HAVEGE

HArdware Volatile Entropy Gathering and Expansion

Unpredictable random number generation
at user level

André Seznec
Nicolas Sendrier

» André Seznec
Caps Team
>IRISA/INRIA

Unpredictable random numbers

= Unpredictable = irreproducible + uniformly distributed

= Needs for cryptographic purpose:
> key generation, paddings, zero-knowledge protocols, ..

= Previous solutions:
> hardware: exploiting some non deterministic physical
process
 10-100 Kbits/s

> software: exploiting the occurences of (pseudo) non
deterministic external events

 10-100 bits/s

» André Seznec
» Caps Team

Irisa

Previous software entropy gathering
techniques

= Gather entropy from a few parameters on the occurences of
various external events:

> mouse, keyboard, disk, network, ..

= But ignore the impacts of these external events in the processor
states

» André Seznec
» Caps Team

Irisa

HAVEGE:

HArdware Volatile Entropy Gathering and Expansion

» André Seznec
» Caps Team

Irisa

HAVEGE:

HArdware Volatile Entropy Gathering and Expansion

» André Seznec

Caps Team
Irisa

[—

Hardware Volatile States in a processor

= States of many microarchitectural components:
> caches: instructions, data, L1 and L2, TLBs
> branch predictors: targets and directions
> buffers: write buffers, victim buffers, prefetch buffers, ..
> pipeline status

A common point

these states ar e volatile and not ar chitectural:

-the result of an application does not depend of these states

-these states are unmonitorable from a user-level application

» André Seznec
» Caps Team

Irisa

An example:
the Alpha 21464 branch predictor

= 352 Kbits of memory cells:

> indexed by a function of the instruction address + the
outcomes of more than 21 last branches

= 0n any context switch:
> inherits of the overall content of the branch predictor

Any executed branch lets a footprint on the
branch predictor

» André Seznec
» Caps Team

Irisa

Gathering hardware volatile
entropy/uncertainty ?

Collecting the complete hardware state of a processor:
erequires freezing the clock
*not accessible on off-the-shelf PCs or workstations

Indirect access through timing:
e use of the hardware clock counter at a very low granularity
* Helsenberg’ scriteria:
Indirect accessto a particular state (e.g. status of
a branch predictor entry) modifies many others

» André Seznec
» Caps Team

Irisa

Execution time of a short instruction
sequence Is a complex function !

ITLB

Correct

mispredict

hit
miss

hit
miss

Qudaem biis

DTLB

hit
Mmiss

| .

D-cache

miss

» André Seznec
» Caps Team
Irisa

Execution time of a short instruction
sequence is a complex function (2) !

= state of the execution pipelines:

> up to 80 instructions inflight on Alpha 21264, more than 100
on Pentium 4

= precise state of every buffer
= Qccurrence on any access on the system bus

» André Seznec
» Caps Team

Irisa

But a processor Is built to be
deterministic !?!

Yeshbut:

*Not the response time!

*External events peripherals, 10s
*Operating System

eFault tolerance

» André Seznec
» Caps Team

Irisa

OS interruptions and some volatile hardware states
Solaris on an UltraSparc Il (non loaded machine)

= L1datacache: 80-200 blocks displaced

= L1instruction cache: around 250 blocks displaced
= L2 cache: 850-950 blocks displaced

= data TLB: 16-52 entries displaced

= instruction TLB: 6 entries displaced

Thousands of modified har dwar e states

= + that'’'s aminimum
= + distribution is erratic

» André Seznec
» Caps Team
Irisa

HArdware Volatile Entropy Gathering
example of the I-cache + branch predictor

While INTERRUPT < NMININT){ Gather through several OSinterruptions
fihos R Exercisethe branch prediction tables

Entrop[K]= (Entrop[K]<<5) A HardTick () » (Entrop[K]>>27) »
(Entrop[(K+1) & (SIZEENTROPY-1)] >>31,
Gathering uncertainty in array Entrop
K= (K+1) & (SIZEENTROPY-1);
** repeated XX times**
} Exercising the whole | -cache

» André Seznec
» Caps Team

Irisa

HArdware Volatile Entropy Gathering
l-cache + branch predictor (2)

= The exact content of the Entrop array depends on the exact
timing of each inner most iteration:

> presence/absence of each instruction in the cache
> status of branch prediction

> status of data (L1, L2, TLB)

