton
(tree automaton for short) is a quadruple A = 〈F ,Q,Qf ,∆〉, where
Qf ⊆ Q and ∆ is a set of normalized transitions. A tree automaton
is deterministic if there are no two rules with the same left-hand side.
The rewriting relation induced by the transitions of A (the set ∆) is
denoted by →A. The tree language recognized by a state q in A is
L(A, q) = {t ∈ T (F) | t →?

A q}. The language recognized by A is
L(A) =

⋃
q∈Qf

L(A, q). A tree language is regular if and only if it can
be recognized by a tree automaton. By notation abuse, we will often
note q ∈ A and t → q ∈ A respectively for q ∈ Q and t → q ∈ ∆.

2. Existing solutions

The basic reachability problem we are going to consider is the following:
given a term rewriting system R and two terms s and t can we decide
whether s →?

R t or not? In this part, we focus on the existing solutions
designed for particular cases.

The simplest case is when R is terminating: to decide whether s →R?

t or not it is enough to see if t ∈ R?(s) since R?(s) is finite and
computable.

When R is not terminating, deciding reachability needs some addi-
tional formal tools, namely tree automata, in order to finitely represent
the infinite set R?(s) and then check if t ∈ R?(s). Many works are
devoted to the construction of R?(E) for a regular language E and a
term rewriting system R fulfilling some restrictions:

− R is either a ground TRS (Dauchet and Tison, 1990; Brainerd,
1969).

− a right-linear and monadic TRS (Salomaa, 1988), i.e. right-hand
sides of the rules are either variables or terms of the form f(x1, . . . , xn)
where f ∈ F and x1, . . . , xn are variables.

− a linear and semi-monadic TRS (Coquidé et al., 1991), i.e. rules
are linear and their right-hand sides are of the form f(t1, . . . , tn)
where f ∈ F and ∀i = 1, . . . , n, ti is either a variable or a ground
term.

− a “decreasing” TRS (Jacquemard, 1996), where “decreasing” mean-
s that every right-hand side is either a variable, or a term f(t1, . . . , tn)
where f ∈ F , ar(f) = n, and ∀i = 1, . . . , n, ti is a variable,
a ground term, or a term whose variables do not occur in the
left-hand side.
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On the other hand, for a given regular language E, R?(E) is not
necessarily regular, even if R is a confluent and terminating linear
TRS (Gilleron and Tison, 1995). If R is not “decreasing”, then R?(E)
is not necessarily regular (Jacquemard, 1996).

Another regular class was found by P. Réty (Réty, 1999) where
restrictions are weaker on the TRS and stronger on the regular lan-
guage E. The alphabet F is separated into a set of defined symbols
D = {f | ∃l → r ∈ R s.t. Root(l) = f} and constructor symbols
C = F \ D. The restriction on E is the following: E is the set of
ground constructor instances of a linear term t, i.e. E = {tσ} where
t ∈ T (F ,X ) is linear and σ : X 7→ T (C). The restrictions on R are the
following: for each rule l → r

1. r is linear

2. for each position p ∈ PosF (r) such that r|p = f(t1, . . . , tn) and
f ∈ D we have that for all i = 1 . . . n, ti is a variable or a ground
term

3. there is no nested function symbols in r

3. Tree Automata completion

In (Genet, 1998), we proposed a tree automaton completion algorithm
for over-approximating R?(E) for left-linear term rewriting system-
s and a regular language E. The completion is parametrized by an
abstraction function α mapping terms to states of the automaton.

Let us first recall the tree automata completion algorithm. Starting
from a tree automaton A0 = 〈F ,Q,Qf ,∆0〉 and a left-linear1 TRS R,
the aim of the approximation algorithm is to compute a tree automaton
A′ such that L(A′) ⊇ R?(L(A0)). Approximations are used to show
that terms recognized by a tree automaton Abad are not reachable by
rewriting terms of L(A0) with R, i.e. ∀s ∈ L(A0) ∀t ∈ L(Abad) :
s 6→R∗ t. For this, it is enough to show that L(A′) ∩ L(Abad) = ∅ i.e.,
compute the automaton recognizing the intersection and show that the
recognized language is empty.

The technique consists in successively computing tree automata A1,
A2, . . . such that ∀i ≥ 0 : L(Ai) ⊆ L(Ai+1) and if s ∈ L(Ai), such
that s →R t then t ∈ L(Ai+1), until we get an automaton Ak with
k ∈ N such that L(Ak) = L(Ak+1). Thus, Ak is a fixpoint and Ak

1 This restriction will be weakened in the following.
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also verifies L(Ak) ⊇ R?(L(A0)). More precisely, to construct Ai+1

from Ai, we achieve a completion step which consists in finding critical
pairs between →R and →Ai . For a substitution σ : X 7→ Q and a rule
l → r ∈ R, a critical pair is an instance lσ of l such that there exists
q ∈ Q satisfying lσ →?

Ai
q and rσ 6→?

Ai
q. For rσ to be recognized as

the same state and thus model the rewriting of lσ into rσ, it is enough
to join the critical pair:

lσ

Ai

R
rσ

q

∗
Ai+1

∗

and add the new transition rσ → q to Ai+1. However, the transition
rσ → q is not necessarily of the form f(q1, . . . , qn) → q′ and so has to
be normalized first. For example, to normalize a transition of the form
f(g(a), h(q′)) → q, we need to find some states q1, q2, q3 and replace the
previous transition by a set of normalized transitions: {a → q1, g(q1) →
q2, h(q′) → q3, f(q2, q3) → q}.

Assume that q1, q2, q3 are new states, then adding the transition itself
or its normalized form does not make any difference. Now, assume that
q1 = q2, the normalized form becomes {a → q1, g(q1) → q1, h(q′) →
q3, f(q1, q3) → q}. This set of normalized transitions represents the
regular set of non normalized transitions of the form f(g?(a), h(q′)) → q
which contains the transition we wanted to add initially but also many
others. Hence, this is an approximation. We could have made an even
more drastic approximation by identifying q1, q2, q3 with q, for instance.

For every transition, there exists an equivalent set of normalized
transitions. Normalization consists in decomposing a transition s → q,
into a set Norm(s → q) of normalized transitions. The method consists
in abstracting subterms s′ of s s.t. s′ 6∈ Q by states of Q. We first define
the abstraction function as follows:

DEFINITION 1. (Abstraction function) Let F be a set of symbols, and
Q a set of states. An abstraction function α maps every normalized
configuration to a state:

α : {f(q1, . . . , qn) | f ∈ F , ar(f) = n and q1, . . . qn ∈ Q} 7→ Q

In the following, for completed automata, we assume that Q is a
set of states containing states of transitions ∆ as well as states of the
range of α. In particular, if the range of α is infinite (for instance, if
completion does not terminate) then so is Q.

DEFINITION 2. (Abstraction state) Let F be a set of symbols, and Q a
set of states. For a given abstraction function α and for all configuration
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t ∈ T (F ∪Q) the abstraction state of t, denoted by topα(t), is defined
by:

1. if t ∈ Q, then topα(t) = t,

2. if t = f(t1, . . . , tn) then topα(t) = α(f(topα(t1), . . . , topα(tn))).

DEFINITION 3. (Normalization function) Let F be a set of symbols,
Q a set of states, s → q a transition s.t. s ∈ T (F ∪Q) and q ∈ Q,
and α an abstraction function. The set Normα(s → q) of normalized
transitions is inductively defined by:

1. if s = q, then Normα(s → q) = ∅, and

2. if s ∈ Q and s 6= q, then Normα(s → q) = {s → q}, and

3. if s = f(t1, . . . , tn), then Normα(s → q) =

{f(topα(t1), . . . , topα(tn)) → q} ∪ ⋃n
i=1 Normα(ti → topα(ti)).

EXAMPLE 1. Let F = {f, g, a} and A = 〈F ,Q,Qf ,∆〉, where Q =
{q0, q1, q2, q3, q4}, Qf = {q0}, and ∆ = {f(q1) → q0, g(q1, q1) →
q1, a → q1}.

• The languages recognized by q1 and q0 are the following: L(A, q1)
is the set of terms built on {g, a}, i.e. L(A, q1) = T ({g, a}), and
L(A, q0) = L(A) = {f(x) | x ∈ L(A, q1)}.

• Let s = f(g(q1, f(a))), and α1 be the abstraction function {a 7→
q4, f(q4) 7→ q3, g(q1, q3) 7→ q2}. The normalization of transition f(g(q1, f(a))) →
q0 with abstraction α1 is the following: Normα1(f(g(q1, f(a))) → q0) =
{f(q2) → q0, g(q1, q3) → q2, f(q4) → q3, a → q4}.

DEFINITION 4. A regular language substitution (or a Q-substitution)
over an automaton A with a set of states Q is an application σ :
X 7→ Q. We can extend this definition to a morphism σ : T (F ,X ) 7→
T (F ,Q). We denote by Σ(Q,X ) the set of regular language substitu-
tions built over Q and X .

DEFINITION 5. (One step of automaton completion) Let A = 〈F ,Q,Qf ,∆〉
be a tree automaton, R a TRS and α an abstraction function. The one
step completed automaton Cα,R(A) is a tree automaton 〈F ,Q,Qf ,∆′〉
such that:

∆′ = ∆ ∪
⋃

l→r∈R, q∈Q, σ∈Σ(Q,X ), lσ→?
∆

q

Normα(rσ → q)

DEFINITION 6. (Automaton completion) Let A be a tree automaton,
R a TRS and α an abstraction function.
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− A0
α,R = A

− An+1
α,R = Cα,R(An

α,R) for n ∈ N

− A?
α,R = lim

n → +∞
An

α,R

Note that even if A?
α,R cannot be finitely computed in general, in

many cases there exists a natural k ∈ N such that Ak
α,R is a fixpoint,

i.e. Cα,R(Ak
α,R) = Ak

α,R. In the following proposition, we give some
sufficient conditions for building an over-approximation automaton B
of the set of R-descendants of a regular language recognized by A.

DEFINITION 7. Let A be an automaton and R a TRS, R and A
satisfy the left-linearity condition if:

∀t ∈ T (F), ∃τ : X 7→ T (F), ∃l → r ∈ R s.t. t = lτ →?
∆ q

⇒

∃σ ∈ Σ(Q,X ) s.t. t →?
∆ lσ →?

∆ q

Note that for every left-linear TRS R trivially satisfy the left-linearity
condition with any tree automaton. This condition is, in fact, neces-
sary for non left-linear TRS. Roughly, the problem with non left-linear
rules is the following: let f(x, x) → g(x) be a rule of R and let A
be a tree automaton whose set of transitions contains f(q1, q1) → q0

and f(q2, q3) → q0. Although we can construct a valid substitution
σ = {x 7→ q1} for matching the rewrite rule on the first transition,
it is not the case for the second one. The semantics of a completion
between rule f(x, x) → g(x) and transition f(q2, q3) → q0 would be
to find the common language of terms recognized both by q2 and
q3. This can be obtained by computing a new tree automaton A′

with a set of states Q′ such that Q′ is disjoint from states of A and
∃q ∈ Q′ : L(A′, q) = L(A, q2) ∩ L(A, q3). Then, to end the completion
step it would be enough to add transitions of A′ to A with the new
transition g(q) → q0.

On the other hand, one can remark that the non-linearity problem
would disappear with deterministic automata since for any determin-
istic automaton Adet and for all states q, q′ of Adet we trivially have
L(A, q) ∩ L(A, q′) = ∅. However, determinization of a tree automaton
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may result in an exponential blow-up of the number of states (Comon
et al., 2002).

A solution, in between the two previous ones, is to use the left-
linearity condition defined above by ensuring determinism for a subset
of states q ∈ Q which are to be matched by the non linear variables of
the non linear rules 2. For instance, on the last example, it is enough
to build the first critical pair, add the transition g(q1) → q0, and keep
q2, q3 deterministic, i.e. such that L(A?

α,R, q2) ∩ L(A?
α,R, q3) = ∅. We

now define this condition called simple left-linearity which implies the
left-linearity condition. Let A be an automaton, l → r a rewrite rule
over T (F ,X ), {x1, . . . , xk} the set of variables non linear in l and Y a
set of variables distinct from X . Let Ren(l) be the pair (l′, E) where
l′ denotes the term where non linear variables are renamed and E is a
set of constraint.

Ren(l) = (l, ∅) if l is either a constant or a
variable that does not
appear in {x1, . . . , xk}

= (y, {x = y}) if l is a variable x ∈ {x1, . . . , xk}
and y if a fresh variable of Y

= (f(t′1, . . . , t
′
n),

⋃n
i=1 Ei) if l = f(t1, . . . , tn) and

Ren(ti) = (t′i, Ei) for all i = 1 . . . n.

DEFINITION 8. (Simple left-linearity condition) An automaton A
and a TRS R satisfy simplified left-linearity condition if for all rule
l → r ∈ R such that Ren(l) = (l′, E):

∀(x = y) ∈ E,∀σ ∈ Σ(Q,X ),∀q, qx, qy ∈ Q : l′σ →?
∆ q∧σ(x) = qx 6= qy = σ(y)

=⇒
L(A, qx) ∩ L(A, qy) = ∅

PROPOSITION 1. Simple left-linearity implies left-linearity.

Proof. If A does not verify the linearity condition induced by l →
r, there is at least a ground term t recognized by a state q of A, a
substitution τ : X → T (F) such that t = lτ and t →?

∆ q, and there
2 This is what is called locally deterministic tree automata in (Genet and Viet

Triem Tong, 2001a).
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is no Q-substitution σ ∈ Σ(Q,X ) such that t →?
∆ lσ ∧ lσ →?

∆ q.
However, if t is an instance of l then t is also instance of l′, let t = l′ρ
where ρ : Y → T (F). The problem is solved by case reasoning on t:
t cannot be a variable a otherwise l = a and A respects the linearity
condition, then t is of the form f(t1, . . . , tn). Let t = l′ρ′ such that
ρ′ : {y1, . . . , yk} 7→ T (F), we denotes ρ′(yj) = tj . If t →?

∆ q than
all subterm of t are recognized by A and there are k states q1, . . . , qk

such that tj → qj for 1 ≤ j ≤ k. We construct a Q-substitution σ′ :
{y1, . . . , yk} → Q define by σ′(yj) = qj. We have t →?

∆ l′σ′ then l′σ′ →?
∆

q, however by hypothesis, there is no Q-substitution σ ∈ Σ(Q,X ) such
that t →?

∆ lσ ∧ lσ →?
∆ q, necessarily there are at least two variables yi

and yj such that

1. σ′(yi) = qi and σ′(yj) = qj with qi 6= qj

2. yi = yj is a constraint of E

3. ti = tj

The condition 1. and 2. hold true for at least a pair of variables
(yi, yj) otherwise we could construct a Q-substitution σ such that
lσ = l′σ′. The condition 3. holds true because t is an instance of l.
This leads to a contradiction.

PROPOSITION 2. Let R be a TRS, A = 〈F ,Q,Qf ,∆〉, and B =
〈F ,Q′,Qf ,∆′〉 two tree automata such that R and B satisfy the left-
linearity condition. We have R?(L(A)) ⊆ L(B) if

1. ∆ ⊆ ∆′, and

2. ∀l → r ∈ R, ∀q ∈ Q′, ∀σ ∈ Σ(Q′,X ), lσ →?
∆′ q implies rσ →?

∆′ q.
Proof. By definition, any term t of R?(L(A)) is such that ∃s ∈ L(A)

s.t. s →?
R t. By induction on the size of the derivation s →?

R t, we prove
that if s →?

R t and s →?
∆′ q with q ∈ Qf then t →?

∆′ q, which implies
that t ∈ L(B).

1. if t = s then, since s ∈ L(A), we have that ∃q ∈ Qf s.t. t = s →?
∆ q.

Moreover, ∆ ⊆ ∆′, hence ∃q ∈ Qf s.t. t →?
∆′ q,

2. if s →+
R t, then ∃s′ ∈ T (F) s.t. s →?

R s′ →R t. By induction hy-
pothesis applied to s →?

R s′, we obtain that ∃q ∈ Qf s.t. s′ →?
∆′ q.

Moreover, since s′ →R t, there exists a rule l → r ∈ R, a substitu-
tion τ , and a position p in s′ such that lτ = s′|p and t = s′[rτ ]p. By
construction of bottom-up tree automata with normalized transi-
tions, if s′ →?

∆′ q, then any subterm of s′ is reducible by ∆′ into
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a state of Q′. Hence, since lτ = s′|p, we get that ∃q′ ∈ Q′ s.t.
lτ →?

∆′ q′ and s′[q′]p →?
∆′ q. Now, let us show that rτ →?

∆′ q′. Let
Var(l) = {x1, . . . , xk} be the variables of l. Since R and B satisfy
the left-linearity condition, we get that there exists σ ∈ Σ(Q,X )
such that lτ →?

∆′ lσ →?
∆′ q′. Hence, there exists some states q ∈ Q

such that σ = {xi 7→ qi | i = 1 . . . k} and xiτ →?
∆′ qi for i = 1 . . . k.

From xiτ →?
∆′ qi we get that rτ →?

∆′ rσ. Finally, since rσ →?
∆′ q′,

we get that rτ →?
∆′ q′ and thus t = s′[rτ ]p →?

∆′ q

In this first theorem, we show that completion always over-approximate
the set of descendants for TRSs and tree automata satisfying the left-
linearity condition.

THEOREM 1. Given a tree automaton A and a TRS R satisfying the
left-linearity condition, for any abstraction function α,

L(A?
α,R) ⊇ R?(L(A))

Proof. For proving L(A?
α,R) ⊇ R?L(A), it is enough to prove that

the approximation automata verifies Conditions 1 and 2 of Proposi-
tion 2, for all abstraction function α. By Definition 6, A?

α,R trivially
verifies Condition 1. Now, to prove that A?

α,R also verifies Condition 2
of Proposition 2, it is enough to prove that Normα(rσ → q) ⊆ ∆′

implies rσ →?
∆′ q.

Let s′ be any subterm of rσ (possibly non-strict) and q′ ∈ Q′. By
induction on the size of s′, we show that Normα(s′ → q′) ⊆ ∆′ implies
that s′ →?

∆′ q′:

− if s′ = q′, then we trivially have s′ →?
∆′ q′.

− if s′ = q′′ ∈ Q′ s.t. q′′ 6= q′ then, by case 2 of definition of Norm,
we get that Normα(s′ → q′) = {s′ → q′}. Since Normα(s′ →
q′) ⊆ ∆′, we have s′ →?

∆′ q′.

− if s′ = g(t1, . . . , tm) ∈ T (F ∪Q′), by applying case 3 of definition
of Norm, we get that

(a) {g(topα(t1), . . . , topα(tm)) → q′} ⊆ ∆′, and

(b)
⋃n

i=1 Normα(ti → topα(ti)) ⊆ ∆′,

where ∀i = 1 . . . n, topα(ti) ∈ Q′. By applying induction hypothesis
to (b), we get that ∀i = 1 . . . n, ti →?

∆′ topα(ti). On the other hand,
(a) implies that g(topα(t1), . . . , topα(tm)) →∆′ q′. As a result,
g(t1, . . . , tm) →?

∆′ g(topα(t1), . . . , topα(tm)) →∆′ q′.
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Hence Normα(rσ → q) ⊆ ∆′ implies rσ →?
∆′ q, and Condition 2 of

Proposition 2 is satisfied by A?
α,R.

4. The exact case

The aim of this part is to refine the previous result and show that known
regular classes of descendants can be computed using the tree automata
completion algorithm and some particular abstraction functions. In a
first part, we give some sufficient conditions on the abstraction function
α so that completion is exact w.r.t. R?(E). Then we will see how
all regular classes of the literature can be expressed using abstraction
functions satisfying those conditions.

DEFINITION 9. (Right-linearity condition) A TRS R and tree au-
tomaton A = 〈F ,Q,Qf ,∆〉 satisfy the right-linearity condition if

1. R is right-linear, or

2. ∀q ∈ A : ∃t ∈ T (F) : L(A, q) ⊆ R?(t)

Let us show that those two conditions are necessary for exactness of
completed automata on a counterexample.

EXAMPLE 2. Let R = {f(x) → g(x, x)} be a non right-linear TRS
and let A be the tree automaton such that Qf = {q0} and ∆ = {f(q1) →
q0, a → q1, b → q1}. Note that A is deterministic and that L(A) =
{f(a), f(b)} is finite. However, the completed automaton A1

α,R (for any
abstraction function α) has a new transition g(q1, q1) → q0 and the rec-
ognized language becomes L(An

α,R) = {f(a), f(b), g(a, a), g(a, b), g(b, a), g(b, b)}
which is a superset of R?(L(A)) = {f(a), f(b), g(a, a), g(b, b)}. How-
ever, if R was linear or if there was no transition b → q1 in ∆ then
An

α,Rn would have been different and would have been computed exactly.
Similarly, if we add a rule a → b to R then A1

α,R recognize exactly
R?(L(A)) and right-linearity condition is satisfied since for q1 ∈ A
there exists the term a such that L(A, q1) ⊆ R?({a}) = {a, b}.

Note that this condition focuses only on the initial automaton and
not on the completed one. Hence, this condition is trivially satisfied
(using the second case) by any deterministic tree automaton recogniz-
ing a finite language. This will be useful in the following theorems for
defining regular classes of R?(E) for finite sets E.
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LEMMA 1. Let R be a TRS, l → r ∈ R be a rewrite rule with r 6∈
X and A = 〈F ,Q,Qf ,∆〉 a tree automaton without dead states. Let
σ : X 7→ Q be a Q-substitution, such that lσ → rσ and lσ →?

A q with
q ∈ Q.

For all t ∈ T (F) s.t. t →?
A rσ there exists δ : X 7→ T (F) s.t.

lδ ∈ T (F), lδ →A? q and lδ →?
R rδ = t, if R and A satisfy the

right-linearity condition.
Proof. Let {p1, . . . , pn} = PosX (r) and ∀i = 1 . . . n : xi = r|pi .

Note that if there exists pi and pj s.t. r|pi = r|pj then xi = xj. Let
{y1, . . . , ym} = Var(l) \ Var(r) be the set of variables of l that do not
occur in r. Note that for l it is not necessary to distinguish the multiple
occurrences of non linear variables. Let q1, . . . , qn, q′1, . . . , q

′
m ∈ Q be the

states such that σ = {x1 7→ q1, . . . xn 7→ qn, x′
1 7→ q′1, . . . , x

′
m 7→ q′m} and

qi = qj for all i, j ∈ {1, . . . , n} such that xi = xj . Thus r = r[x1, . . . , xn]
and rσ = r[q1, . . . , qn]. On the other hand, by construction of tree
automata t →?

A rσ = r[q1, . . . , qn] implies that there exists t1, . . . , tn ∈
T (F) such that t = r[t1, . . . , tn] and t1 →?

A q1, . . . , tn →?
A qn.

Let δr be the relation {x1 7→, . . . , xn 7→ tn}. Note that δr is a sub-
stitution (i.e. a function) if and only if there is no i, j ∈ {1, . . . , n} such
that xi = xj and ti 6= tj . This is of course trivially the case if r is linear.
Otherwise, we may have ti →?

A qi, tj →?
A qj , qi = qj but ti 6= tj and

thus δr would not be a function. However, if condition 2. of definition 9
is satisfied then every term which is recognized into qi is either t′i or
one of its descendants (i.e. ti, tj ∈ R?(t′i)). In this case, if we replace
ti and tj by t′i in δr (and proceed similarly for every other occurrence
of a non linear variable), we obtain a valid substitution δr such that
rδr →R? r[t1, . . . , tn]. Thus, using case 1. or case 2. of definition 9
leads to the same property: we have built a substitution δr such that
rδr →R? r[t1, . . . , tn] and r[t1, . . . , tn] →?

A rσ.
Now, let δ = δr∪δl where δl =

⋃
i=1...m{yi 7→ u′

i | ∃u′
i ∈ T (F) s.t. u′

i →?
A

q′i and q′i = σ(yi)}. Note that the existence of u′
i s.t. u′

i →?
A q′i is

guaranteed by the fact that q′i is a state of A and there is no dead
state in A. The relation δl is a substitution and so is δr. Furthermore,
since Dom(δr)∩Dom(δl) = ∅ then δ is a substitution. Finally. we have
lδ ∈ T (F), lδ →?

A lσ and lδ →?
R rδ →?

R r[t1, . . . , tn] = t.

We now introduce coherent abstraction function which define some
subclasses of completion algorithms for which the automaton comple-
tion algorithm is exact. Informally, an abstraction function is coherent
with regards to a tree automaton A and a term rewriting system R
if for every configuration t and every state q such that α maps t to q,
either q is not a state of A (it is a new state) or terms recognized by q in
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A are either a term t′ recognized by t (i.e. t′ →A? t) or R-descendants
of t′.

DEFINITION 10. (Coherent abstraction function) Let R be a TRS,
A = 〈F ,Q,Qf ,∆〉 be a tree automaton and α be an abstraction func-
tion. The function α is said to be coherent with R and A if for all
t ∈ Dom(α), for all q ∈ Q ∩ Ran(α) if α(t) = q then t → q ∈ A and
∃t′ s.t. L(A, q) ⊆ R?({t′ | t′ →A? t}).

LEMMA 2. Let R be a TRS, A = 〈F ,Q,Qf ,∆〉 be a tree automaton
and α be an abstraction function. If R and A satisfy the right-linearity
condition and if α is injective and coherent with regards to R and A
then:

∀t ∈ T (F),∀q ∈ Q : t ∈ L(Cα,R(A), q) =⇒ t ∈ R?(L(A, q))

Proof. For terms t such that t ∈ L(A, q), we trivially have that
t ∈ R?(L(A, q)). So, we can restrict the proof to terms t such that
t 6∈ L(A, q). Similarly, we can distinguish another particular case where
t ∈ L(A, q′), t 6∈ L(A, q) and q′ → q ∈ Cα,R. In that case, the completion
step producing Cα,R(A) from A necessarily builds a critical pair of
the form lσ →R rσ = q′ and lσ →A? q where l → r ∈ R. In that
case, we necessarily have l = C[x] and r = x where x ∈ Var(l) and
σ = {x 7→ q} ∪ σ′. Hence, we have lσ = C[q′]σ′ →A? q and since
t ∈ L(A, q′), we have C[t] →A? C[q′] →A? q and thus C[t] ∈ L(A, q).
Finally since the rule l → r is of the form C[x] → x we get that
t ∈ R?(L(A, q)).

Now for other cases, we proceed by induction over the height of t.

− If height of t is 0 then t = a where a is a constant. Since a ∈
L(Cα,R(A), q) we have a → q ∈ Cα,R(A). Since a 6∈ A then the
completion step producing Cα,R(A) from A necessarily builds a
critical pair of the form lσ →R a and lσ →A? q where l → a ∈ R.
By lemma 1, we obtain that there exists a substitution δ such that
lδ ∈ T (F), lδ →A? q and lδ →R a, hence a ∈ R?(L(A, q)).

− Now, we assume that the property is true for terms of height n.
Let us prove that the property also holds for terms of height n+1.
Let t be a term of height n + 1 such that t ∈ L(Cα,R(A), q). Let
f ∈ F and t1, . . . , tn ∈ T (F) terms of height lesser or equal to
n such that t = f(t1, . . . , tn). By construction of tree automata,
t ∈ L(Cα,R(A), q) implies that there exists states q1, . . . , qn such
that f(t1, . . . , tn) →?

Cα,R(A) f(q1, . . . , qn) →?
Cα,R(A) q. Then by case

on f(q1, . . . , qn) → q ∈ A, we obtain:
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• Assume that f(q1, . . . , qn) → q ∈ A. Then q1, . . . , qn ∈ A and
by induction hypothesis we get that ti ∈ R?(L(A, qi)) for
i = 1 . . . n. Hence, there exists terms t′i such that t′i →A? qi

and t′i →R ti. Hence f(t′1, . . . f
′
n) →A? f(q1, . . . , qn) →A q and

f(t′1, . . . f
′
n) →R? f(t1, . . . , tn), i.e. f(t′1, . . . , f

′
n) ∈ L(A, q) and

t ∈ R?(L(A, q)).

• Now, assume that f(q1, . . . , qn) → q 6∈ A. Thus, transition
f(q1, . . . , qn) → q has been added to A by the completion
step: there is either a critical pair of the form (a) lσ →R

C[f(t′′1, . . . , t
′′
n)] and lσ →A? q′ or (b) lσ →R f(t′′1, . . . , t

′′
n)

and lσ →A? q. Let us continue the proof on those two cases:

(a) Assume that there is a critical pair of the form lσ →R

C[f(t′′1, . . . , t
′′
n)] and lσ →A? q′. In order to produce the

new transition f(q1, . . . , qn) → q i.e. to have f(q1, . . . , qn) →
q ∈ Normα(C[f(t′′1, . . . , t

′′
n)] → q′), it is necessary to have

topα(f(t′′1 , . . . , t
′′
n)) = q and ∀i = 1 . . . n : topα(t′′i ) = qi.

However, since q ∈ A and α is coherent with R and
A, we get that Normα(f(t′′1, . . . , t

′′
n) → q) ⊆ A, hence

f(q1, . . . , qn) → q ∈ A which contradicts f(q1, . . . , qn) →
q 6∈ A

(b) Assume that there is a critical pair of the form lσ →R

rσ = f(t′′1, . . . , t
′′
n) and lσ →A? q. First, let us prove

that ∀i = 1 . . . n : ti →?
Cα,R(A) t′′i . We already now that

ti →?
Cα,R(A) qi. By cases on qi ∈ A, we obtain:

∗ if qi occurs in ∆ (there is at least one transition c → qi

in ∆) then since α is coherent with R and A and
topα(t′′i ) = qi, we get that L(A, qi) ⊆ R?({s | s →A?

t′′i }). Hence, since ti →A? qi we get that there exists
a term si such that si →A? t′′i and si →R? ti.

∗ if qi does not occur in ∆ then the only rewriting path
from ti to qi is necessarily ti →?

Cα,R(A) t′′i →?
Cα,R(A) qi,

hence ti →?
Cα,R(A) t′′i . In that case let si = ti.

Thus, we have f(s1, . . . , sn) →A? f(t′′1, . . . , t
′′
n) →A? q and

f(s1, . . . , sn) →R? f(t1, . . . , tn). Finally, applying lem-
ma 1 on term f(s1, . . . , sn), we obtain that for f(s1 . . . , sn)
such that f(s1, . . . , sn) →?

Cα,R(A) rσ there exists δ such
that rδ = f(s1, . . . , sn), lδ ∈ T (F), lδ →A? lσ →A? q and

main.tex; 23/01/2004; 11:06; p.15



16

lδ →R? rδ. Hence, we have a term lδ such that lδ →A? q

and lδ →R? rδ →R? f(t1, . . . , tn).

THEOREM 2. Let R be a TRS, A = 〈F ,Q,Qf ,∆〉 a tree automaton
and α an injective abstraction function coherent with R and A. If R
and A satisfy the right-linearity condition then

∀n ∈ N : L(An
α,R) ⊆ R?(L(A))

Proof. We proceed by induction on n. If n = 0 we have A0
α,R = A

and thus L(A) ⊆ R?(L(A)). Then, we assume that the property holds
for n and we prove that it holds for n + 1. Let us denote by B the
tree automaton A1

α,R. Then, the proof is done by using the induction
hypothesis on B since we have An+1

α,R = Cα,R(Bn
α,R). By lemma 2, we

know that for every state q ∈ Q, and for every term t ∈ L(B, q) we have
t ∈ R?(L(A, q)). This property is true in particular for final states,
thus we have: L(B) ⊆ R?(L(A)). Now, in order to use the induction
hypothesis, we need to prove that (a) α is coherent with R and B and
that (b) R and B satisfy the right-linearity condition.

(a) For every normalized configuration t ∈ T (F ∪Q) such that α(t) =
q,

− if q ∈ A then we had already t → q ∈ A so t → q ∈ B.
Since α is coherent with R and A, we know that L(A, q) ⊆
R?({t′ | t′ →A? t}). By applying the R? operator to both
sides of the previous inequality, we obtain that R?(L(A, q)) ⊆
R?(R?({t′ | t′ →A? t})). On the other hand, by lemma 2,
we get that L(B, q) ⊆ R?(L(A, q)). Note that R?(R?(E)) =
R?(E) for any set E, hence we have: L(B, q) ⊆ R?({t′ | t′ →A?

t}). Moreover, since {t′ | t′ →A? t} ⊆ {t′ | t′ →?
B t} we have

R?({t′ | t′ →A? t}) ⊆ R?({t′ | t′ →?
B t}) and by transitivity

of ⊆, we get that L(B, q) ⊆ R?({t′ | t′ →?
B t}).

− if q 6∈ A but q ∈ B then q is a state that has been introduced
in the last completion step and since α is injective we know
that t is the unique normalized configuration s.t. t →B? q.
Hence, L(B, q) = {t′ | t′ →B? t} ⊆ R?({t′ | t′ →B? t}).

(b) We know initially that R and A satisfy the right-linearity condi-
tion. If R and A satisfy the condition because R is right-linear
then it will clearly be the case for R and B. Otherwise, we know
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that ∀q ∈ A : ∃t ∈ T (F) : L(A, q) ⊆ R?(t) and we have to prove
that it is also the case for B.

− if q ∈ A then we know that ∃t ∈ T (F) : L(A, q) ⊆ R?(t).
From lemma 2 we get that every term recognized by q in
B has an ancestor in the terms recognized by q in A, i.e.
∀tB ∈ L(B, q) : ∃tA ∈ L(A, q) s.t. tA →R? tB. Since, every
term recognized by q in A has a common ancestor t, it is also
the case for terms recognized by q in B (and it is the same
ancestor t), i.e. t →R? tA →R? tB. Hence, ∀q ∈ B : ∃t ∈
T (F) : L(B, q) ⊆ R?(t).

− if q 6∈ A but q ∈ B then q is a state that has been introduced
in the last completion step. Let s → q′ be the new transition
whose normalization has led to construction of state q, i.e.
s = C[u] and topα(u) = q. By induction on the height of u
we show that ∃t ∈ T (F) : L(B, q) ⊆ R?(t):

• if u is a constant, since q 6∈ A and α is injective we
know that u → q is the unique transition with q on the
right-hand side, hence L(B, q) = {u} ⊆ R?(u).

• if u = f(t1, . . . , tn) then since α is injective we know that
there is a unique normalized configuration f(q1, . . . , qn)
such that f(q1, . . . , qn) →B q and ti →B? qi for i = 1 . . . n.
For every state qi, i = 1 . . . n, it is possible to find a
unique term t′i such that L(B, qi) ⊆ R?(t′i). If qi 6∈ A then
we use the induction hypothesis on transition ti → qi.
Otherwise, if qi ∈ A, then the proof is similar to the first
case of the proof: by hypothesis we know that L(A, qi) ⊆
R?(t′i) and from Lemma 2, we can lift this property to B,
i.e. L(B, qi) ⊆ R?(t′i). Finally L(B, q) ⊆ R?(f(t′1, . . . , t

′
n))

Finally, applying the induction hypothesis to B, we get that An+1
α,R =

Bn
α,R ⊆ R?(L(B)) ⊆ R?(R?(L(A))) = R?(L(A)).

THEOREM 3. Let R be a TRS, A be a tree automaton, α be an
injective abstraction function coherent with R and A.

L(A?
α,R) = R?(L(A))

if R and A fulfill the right-linearity condition and if R and A?
α,R

fulfill the left-linearity condition.

Proof. Direct consequence of theorems 2 and 1.
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This theorem states the general properties of A?
α,R but it says noth-

ing about the existence of a finite A?
α,R, i.e. of termination of the

completion. In the following, we give some interesting instances of this
theorem as corollaries and some conditions for completion to termi-
nate. The two first corollaries permits to use automata completion as
a rewriting tool: for any given finite initial language, tree automata
completion produces every possible reachable term. We will show in sec-
tion 7.3 that using tree automata completion in this setting provide an
efficient alternative to breadth-first search for a particular descendant.

COROLLARY 1. Let R be a TRS, A = 〈F ,Q,Qf ,∆〉 be a tree au-
tomaton such that ∀q ∈ Q : Card(L(A, q)) = 1, α an injective abstrac-
tion such that Ran(α) ∩ Q = ∅.

L(A?
α,R) = R?(L(A))

if A?
α,R and R satisfy the left-linearity condition.

Proof. Consequence of Theorem 3. Since, A satisfy ∀q ∈ Q : Card(L(A, q)) =
1, the right-linearity condition is trivially fulfilled. Similarly, since Ran(α)∩
Q = ∅, α is trivially coherent with R and A.

A direct consequence of this corollary is that applying completion
to a tree automaton recognizing one term models exactly rewriting
if α is injective and R is left-linear. Now, let us show that if any of
the above restriction is not satisfied then the completed automaton no
longer recognizes exactly the set of reachable terms.

EXAMPLE 3. (Left-linearity condition is necessary) Let R = {f(x, x) →
g(x), a → b}, let A be the tree automaton with Q = {q0, q1, q2} and set
of transitions ∆ = {f(q1, q2) → q0, a → q1, b → q2}. Note that A is
deterministic, it recognize a finite language L(A) = {f(a, b)} and it sat-
isfies ∀q ∈ Q : Card(L(A, q)) = 1. However, tree automata completion
produces a unique new transition: b → q1 and the completed automaton
does not recognize term g(b) which is a descendant of f(a, b).

Note that, using determinisation after each step of completion would
solve this problem and would led to a stronger corollary with no restric-
tion on R and no left-linearity condition checking. However, as it was
pointed out above, we also focus here on efficiency of algorithms and
this is solution is not usable in practice since it adds an exponential
overhead. Verifying the left-linearity condition (in particular simple
left-linearity condition) is easier and is sufficient in many practical cases
(see section 6.3).
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EXAMPLE 4. (Unicity of initial recognized language is necessary) Let
R = {f(x) → g(x, x)}, let A be the tree automaton with Q = {q0, q1}
and set of transitions ∆ = {f(q1) → q0, a → q1, b → q1}. Note that
A is deterministic and recognize a finite language L(A) = {f(a), f(b)}.
However, completion produces a new transition g(q1, q1) → q0 and thus
the completed automaton recognizes terms g(a, b) and g(b, a) which are
not valid descendants of f(a) nor of f(b).

EXAMPLE 5. (Abstraction function needs to be injective) Let R =
{f(a) → g(a, b)}, let A be the tree automaton with Q = {q0, q1} and set
of transitions ∆ = {f(q1) → q0, a → q1}. Note that A is deterministic,
it recognizes a finite language L(A) = {f(a)} and it satisfies ∀q ∈ Q :
Card(L(A, q)) = 1. However, tree automata completion produces a new
transition g(a, b) → q0 which has to be normalized. Now assume that
α = {a 7→ q2, b 7→ q2}, then Normα(g(a, b) → q0) = {a → q2, b →
q2, g(q2, q2) → q0}. Thus, the completed automaton recognizes terms
g(a, a), g(b, b) and g(b, a) which are not valid descendants of f(a).

As we will see in section 5 with non regular sets of descendants,
using non injective abstraction functions is a very convenient way to
force completion to terminate and build over-approximations.

The following corollary will be used to give alternative proofs of
results for ground TRSs (Dauchet and Tison, 1990; Brainerd, 1969),
linear and semi-monadic (Coquidé et al., 1991), linear and “decreasing”
TRSs (Jacquemard, 1996).

COROLLARY 2. Let R be a linear TRS, A be a tree automaton, α
an injective abstraction such that Ran(α) ∩ Q = ∅

L(A?
α,R) = R?(L(A))

Proof. Left-linearity, right-linearity and coherence of Theorem 3 are
trivially satisfied.

LEMMA 3. (Termination of tree automata completion) If Ran(α) is
finite then completion terminates and the tree automaton A?

α,R is finite.
Proof. If Ran(α) is finite then the number of new states introduced

by completion is finite. If the number of new states is finite then so is
the number of states of A?

α,R. Since one can only build a finite number
of transitions on a finite set of states (and a finite alphabet F), the set
of transitions in A?

α,R is finite.

Note that for injective abstraction function, proving that the range
is finite is equivalent to proving that the domain is, i.e. that completion
produce a finite number of distinct configurations to be normalized.
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Now we give alternative algorithms and proofs of regularity of R?(E)
for the classes described in section 2. For a regular language E and

R ground (Dauchet and Tison, 1990; Brainerd, 1969): we use corol-
lary 2 (ground TRSs are linear) and an injective abstraction α
with a finite domain {r|p | l → r ∈ R and p ∈ Pos(r) \ {ε}}. We
can restrict α to this finite domain since in every new transition
f(t1, . . . , tn) → q added by the completion, f(t1, . . . , tn) is neces-
sarily ground and is a right-hand side of a rule of R. So it is enough
to normalize t1, . . . , tn and all their subterms to normalize the
transition. Hence, in α for every rule l → r, every strict subterm
of r is mapped to a new state. Since the domain is finite, so is the
range and completion terminates.

R right-linear and monadic (Salomaa, 1988): we use theorem 3
and an abstraction function α with an empty domain which triv-
ially satisfy the injectivity and coherence property w.r.t. R and A.
The domain of α is empty since every new transition produced by
the completion is of the form f(q1, . . . , qn) → q where q1, . . . , qn are
states and do not need to be normalized. Assume that after each
completion step, we determinize the completed automaton An

α,R.
Since the domain of α is empty, completion ends on A?

α,R which
is determinized. Thanks to determinisation of the last completion
step left-linearity condition is trivially satisfied and since the TRS
is right linear, this is also the case for right-linearity condition.

R linear and semi-monadic (Coquidé et al., 1991): as in the ground
case we define α as an injective function on the finite domain:
{r|p | l → r ∈ R and p ∈ PosF (r)\{ε}}. Similarly, we can restrict
to this finite domain since in every new transition f(t1, . . . , tn) → q
added by the completion, ti is either a ground term (and can be
normalized by a single state) or is itself a state and thus does not
need normalization.

R linear and “decreasing” (Jacquemard, 1996): Recall that “de-
creasing” means that every right-hand side is either a variable, or
a term f(t1, . . . , tn) where f ∈ F , ar(f) = n, and ∀i = 1, . . . , n,
ti is a variable, a ground term, or a term whose variables do not
occur in the left-hand side. For this class, the proof and abstraction
function is similar to the linear and semi-monadic case except for
variables occurring in the right-hand side but not in the left-hand
side. For those variables, it is enough to substitute them by a
specific state qT (F) (which recognize T (F)) and add the set of
transitions {f(qT (F), . . . , qT (F)) → qT (F) | f ∈ F , ar(f) = n} to
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the transitions of A. As in the linear and semi-monadic case, we
define α as an injective function on the finite domain: {r|p | l →
r and p ∈ PosF (r) \ {ε}} where variables in r not occurring in l
are substituted by qT (F).

R constructor based (Réty, 1999): in this particular case, there is
also a restriction on the initial language E = {tσ} where t ∈
T (F ,X ) is linear and σ : X 7→ T (C). Let A = 〈F ,Q,Qf ,∆〉
be the tree automaton recognizing E. In this particular case, our
aim is more to give an alternative algorithm rather than a proof
of regularity. As in (Réty, 1999), we focus on the algorithm for
left and right-linear TRSs since the left-linearity restriction can be
discarded using determinization of tree automata (as in the right-
linear and monadic case). We use theorem 3 (R is linear) and an
injective abstraction function α such that Ran(α) ∩ Q = ∅, thus
left-linearity, right-linearity and coherence are satisfied. Now, let
us prove that the domain of α is finite. Let Qtσ be the finite set of
states necessary to normalize deterministically tσ, Qarg be the set
of states necessary to normalize the ground subterms of the right-
hand sides of the rules and ∆arg the related set of transitions.
In (Réty, 1999), it is shown that for every defined symbol of t,
for every substitution δ : X 7→ T (F), for every rewriting lδ →R
rδ, there exists a substitution σ : X 7→ Qtσ ∪ Qarg such that
lδ →∆∪∆arg lσ and rδ →∆∪∆arg rσ. Hence, every critical pair
encountered during the completion is of the form: lσ →A q and
lσ →R rσ with σ : X 7→ Qtσ ∪ Qarg. Since the number of defined
symbols of t is finite, since Qtσ ∪ Qarg is finite, then so is the set
of every possible critical pair and so is the domain of α.

In this last case, we did not give an explicit definition of α. The good
news, and this is one of the main interest of tree automata completion
algorithm in practice, is that it is useless to define α since it can be
constructed automatically during completion. For all the above classes,
since the domain of α is finite and since α is injective, we can construct
an injective α function “on-the-fly” by associating a new state to ev-
ery new configuration to normalize during completion. This lead to a
fully automatic and terminating completion algorithm covering all the
decidable classes we summed up here.

For building α on the fly, it is enough to start a completion with an
empty abstraction function α and to create a new state q 6∈ Ran(α)
and a new association c 7→ q in α for every new configuration c to
normalize. If completion terminates (and it is necessarily the case for
all decidable decidable classes we saw) then the completed automaton
A?

α,R recognizes R?(E) if R is linear (or if R is right-linear and R
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and A?
α,R satisfy the left-linearity condition). Note that this algorithm

even covers some decidable cases that are not included in the above
decidable classes. A very simple example is TRS R = {f(s(x)) →
g(s(x)), g(s(x)) → h(s(x))} and initial language E = {f(s?(a))}. The
set R?(E) is clearly regular but this example is outside of the decidable
classes we saw. However, this TRS is linear and completion terminates
with an injective abstraction function built on the fly so we have a proof
of regularity of R?(E) and it is recognized by the completed automaton
A?

α,R.
Here is a first example showing how this result can be used with the

Timbuk tool implementing usual operations on the tree automata and
the completion algorithm.

EXAMPLE 6. Let us consider the following example given in Timbuk
syntax:
Ops O:0 s:1 plus:2 even:1 odd:1 true:0 false:0

Vars x y z

TRS R

plus(O, x) -> x

plus(s(x), y)-> s(plus(x, y))

even(O) -> true

even(s(O)) -> false

even(s(x)) -> odd(x)

odd(O) -> false

odd(s(O)) -> true

odd(s(x)) -> even(x)

Automaton A

States qf qodd qeven qpo qpe

Final States qf

Transitions

even(qpo) -> qf even(qpe) -> qf

plus(qodd, qodd) -> qpo s(qeven) -> qodd s(qodd) -> qeven

plus(qeven, qeven) -> qpe O -> qeven

Automaton Reach

States qf

Final States qf

Transitions

false -> qf

Where R defines the ’plus’ function and the ’even’ and ’odd’ pred-
icates on the naturals, and the tree automaton A defines the language
E = {even(plus(t1, t2))} where t1, t2 are either two even or two odd
naturals. This example is in Réty’s class. The language R?(E) is regular
and can be automatically computed by Timbuk within some milliseconds:
Automaton current

States qnew3:0 qnew2:0 qnew1:0 qnew0:0 qf:0 qodd:0 qeven:0 qpo:0 qpe:0

Final States qf

Prior
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plus(qodd,qodd) -> qnew3 plus(qeven,qeven) -> qnew2

plus(qodd,qeven) -> qnew0 plus(qeven,qodd) -> qnew1

Transitions

even(qpo) -> qf even(qpe) -> qf plus(qodd,qodd) -> qpo

s(qeven) -> qodd s(qodd) -> qeven plus(qeven,qeven) -> qpe

O -> qeven s(qnew1) -> qpo plus(qeven,qodd) -> qnew1

s(qodd) -> qpe O -> qpe s(qnew0) -> qpe

plus(qodd,qeven) -> qnew0 s(qeven) -> qnew1 s(qnew3) -> qnew1

plus(qodd,qodd) -> qnew3 s(qnew2) -> qnew0 plus(qeven,qeven) -> qnew2

true -> qf odd(qnew1) -> qf odd(qodd) -> qf

odd(qnew0) -> qf s(qnew1) -> qnew3 O -> qnew2

s(qodd) -> qnew2 s(qnew0) -> qnew2 even(qeven) -> qf

even(qnew2) -> qf even(qnew3) -> qf

Note that the specific subset of transitions denoted by Prior rep-
resents in this case the injective abstraction function α that has been
built automatically. If we compute the intersection between R?(E) and
the Reach automaton recognizing the term true, we obtain an empty
automaton:
Intersection with Reach gives (the empty automaton):

States

Final States

Transitions

which means that false is not reachable. Thus we have proved that
even(plus(t1, t2)) where t1 and t2 are either both even or both odd
numbers cannot rewrite to false. However, we are still not sure that it
always rewrites to true. This can be done in the following way: Timbuk
can compute the tree automaton recognizing IRR(R) which is:
Automaton Nf

States q3:0 q2:0 q1:0 q0:0

Final States q0 q1 q2 q3

Transitions

false -> q3 true -> q3 odd(q3) -> q3

even(q3) -> q3 plus(q3,q3) -> q3 O -> q2

plus(q3,q2) -> q3 s(q3) -> q1 s(q2) -> q0

s(q0) -> q1 s(q1) -> q1 plus(q3,q0) -> q3

plus(q3,q1) -> q3

and the intersection between R?(E) and IRR(R) gives R!(E):
Intersection with Nf gives (not empty):

States q0:0

Final States q0

Transitions

true -> q0

which means that R!(E) = {true}. Hence, every term of E neces-
sarily rewrites to true3.

3 Since R is terminating, every term of E has a normal form
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5. From exactness to approximation

One of the main interest of this algorithm is the ability to switch on
the fly from exact to approximate computations. Using approxima-
tion may be necessary in several contexts. When the construction of
R?(E) does not converge (because it is not regular) approximations
force completion to terminate on an automaton over-approximating
R?(E). When the completion is too long (R?(E) is regular but too
big) approximations permit to accelerate completion. In general com-
pletion diverges because it produces an infinite set of transitions used
to recognize an infinite set of new distinct reachable terms. The idea
behind approximation is to explicitly merge together (or to identify)
some terms in order to limit the set of new transitions necessary to
recognize them.

Merging terms together is similar to defining an equivalence class on
terms. In order to merge together two terms s and t in a common equiv-
alence class, an usual way is to use an equation s = t. For instance, in
order to build an approximation where terms 0 and s(0) are equivalent,
it is enough to achieve a completion with an additional approximation
equation 0 = s(0)4. Similarly, to build an approximation where every
natural number is abstracted by its parity (even or odd) it is enough
to perform a completion with an additional approximation equation
s(s(x)) = x.

In Timbuk, for applying an approximation equation l = r to an
automaton A, we simply search for Q-substitutions σ : X 7→ Q and
states q ∈ Q such that lσ →A∗ q. Then, for every state q′ different
from q and such that rσ →A∗ q′, we merge together q and q′, i.e. every
occurrence of state q in A is renamed by q′ (or q′ is renamed by q since
the recognized language will be the same). Now, let us give a small
example of what can be done using such approximations.

EXAMPLE 7. Let us consider the following Timbuk specification:
Ops O:0 s:1 plus:2 times:2 square:1 true:0 false:0 even:1 odd:1

Vars x y z

TRS R

plus(O, x) -> x

plus(s(x), y)-> s(plus(x, y))

times(O, x) -> O

times(s(x), y) -> plus(y, times(x, y))

square(x) -> times(x, x)

even(O) -> true

even(s(O)) -> false

4 This in fact will have an even stronger effect since it will collapse together all
the natural numbers.
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even(s(x)) -> odd(x)

odd(O) -> false

odd(s(O)) -> true

odd(s(x)) -> even(x)

even(square(x)) -> odd(square(s(x)))

odd(square(x)) -> even(square(s(x)))

Automaton A0

States q0 q1 q2 q3 qf1

Final States qf1

Transitions

O -> q0 square(q0) -> q2 even(q2) -> qf1

Automaton Reach

States q0

Final States q0

Transitions

false -> q0

where E = {even(square(O))}. Note that even(square(O)) may be
rewritten by R into odd(square(s(O))) and into even(square(s(s(O))))
and so on. Moreover each of these terms may be rewritten by the def-
inition of ’square’, ’even’ and ’odd’. If we try to build the abstraction
function α on the fly using new states, the completion diverges. After
the 9-th step of completion, A9

α,R has 201 transitions and completion is
still not over. In order to force completion to terminate, it is possible
to add an approximation equation:
Type additional equations and end by a dot ’.’:

s(s(x))=x.

and this merges together 23 states of A9
α,R and it now have only 104

transitions. Then completion continues and approximation equation is
applied after every step until we reach step 12 where A12

α,R = A13
α,R and

thus A12
α,R = A?

α,R. This last automaton has only 25 transitions but it
is complete w.r.t. R. Then if we compute the intersection between A?

α,R
and the automaton Reach recognizing only the term ’false’ we obtain
an empty automaton. Thus, we have proved that for all natural number
n, if n is even (resp. odd) then so is n2.

Timbuk also provide another tool to describe approximations: ap-
proximation rules which are more related to automata structure and
thus more precise. Approximation rules are necessary when approxima-
tion equations are not expressive or precise enough to build adequate
approximations. Approximation rules also offer more control on the
domain and the range of the abstraction function α and thus let the
user ensure termination of the completion anytime he needs to.

The general form for approximation rules is the following: [s →
x] → [l1 → x1, . . . , ln → xn] where [s → x] with s ∈ T (F ∪Q,X ) and
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x ∈ X ∪ Q is a pattern to be matched over the new transitions t → q′

obtained by completion and [l1 → x1, . . . , ln → xn] are rules used to
normalize t. The syntactical constraint for those rules is the following:
li ∈ T (F ∪Q,X ) and either xi ∈ Q or xi ∈ Var(li) ∪ Var(s) ∪ {x}. To
normalize a transition of the form t → q′, we match s on t and x on q′,
obtain a given substitution σ and then we normalize t with the rewrite
system {l1σ → r1σ, . . . , lnσ → rnσ} where r1σ, . . . , rnσ are necessarily
states. For example, normalizing a transition f(h(q1), g(q2)) → q3 with
approximation rule [f(x, g(y)) → z] → [g(u) → z] will give a substitu-
tion σ = {x 7→ h(q1), y 7→ q2, z 7→ q3}, an instantiated set of rewrite
rules [g(u) → q3]. Thus, f(h(q1), g(q2)) → q3 will be normalized into a
normalized transition g(q2) → q3 and a partially normalized transition
f(h(q1), q3) → q3. Some examples of the use of approximation rules in
practice are given in section 6.3.

6. Application examples

In this section, we present three examples of application for R?(E) and
R!(E).

6.1. Sufficient completeness

This property has already been much investigated (Comon, 1986; K-
ounalis, 1985; Nipkow and Weikum, 1983; Kapur et al., 1987), in the
context of algebraic specifications. We give here a definition of suffi-
cient completeness of a TRS on a subset of the set of ground terms
E ⊆ T (F).

DEFINITION 11. A TRS R is sufficiently complete on E ⊆ T (F) if
∀s ∈ E, ∃t ∈ T (C) s.t. s →∗

R t, where C is the set of constructors in F .

Usual methods for checking this property on algebraic specifications
are either based on enumeration and testing techniques (Kounalis,
1985; Nipkow and Weikum, 1983; Kapur et al., 1987) or on disunifi-
cation (Comon, 1986). We propose, here, to check this property thanks
to the set R!(E).

PROPOSITION 3. If the TRS R is weakly normalizing on E ⊆ T (F),
and R!(E) ⊆ T (C), then R is sufficiently complete on E.

This comes from the fact that since R is weakly normalizing on E, for
all terms s ∈ E, ∃t ∈ IRR(R) s.t. s →∗

R t. Moreover, t ∈ R!(E). Since
R!(E) ⊆ T (C), we have t ∈ T (C).
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EXAMPLE 8. Looking back to the example 6, one can remark that
R!(E) = {true} ⊆ T (C) hence, the TRS R is sufficiently complete on
E.

On the other hand, sufficient completeness on E does not necessarily
imply that R!(E) ⊆ T (C). For example, let R = {f(a) → a, f(a) →
f(b)}, C = {a, b} and let E = {f(a)}. Then R is sufficiently complete
on E, since f(a) →R a, but R!(E) = {a, f(b)} 6⊆ T (C). Note that using
tree automata permits to give a very precise description of the domain
on which a function is complete, more precise that what can be done
with simple types for instance.

6.2. Strong non-termination

DEFINITION 12. (Strong non-termination) Let E be a set of terms
and R be a TRS. The TRS R is said to be strongly non-terminating if
there exists no finite R-rewrite chains from terms of E.

THEOREM 4. A TRS R is non-terminating on E is R!(E) = ∅.
Proof. Obvious, since R!(E) = ∅ means that every term of E is

reducible, and so are every terms R-reachable from E.

When the TRS represents some parallel processes, the non-termination
property is close to the deadlock-free property. Let us show a very
simple example of this aspect.

EXAMPLE 9. Assume that we have two processes each one having a
list of elements to count. Assume that the counter is a shared variable
that should not be accessed by the two processes at the same time. Each
process has two possible states ’busy’ if it accesses to the shared counter
or ’free’ otherwise. A similar flag is associated to the shared counter in
order to protect it from a concurrent access. The behavior of this system
is described by the following TRS R where x, y, z, u are variables, Proc
represents a process, cons and null are used to build the lists and S
represents a configuration of the system:

S(Proc(free, cons(x, y)), z, free, u) → S(Proc(busy, cons(x, y)), z, busy, u)
S(Proc(busy, cons(x, y)), z, busy, u) → S(Proc(free, y), z, free, s(u))
S(z, Proc(free, cons(x, y)), free, u) → S(z, Proc(busy, cons(x, y)), busy, u)
S(z, Proc(busy, cons(x, y)), busy, u) → S(z, Proc(free, y), free, s(u))
S(Proc(x, null), P roc(y, null), z, u) → S(Proc(x, null), P roc(y, null), z, u)

The initial language E is recognized by the following tree automaton
A whose final state is q0 and set of transitions is:
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S(q1, q1, q2, q3) → q0 free → q2 0 → q3

Proc(q2, q4) → q1 null → q4 cons(q3, q4) → q4

The set E contains terms of the form S(Proc(free, l1), P roc(free, l2), free, 0)
where l1 and l2 are lists of 0. Using an exact abstraction function α
the completion does not terminate. On the 7-th completion step the
completed tree automaton A7

α,R contains 41 transitions. In order to
make the completion terminate, we choose to add an approximation
equation s(x) = x which merge some states and transition of A7

α,R
together so that the tree automaton contains only 19 transitions. Fi-
nally A8

α,R = A7
α,R, hence A?

α,R = A7
α,R. The automaton A?

α,R over
approximating R?(E) is the following:
Ops S:4 Proc:2 cons:2 null:0 busy:0 free:0 s:1 o:0

Automaton current

States qnew10:0 qnew9:0 qnew8:0 qnew7:0 qnew6:0 qnew5:0 qnew4:0

qnew3:0 qnew2:0 qnew1:0 qnew0:0 q0:0 q1:0 q2:0 q3:0 q4:0

Final States q0

Prior

s(qnew10) -> qnew10 Proc(qnew5,q4) -> qnew4 free -> qnew5

Proc(qnew1,qnew3) -> qnew0 cons(qnew10,q4) -> qnew3 busy -> qnew1

Transitions

S(q1,q1,q2,qnew10) -> q0 free -> q2

o -> qnew10 Proc(q2,q4) -> q1

null -> q4 cons(qnew10,q4) -> q4

busy -> qnew1 cons(qnew10,q4) -> qnew3

Proc(qnew1,qnew3) -> qnew0 free -> qnew5

Proc(qnew5,q4) -> qnew4 S(qnew0,qnew4,qnew1,qnew10) -> q0

S(qnew0,q1,qnew1,qnew10) -> q0 S(qnew4,qnew0,qnew1,qnew10) -> q0

S(q1,qnew0,qnew1,qnew10) -> q0 S(qnew4,q1,qnew5,qnew10) -> q0

S(q1,qnew4,qnew5,qnew10) -> q0 S(qnew4,qnew4,qnew5,qnew10) -> q0

s(qnew10) -> qnew10

Now, if we compute the intersection with IRR(R) we obtain an
automaton over-approximating R!(E). The automaton obtained by in-
tersection recognizes an empty language. Hence, we also have R!(E) =
∅ and thus R is strongly non-terminating on E.

6.3. Reachability testing

In this part, we focus on the applications of negative reachability test-
ing, i.e. using over-approximations of R?(E) to show that s 6→R∗ t.
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The positive result (i.e. the exact cases for R?(E) which permits to
show properties of the form s →R∗ t) of section 4 is more recent but it
should quickly find some applications in theorem proving on equational
theories and in verification.

Several experiments have been done on negative reachability testing
for proving properties over functional programs (Genet, 1998), com-
municating parallel processes (Genet and Viet Triem Tong, 2001a),
but the most significant experiment has been done on cryptographic
protocol. First, Timbuk has been used to prove secrecy and authentica-
tion properties on the Needham-Schroder Public Key Protocol which
is a typical case study for verification methods (Genet and Klay, 2000).
More recently it was used to prove an anti-replay property on a protocol
of the SmartRight system designed by Thomson Multimedia for digital
rights management (Genet et al., 2003).

In this setting, the used TRSs are highly non-terminating and user
defined approximation reveals to be a very powerful and flexible way to
over-approximate the set of reachable terms. In those works, using over-
approximations have led to semi-automatic proof of some properties
that require induction, lemmas and user expertise when they are proved
in a proof assistant.

Let us show some particular aspects of the TRSs and approximation
rules used for verifying cryptographic protocols. Those protocols are
supposed to be secure in an hostile environment where an intruder
stores every message and every key he sees, decrypts some parts, forges
new messages with the parts he has and sends every possible message
in its store in order to attack some agents. We can model the intruder
store using a term built with an Associative Commutative (AC) symbol
store, where for example the term store(a, store(store(b, a), c))

represents the multiset {{a, a, b, c}}. The terms pubkey(x), privkey(x),
encr(k, c), and cons(x, y) represent respectively the public and pri-
vate key of an agent x, the encryption of c using the key k and a
message composed of two parts x and y. We can model some of the
message constructions that an intruder can do on its store, like it is
done for example in (Paulson, 1997):
(* The intruder can encrypt any stored component with any stored key *)

store(z, pubkey(x)) -> store(encr(pubkey(x), z), store(z, pubkey(x)))

store(z, privkey(x)) -> store(encr(privkey(x), z), store(z, privkey(x)))

(* The intruder can decompose or compose any component he has *)

store(cons(x,y), m) -> store(store(cons(x,y), m),store(x, y))

store(x, y) -> store(cons(x, y), store(x,y))

(* The intruder can decrypt a message if he has the related key *)

store(encr(pubkey(x), z), privkey(x)) ->

store(encr(pubkey(x), z), store(privkey(x), z))

store(encr(privkey(x), z), pubkey(x)) ->

main.tex; 23/01/2004; 11:06; p.29



30

store(encr(privkey(x), z), store(pubkey(x), z))

The rules encoding the AC behavior of the store symbol are also
necessary:

store(x, y) -> store(y, x)

store(store(x, y), z) -> store(x, store(y, z))

store(x, store(y, z)) -> store(store(x, y), z)

There are two particular things to remark on those rules. First, they
are all non terminating, we thus have to define strong approximation
rules in order to restrain divergence of the completion. Second, rules
for decryption are non left-linear and we must check the left-linearity
condition on the TRS and the completed tree automaton.

Now, let us show some of the approximation rules we use in this
particular case. When AC symbols are simply used for representing
sets of objects, a quite natural approximation rule for the store sym-
bol is the following: [store(x, y) -> z] -> [x -> z y -> z]. This
rule normalizes every new configuration of the form store(s, t) -> q

(where s and t are not states) into configurations s -> q, t -> q and
store(q, q) -> q. The intuition behind this rule is that every ’subset’
x and y of the store store(x, y) should be recognized by the same
state as store(x, y). Similarly the approximation rule dealing with the
decryption rules is of the form: [encr(pubkey(qA), y) -> z] -> [y ->

qAsecret] where qA is the state recognizing the agent A and qAsecret

is a state used to recognize the language of terms protected by the
public key of A and thus that should remain secret during the protocol
execution.

Those simple approximation rules permit to restrain the divergence
of rewriting into a finite (and approximated) set of reachable terms
recognized by a finite tree automaton. Then, what remains to be proved
is that the completed automaton and the TRS fulfills the left-linearity
condition. This can easily and automatically be checked using the
simple left-linearity condition (see definition 8). During completion,
ensuring this property is easy since every non left-linear variables of the
TRS match agent names (like in the above rules). Hence, it is enough
to build an approximation such that agent names are deterministically
recognized5 in order to ensure the simple left-linearity condition.

5 For instance by fixing α(X) = qX for every agent X.
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7. Implementing tree automata completion

In this section, we briefly present the Timbuk tool (Genet and Viet
Triem Tong, 2001b) in which the tree automata completion is imple-
mented. We also discuss the efficiency of the matching algorithm over
tree automata used to find critical pairs during completion. Timbuk is a
tree automata library providing basic primitives on non deterministic
tree automata like intersection, union, complement of languages, de-
terminisation of tree automata, construction of IRR(R) for left-linear
TRS, as well as the tree automata completion algorithm with some
tools for building abstraction function by hand or automatically. The
current distributed Timbuk 1.1 library is written in Ocaml (Leroy et al.,
2000), contains nearly no specific optimisation, can only build over-
approximations and provide only approximation rules (see section 5)
to construct abstraction functions by hand. Now, we are finishing ver-
sion 2.0 which includes some improvements on the matching algorith-
m described in the next sections, some new automatic normalization
strategies (in particular an exact one corresponding to the results of sec-
tion 4) and the approximation equation facility described in section 5.
Timbuk 2.0 is still written in Ocaml and will soon be available.

Let us now present the basic matching algorithm and the optimised
one. Recall that the matching problem, for a given rewriting rule l → r
and a tree automaton A = 〈F ,Q,Qf ,∆〉, consists in computing all the
Q-substitutions σ such that there is a state q ∈ Q and lσ →?

∆ q.

7.1. Basic matching algorithm

This algorithm proposed in (Genet, 1997) is close to a standard match-
ing algorithm on terms. It is defined using deduction rules over specific
formulas called matching problems. In the following, a matching problem
is a quantifier-free first order formula build on literals ⊥, s� c where
s ∈ T (F ,X ), c ∈ T (F ∪Q), and closed by the connectives ∨ and ∧.
An empty conjunction

∧
∅ is a trivially true matching problem.

DEFINITION 13. Let φ, φ1, φ2 be matching problems, s ∈ T (F ,X ) be
a term, c ∈ T (F ∪Q), and A = 〈F ,Q,Qf ,∆〉 a tree automaton. A
solution to the matching problem φ is a Q-substitution σ ∈ Σ(Q,X )
such that

− if φ = s� c, then sσ →∗
∆ c, or

− if φ = φ1 ∧ φ2, then σ is a solution of φ1 and a solution of φ2,
or

− if φ = φ1 ∨ φ2, then σ is a solution of φ1 or a solution of φ2.
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We assume that matching is applied on automata without epsilon-
transitions. An epsilon transition is a transition of the form q → q′

where q and q′ are states. Any set of transition ∆ ∪ {q → q′} can be
equivalently replaced by ∆∪ {c → q′ | c → q ∈ ∆}. Now let us give the
matching algorithm.

DEFINITION 14. Let A = 〈F ,Q,Qf ,∆〉 be a tree automaton, f ∈
F , ar(f) = n, g ∈ F , ar(g) = m, q, q1, . . . , qn ∈ Q, q′1, . . . , q

′
n ∈

Q, c1, . . . , cd ∈ T (F ∪Q), s, s1, . . . , sn ∈ T (F ,X ) and φ1, φ2, φ3 be
non-empty matching problems. The matching algorithm consists in nor-
malizing any matching problem of the form s � q by the following set
of rules.

Decompose
f(s1, . . . , sn)� f(q1, . . . , qn)

s1 � q1 ∧ . . . ∧ sn � qn

Clash
f(s1, . . . , sn)� g(q′1, . . . , q

′
m)

⊥

Configuration
s� q

s� c1 ∨ . . . ∨ s� cd ∨ ⊥
if s 6∈ X , for all ci ∈ T (F ∪Q) i = 1 . . . d such that ci → q ∈ ∆.

Moreover, after each application of any of these rules, matching prob-
lems are normalized by the following set of rules ξ:

φ1 ∧ (φ2 ∨ φ3)

(φ1 ∧ φ2) ∨ (φ1 ∧ φ3)

φ1∨ ⊥

φ1

φ1∧ ⊥

⊥

Correction, completeness and termination of the algorithm comes from
the following theorem of (Genet, 1997).

THEOREM 5. Given s ∈ T (F ,X ), and q ∈ Q, every matching prob-
lem s� q has a normal form such that

− if it is ⊥ then there is no Q-substitution σ s.t. sσ →∗
∆′ q,

− if it is empty, then for all Q-substitution σ, sσ →∗
∆′ q,

− otherwise, the normal form is a disjunction
∨k

i=1 φi s.t. φi =∧ni
j=1 xi

j � qi
j, where xi

j ∈ X and qi
j ∈ Q, and σ1 = {x1

j 7→
q1
j | j = 1 . . . n1}, . . . , σk = {xk

j 7→ qk
j | j = 1 . . . nk} are the

only Q-substitutions s.t. sσi →∗
∆′ q.
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Thanks to this algorithm, for a given rule l → r and a given state
q, it is possible to find every Q-substitution σ s.t. lσ →∗

∆ q.

EXAMPLE 10. Let A = 〈F ,Q,Qf ,∆〉, where F = {f, g, a}, Q =
{q0, q1}, Qf = {q0} and ∆ = {f(q1) → q0, g(q1) → q1, a → q1}. The
language L(A) = {f(g∗(a))}. Let R = {f(g(x)) → g(f(x))}. If we ap-
ply matching on f(g(x))�q0, we obtain the following deductions, where
the name of the applied rule is given on the right, and normalization
with simplification rules are omitted:

f(g(x))� q0 rule Configuration

f(g(x))� f(q1) rule Decompose

g(x)� q1 rule Configuration

g(x)� g(q1) ∨ g(x)� a rule Clash

g(x)� g(q1) rule Decompose

x� q1

Let σ be the Q-substitution σ = {x 7→ q1}. Thus, we deduced that
lσ = f(g(q1)) →∗

∆ q0.

7.2. An optimised algorithm

We propose here a more efficient algorithm: we represent a rewriting
system R with a tree automaton AR, which will permit us to compute
all the critical pairs between R and a regular language A thanks to
A ∩ AR. First, for every term t ∈ T (F ,X ), we define a tree automa-
ton which language is exactly {t} using abstraction and normalization
functions defined in section 3.

DEFINITION 15. Term automaton Let t ∈ T (F ,X ), and consider S
the set of all the subterms of t, Qt a set of state, and α : S → Qt an
injective abstraction function. The term automaton for t is defined by
Aα,t = 〈F ,Qt,Qtf ,∆t〉 where Qft = {topα(t)} and ∆t = Normα(t →
topα(t)).

PROPOSITION 4. Consider t ∈ T (F ,X ), α an injective abstraction
and Aα,t its term automaton,

L(Aα,t) = {t}
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Proof. The proof is an inductive reasoning over the depth of t:

− If depth(t) = 1 then Aα,t = 〈F , {topα(t)}, {topα(t)}, {t → topα(t)}〉,
and L(Aα,t) = {t}

− Let us assume that for all terms t such that depth(t) ≤ n then
L(Aα,t) = {t}.
Now, if depth(t) = n+1 and Aα,t = 〈F ,

⋃
ti∈S{topα(ti)}, {topα(t)}, Normα(t →

topα(t))〉, necessarily t is of the form f(t1, . . . , tn). Thanks to induc-
tion hypothesis, all subterms ti are recognized by states topα(ti)
then t = f(t1, . . . , tn) →∆ f(topα(t1), . . . , topα(tn)) →∆ topα(t),
and L(Aα,t) = {t}.

Let us now define the automaton A∩ = Aα,t ∩ A which recognizes
the solutions of the matching of t on A.

DEFINITION 16. Substitution automaton Let A = 〈F ,Q,Qf ,∆〉 be
an automaton, α an injective abstraction function and Aα,t = 〈F ,Qt,Qft,∆t〉
the automaton of t ∈ T (F ,X ), we define A∩ = 〈F ,Q∩,Qf,∩,∆∩〉 the
substitution automaton of t in A by:

− Q∩ = Qt ×Q

− Qf,∩ = {α(t)} × Q

− ∆∩ =
{f((q1, q

′
1), . . . , (qn, q′n)) → (qn+1, q

′
n+1) | qi ∈ Qt, q′i ∈ Q,

f(q1, . . . , qn) → qn+1 ∈ ∆t, f(q′1, . . . , q
′
n) → q′n+1 ∈ ∆}

∪{(x, q) → (qx, q) | x → qx ∈ ∆t, q ∈ Q}

The set of substitution solution for A∩ is defined in the following
way.

DEFINITION 17. Let A = 〈F ,Q,Qf ,∆〉 be an automaton, t a term,
At,α its automaton and A∩ the substitution automaton of t in A. Let
s ∈ T (F ,X ×Q), if s is recognized by a state of A∩ then s defines a
set of Q-substitutions σ:

− if s = (x, q), then s defines the Q-substitution {x 7→ q}

− if s = (a, a) then s defines the empty substitution

− if s = f(s1, . . . , sn), then if {σi,j}i∈Ij are the substitutions as-
sociated to sj, s define the set of substitutions τ = σ1,i1 ◦ . . . ◦
σn,in.
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EXAMPLE 11. Let A1 be the automaton for term f(x, g(y)). Let A2

be the automaton recognizing the language {f(a, g?(b)), f(g?(b), a). Let
A3 be the intersection automaton (A∩). This last automaton recognize
a unique term f((qx, q1), g((qy, q3)) which defines the Q-substitution
σ = {x 7→ q1, y 7→ q3}

A1 with
Q = {qx, qy, qf, qg}
Qf = {qf}
∆ = y → qy

g(qy) → qg
x → qx

f(qx, qg) → qf

A2 with
Q = {q1, q2, q3, q4}
Qf = {q4}
∆ =

a → q1
b → q2

g(q2) → q3
g(q3) → q3

f(q1, q3) → q4
f(q3, q1) → q4

A3 with
Q = {qx, qy, qf, qg} × {q1, q2, q3, q4}
Qf = {qf} × {q1, q2, q3, q4}
∆ =

(y, q2) → (qy, q2)
(y, q3) → (qy, q3)
(x, q1) → (qx, q1)
(x, q3) → (qx, q3)

g((qy, q2)) → (qg, q2)
g((qy, q3)) → (qg, q3)

f((qx, q1), (qg, q3)) → (qf, q4)
f((qx, q3), (qg, q1)) → (qf, q4)

THEOREM 6. Let A = 〈F ,Q,Qf ,∆〉 be an automaton, l → r a
rewriting rule, and A∩ = A ∩ Aα,l, if A respects the left-linearity
condition induced by l → r then the set of Q-substitutions defined by all
the states (α(l), q) in A∩ is exactly the set of Q-substitutions {σi}i∈I

such that lσi →?
∆ q in A.

Proof.

1. First assume that {σi} is a set of Q-substitutions defined by a term
s such that s →? (α(l), q) in A∩ we prove that lσ →? q with an
inductive reasoning over the derivation s →n (α(l), q):

− If s → (α(l), q) then depth(s) = 1 and

• either s = (a, a) where a is a constant, we have (a, a) →A∩
(α(a), q) then l = a and l →∆ q, s defines the substitution
of empty domain.

• or s = (x, a) we have also (x, a) →A∩ (α(a), q) then l = x,
and s defines σ = {x 7→ q}, we have lσ = a and a → q

− Assume now that for all set {σi}i∈I defined by a term s of A∩
verifying s →k (α(l), q) for every k ≤ n then lσi →? q in A.

− Consider now {τi}i∈I defined by a term s such that s →n+1

(α(l), q). Clearly s is a term on the form f(s1, . . . , sn), where
sj = (lj , qj) is associated to {τi}i∈I such that τi = σ1,i1 ◦ . . . ◦
σn,in where σj,ij range over the set of substitutions defined by
the term sj.
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f(s1, . . . , sn) →A∩ (α(l), q) then l is of the form f(l1, . . . , ln)
and there exists some states qj verifying sj →A∩ (α(lj), qj). We
use the inductive hypothesis sj →k (α(lj , qj) with k ≤ n, then
ljσj →? qj in A and for all τi there exists a combination of σi,j

verifying lτi → f(l1σ1,i1, . . . , lnσn,in) → f(q1, . . . , qn) →?
∆ q

2. We use now a structural induction over l to prove that if lσ →?
∆ q

then σ correspond to a term s in L(A∩):

a) if l is a constant a
On one hand a →At α(a) and on an other hand there exists a
state q in Q such that a →A q then (a, a) →A∩ (α(a), q) and
(α(a), q) is a final state of A∩, A∩ recognized (a, a), that defines
the empty substitution.

b) If l is a variable x
x →At α(x) and all the terms recognized by A may be an
instance of x, we have {(x, q) → (α(x), q)|q ∈ Q} ⊂ ∆∩ and
Qf,∩ = {α(x)} × Q we have defined all the Q-substitution
{{x 7→ q}|q ∈ Q}.

c) If l is on the form f(l1, . . . , ln)
A recognized lσ then there exist some states q, q1, . . . qn in A
such that f(q1, . . . , qn) →?

A q, liσ →A qi. Assume that s =
f((α(l1), q1), . . . , (α(ln), qn)), there exists qi in A and qi recog-
nized tiσ then thanks to induction hypothesis there are some
terms si in A∩ that define some substitutions σi verifying σ =
σ1 ◦ . . . σn. If σ1 ◦ . . . σn is not defined then lσ is not recognized
by A, contradiction ; else σ1 ◦ . . . σn exists and A∩ recognized
s = f(s1, . . . , sn) and s define σ.

7.3. Matching in practice

Using the optimized matching algorithm in Timbuk divided by 6 the
computation times for completion without increasing memory usage.
In this part, we want to give an idea of the efficiency of the completion
procedure with an optimized matching algorithm. Since as far as we
know, there exists no other implementation of a similar algorithm, we
chose to compare with a rewriting tool. Elan. Elan (Borovanský et al.,
1998) is a very fast implementation of rewriting where rewrite rules
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are directly compiled into C code. Given a term rewriting system R,
we chose to use Elan and Timbuk for proving s →R? t by breadth-
first search. The breadth-first search strategy for Elan was given by
P.-E. Moreau. For using Timbuk to prove reachability starting on a
single term s, we use the exact case (and Corollary 1) and automatic
abstraction function construction.

EXAMPLE 12. Let R be the following TRS:
plus(O,x) → x
plus(s(x), y) → s(plus(x, y))
mult(O,x) → x
mult(s(x), y) → plus(y,mult(x, y))
fact(O) → s(O)
fact(s(x)) → mult(s(x), fact(x))

To check if fact(s4(O)) →R∗ s24(O) Elan takes only some millisec-
onds where Timbuk takes more than 6 seconds. Similarly, to check if
fact(s5(O)) →R∗ s120(O) Elan takes less than a second and Timbuk

takes more than 11 minutes.

The above example and computation time are clearly not in favor
of Timbuk. However, the above TRS is terminating and confluent and
thus the rewriting tree is narrow. Now let us consider another example
where R is neither terminating nor confluent TRS and the rewriting
tree is wider.

EXAMPLE 13. Let R be the following TRS:
f(x) → f(s(x))
s(s(x)) → f(x)
f(s(x)) → f(f(x))

To check if f(a) →R∗ f6(a) Elan takes more than 18 seconds where
Timbuk takes only 1 second for the same task. Similarly, to check if
f(a) →R∗ f8(a) Elan takes more than 10 minutes, where Timbuk takes
only 2 seconds.

Timbuk is clearly not as fast as Elan for rewriting but Timbuk takes
advantage of tree automata structure (which provide some kind of
sharing). Thus, for achieving reachability testing, when finite sets of
very similar terms are rewritten, and when systems are neither conflu-
ent nor terminating, Timbuk obtains some results close or even better
than those of Elan. This shows that for, reachability testing over non-
terminating or non confluent term rewriting systems, the data structure
used to represent sets of terms and the related matching algorithm
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over this structure plays a central role in the efficiency of the search
algorithm. Note that the above well represent the kind of TRSs that
can be encountered when using reachability testing on cryptographic
protocols, for instance, where rewrite rules are highly non terminating
(see section 6.3).

8. Extensions

In this section, we propose an extension of the completion algorithm
for dealing with conditional term rewriting systems (CTRS for short).
A natural way to compute the set of reachable terms for CTRSs is
to encode CTRSs into TRS and use the tree automata completion
algorithm for TRS. However, as shown in (Feuillade and Genet, 2003),
a completion algorithm adapted to the specific case of CTRS is likely
to give some better results in practice. This algorithm specific to the
conditional case is described in this section.

A conditional term rewriting system (CTRS) over a set of ground
terms T (F) is a set R of conditional rules (r)tl → tr if cond, where
tl, tr ∈ T (F ,X ) and cond designates a conjunction of conditions that
must be checked before rewriting. In this paper, conditions are pairs of
terms denoted by c1 ↓ c2 where c1, c2 ∈ T (F ,X ), (V ar(c1)∪V ar(c2)) ⊆
Var(tl); these are join conditions. Such a condition is said to be true
for a substitution σ if there exists a term u ∈ T (F) such that c1σ and
c2σ can be both rewritten by the CTRS R into u in a finite number
of steps. Then, the rule tl → tr can be applied to the term t ∈ T (F)
at position p as for a TRS. →R also defines a rewriting relation on
T (F) and thus the set of reachable terms R?(E) is defined as in the
non-conditional case.

For recognizing conditions in the tree automata and compute sepa-
rately their value, we will need separate states as well as the following
lemma ensuring that completion builds automata where every states
(not only final ones) are closed by rewriting.

LEMMA 4. (Genet, 1997) Let R be a left-linear TRS, A′ be the result
of computation of the completion algorithm applied to a set E = L(A),
then A′ is closed by rewriting w.r.t R, i.e: if l →∗

R r and ∃q ∈ QA, l ∈
L(A, q) then r ∈ L(A′, q).
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8.1. Completion over regular set of terms for a CTRS

We first define a rewriting relation t
↓n−→

R
s meaning that to rewrite t

into s, it is necessary to evaluate at most n recursive conditions (n is
called the depth of the derivation in (Dershowitz et al., 1988)).

DEFINITION 18. For a CTRS R with a subset Rnc of non conditional
rules, we note ↓n−→

R
the relation defined by:

− ↓0−→
R

=→Rnc

− a
↓n+1−→

R
b ⇔ a

↓0−→
R

b or ∃σ substitution, p ∈ Pos(a) and (l →
r if s ↓ t) ∈ R such that a|p = lσ, b = a[rσ]p and ∃u ∈ T (F) such

that sσ
↓n−→

∗

R
u and tσ

↓n−→
∗

R
u.

Note that l →∗
R r means that ∃n ∈ N s.t. l

↓n−→
∗

R
r.

Let A0 be the tree automaton whose language E is the entry set of
terms for the left-linear CTRS R. Let us consider the following algorith-
m, where we complete at each step the automaton Ai = 〈F ,Qi,Qf ,∆i〉
to an automaton Ai+1. The set of state Qi is partitioned into three set
of states: Q0∪Qi,new∪Qi,cond. Q0 is the set of states of A0, Qi,new is a set
of states produced by transition normalization and indexed by naturals,
Qi,cond is a set of conditional states indexed by terms of T (F , Qi). Let
α be an abstraction function. We use the following algorithm :

1. from Ai = 〈F ,Qi,Qf ,∆i〉, the ith step of completion, we compute
the automaton Ai+1 = 〈F ,Qi+1,Qf ,∆i+1〉 with the initialization:
Qi+1 = Qi,∆i+1 = ∆i.

2. Let us consider each critical pair without considering the condition
of the rule. A pair (q, r) of Q×T (F) is said to be critical for a rule
(α) either non conditional l → r, or conditional l → r if c1 ↓ c2

where σ ∈ Σ(Q,X ) is a regular language substitution σ = {x1 →
qi1, x2 → qi2, . . . , xn → qin}, where {x1, x2, . . . , xn} = var(l), if
lσ →∗

∆i
q and rσ 6→∗

∆i
q.

3. for all of these critical pairs, (α) is either:

− a conditional rule: l → r if c1 ↓ c2. There are two possibilities

• there are no state indexed by c1σ or c2σ in the conditional
subset of states of Qi (qc1σ /∈ Qi,cond or qc2σ /∈ Qi,cond),
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then we create these two states (or the one missing) and
we add to the automaton Ai+1 the following transitions :

Normα(c1σ → qc1σ) ∪ Normα(c2σ → qc2σ)

• there exists two states qc1σ and qc2σ in Qi. We have to
calculate L(Ai, qc1σ) ∩ L(Ai, qc2σ). If this set is empty,
the condition is, for this completion step, considered as
false. If it is not empty, then the condition is true and we
go on processing the critical pair as if the rule were not
conditional.

− a non conditional one (or it is conditional and the condition
has been found true in the previous step), then we add to the
automaton the transitions Normα(rσ → q).

4. the new automaton Ai+1 = 〈F ,Qi+1,Qf,i+1,∆i+1〉 is the result of
one step of completion of Ai.

If there exists i ∈ N such that Ai = Ai+1, then Ai is the result.
Remember that each time we add a transition to the automaton, we
have to normalize it with new states (indexed by naturals and added in
Qi,new) and then the opportunity to make an approximation in order
to limit the number of new states created for the normalization. As in
the non conditional case, this completion may not have a fixed point:
we may produce infinitely many new states. However, approximation
techniques similar to those of section 5 apply: let Qcond be the set of
new states qc1σ and qc1σ produced by conditions, Qnew the set of new
states used to normalize the transitions, one may restrict in any way
the set Qnew to force completion to terminate. Note that there is no
need to limit the number of states of Qcond, since the number of possible
conditions c1, c2 is finite and the number of possible σ is finite if Qnew

is.

THEOREM 7. Let A0 be a tree automaton such that L(A0) ⊇ E and
R a left linear CTRS. If A′ is the result of the completion of A0 w.r.t
R, then L(A′) is closed with respect to R and R∗(E) ⊆ R∗(L(A0)) ⊆
L(A′)

Proof. Let A′ = 〈F ,Q′,Qf ,∆′〉. We prove that ∀t ∈ T (F) s.t. ∃q ∈
Q′, t ∈ L(A′, q), ∀u ∈ T (F) s.t. t →∗

R u, we have u ∈ L(A′, q). We

prove by induction that ∀n ∈ N, q ∈ Q′, t ∈ L(A′, q), u s.t. t
↓n−→

∗

R
u,

then u ∈ L(A′, q)
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− If q ∈ Q′, t ∈ L(A′, q), and t
↓0−→

∗

R
u then we trivially have u ∈

L(A′, q). Indeed, ↓0−→
∗

R
means that we consider the subset of non

conditional rules of R and then the proof follows from lemma 4.

− now suppose that for a given n: ∀k ≤ n, t
↓k−→

∗

R
u and t →∗

∆′ q ⇒
u →∗

∆′ q. We want to show that:

t
↓n+1−→

∗

R
u and t →∗

∆′ q ⇒ u →∗
∆′ q

t
↓n+1−→

∗

R
u means that exists {t1, t2, . . . , tj} ⊆ T (F) such that

t0 = t
↓n+1−→

R
t1

↓n+1−→
R

t2
↓n+1−→

R
. . .

↓n+1−→
R

tj−1
↓n+1−→

R
tj = u

Now we show that for every ti, if ti →∗
∆′ q then ti+1 →∗

∆′ q, this
leads to two cases:

• ti
↓n−→

R
ti+1, then using the induction hypothesis, ti+1 →∗

∆′ q.

• ti 6
↓n−→

R
ti+1 and ti

↓n+1−→
R

ti+1, so there exists a rule (k) l →
r if c1 ↓ c2 ∈ R a closed context C[], and a substitution σ
such that:

ti = C[lσ] →R C[rσ] = ti+1 if c1σ ↓ c2σ

and ∃c s.t. c1σ
↓n−→

∗

R
c, and c2σ

↓n−→
∗

R
c

Since no critical pair between R and ∆′ exists, the automaton
is a fixed point for the completion and we necessarily have
that ∃qc1σ, qc2σ ∈ Q′. Thus, we have:

c1σ
↓n−→

∗

R
c and c1 →∆′ qc1σ

c2σ
↓n−→

∗

R
c and c1 →∆′ qc2σ

The induction hypothesis leads to c ∈ L(A′, qc1σ) and
c ∈ L(A′, qc2σ). Consequently, since ti →∗

∆′ q, since the condi-
tion L(A′, qc1,σ)∩L(A′, qc2,σ) 6= ∅ is true, and since A is a fixed
point for the completion for automaton A, we necessarily have
ti+1 →∗

∆′ q.
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We have t = t0 ∈ L(A′, q), so by induction ∀i ≤ n, ti ∈ L(A′, q),
in particular u = tj .

We get the result that t
↓n+1−→

∗

R
u and t →∗

∆ q implies u →∗
∆ q

So ∀n ∈ N, t
↓n−→

∗

R
u and t →∗

∆′ q implies u →∗
∆′ q, then t →∗

R u

and t →∗
∆′ q implies u →∗

∆′ q. This leads us to ∀q ∈ Q′,L(A′, q) is
closed under rewriting by R, in particular for q ∈ Qf , thus L(A′) is
closed under rewriting by R. Since completion is incremental, we have
the inequalities ∆ ⊆ ∆′ and thus E ⊆ L(A) ⊆ L(A′), and finally
R∗(E) ⊆ L(A′).

9. Conclusion

In this paper, we have presented some tools for dealing in practice with
the reachability and the unreachability problem, i.e. given two terms
s and t and a term rewriting system R show that s →?

R t or on the
opposite show that s 6→?

R t.
The proposed algorithm, called tree automata completion, construct-

s a tree automaton recognizing R?(E): the set of terms reachable by
rewriting terms of the initial regular set E with a TRS R. The pro-
posed algorithm is parametrized by an abstraction function and can be
adapted to several purposes.

By choosing an injective abstraction function, exactness of the al-
gorithm is guaranteed if it terminates. This result provides a new
decidable class that includes (and is strictly greater) to all the decidable
classes of the literature. A first result is that we thus have an alternative
proof of regularity and an alternative algorithm for the known decidable
cases. In some cases, like for the constructor system case, the resulting
algorithm seems to be simpler to the initial algorithm.

A second result is that all those regular classes can uniformly be
implemented by a single uniform algorithm that covers all of them at
the same time. As far as we know this is the only implementation for
those decidable classes.

Thirdly, outside of those decidable classes when completion does
not terminate, using the abstraction function as an approximation tool
permits to force completion to terminate on an automaton recognizing
an over-approximation of R?(E).

To sum up, the same completion algorithm is able to build exactly
R?(E) when it is possible and build an over-approximation otherwise.
Those techniques have been implemented in the Timbuk tool which thus
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permits to compute R?(E) in the decidable classes as well as an over-
approximation otherwise. Using this prototype on practical examples
has shown that efficiency of the tree automata completion algorithm
strongly depend on the efficiency of the matching of left-hand side
of rules on tree automata. So, we proposed an optimised algorithm
for matching making it possible to Timbuk to handle completion on
large TRSs or large tree automata. We also showed that resulting
performances makes Timbuk usable and even more relevant than usual
rewriting tools to check reachability even on finite sets of terms when
dealing with non-terminating TRSs. This may be of interest for proof
search in theorem provers or proof assistant when the used equational
theories cannot be oriented into confluent and terminating TRSs.

Note also that since approximations are only sets of first order terms,
it is also possible to use approximations to perform abstract interpreta-
tion over the theories manipulated by a proof assistant and make proof
more automatic. This is what is done in (Oehl and Sinclair, 2001) for
proving automatically some lemmas in Isabelle/HOL (Nipkow et al.,
2002) by approximation.

The construction of a tree automaton recognizing exactly or not the
set of reachable terms turns out to have several practical application-
s: reachability testing, sufficient completeness, strong non-termination
proofs, etc. Among all those applications, reachability testing has been
successfully used for cryptographic protocol verification on some real
cases.

Finally, the tree automata completion algorithm can be extended to
tackle the problem of approximating reachable terms for any join con-
ditional term rewriting system. As far as we know, this is the first time
that this problem is addressed. This extension is rather natural w.r.t.
the existing algorithm and uses similar techniques, in particular for
approximation construction. These results suggest that some syntactic
classes of CTRSs having regular sets of descendants can certainly be
defined by imposing the same syntactic constraints on the right-hand
side of the rules for TRS than on every right-hand side of rules and
left and right-hand side of every condition for CTRS. Like in the non
conditional case, those regular classes are likely to be built using the
tree automata completion algorithm for the conditional case.
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