> precise status of the pipeline

> activity on the data bus

> status of the buffers

» André Seznec
» Caps Team

Irisa

Estimating the gathered uncertainty

= The source is the OS interruption:
> width of the source is thousands of bits
> no practical standard evaluation if entropy is larger than 20

1M samples of 8 words after a
single interrupt were all distinct

= Empirical evaluation: NIST suite + Diehard
> consistantly passing the tests = uniform random

» André Seznec
» Caps Team

Irisa

Uncertainty gathered with HAVEG
on unloaded machines

= Per OS interrupt in average and depending on OS + architecture
> 8K-64K bits on the I-cache + branch predictor
> 2K-8K bits on the D-cache

= A few hundred of unpredictable Kbits/s

> 100-1000 times more than previous entropy gathering
techniques on an unloaded machine

» André Seznec
» Caps Team

Irisa

HAVEG algorithms and loaded
machines

= On aloaded machine:
> more frequent OS interrupts:
* less iterations between two OS interrupts
> less uncertainty per interrupt
 i.e., more predictable states for data and inst. caches

= But more uncertainty gathered for the same number of
iterations :-)

» André Seznec
» Caps Team

Irisa

HAVEG algorithms and loaded
machines (2)

Determine the number of iterations executed on a non-
loaded machine

» André Seznec
» Caps Team
Irisa

Reproducing HAVEG seguences ?

» André Seznec
» Caps Team

Irisa

Security assumptions

= An attacker has user-level access to the system running
HAVEG

> He/she cannot read the memory of the HAVEG process
> He/she cannot freeze the hardware clock
> He/she cannot hardware monitor the memory/system bus

= An attacker has unlimited access to a similar system (hardware
and software)

» André Seznec
» Caps Team

Irisa

Helisenberg’s criteria

» André Seznec

Caps Team
Irisa

[—

Passive attack: just observe, guess
and reproduce (1)

= Need to « guess » (reproduce) the overall initial internal state
of HAVEG:

> the precise hardware counter ?

> the exact content of the memory system, disks included !
> the exact states of the pipelines, branch predictors, etc
> the exact status of all operating system variables

Without any
Inter nal dedicated
hardware on the
targeted system ?

» André Seznec
» Caps Team

Irisa

Passive attack: just guessing and
reproducing (2)

= reproducing the exact sequence of external events on a cycle
per cycle basis

> network, mouse, variable 1/O response times, ...
> internal errors ?

Without any
Inter nal dedicated
hardwar e on the
targeted system ?

» André Seznec
» Caps Team

Irisa

Active attack: setting the processor in
a predetermined state

= Load the processor with many copies of a process that:
> flushes the caches (I, D, L2 caches)
> flushes the TLBs
> sets the branch predictor in a predetermined state

= HAVEG outputs were still unpredictable

» André Seznec
» Caps Team

Irisa

HAVEG vs usual entropy gathering

= Embedded in the system

= measures a few parameters

» André Seznec

Caps Team
Irisa

[—

HAVEGE
HAVEG and Expansion

HAVEG is CPU intensive

= The loop is executed a large number of times, but long after
the last OS interrupt, hardware volatile states tend to be in a
predictable state:

> Instructions become present in the cache

2> branch prediction information is determined by the N
previous occurrences

> presence/absence of data in the data cache is predictable

L essuncertainty isgathered long after the
last OSinterrupt

» André Seznec
» Caps Team

Irisa

HAVEGE= HAVEG + pseudo-random
number generation

Embed an HAVEG-like entropy gathering algorithm in a
pseudo-random number generator

A very smple PRNG:

-two concurrent walksin atable

-random number isthe exclusive-OR of thetwo read data

But the tableis continuoudy modified using the hardware
clock counter

» André Seznec
» Caps Team

Irisa

An example of inner most iteration

if (pt & 0x4000){ PT2 = PT2" 1} Teststo exercisethe
if (ot & 0x8000){ PT2=PT2 + 7;} branch predictor

PT=pt & Ox1fff; pt= Walk[PT]; '
PT2=Walk[(PT2 & Oxfff) A ‘ Thetwo concurrent walks .

((PT ~ 0x1000) & 0x1000)];

RESULT[i] A= PT27pt ; i++; ‘ Output generation

T:((T<< 11) A (T>> 2]_)) + HardCl OCk();

pt = pt A T; Walk{PT]=pt; Entropy gathering

and table update

» André Seznec
» Caps Team

Irisa

HAVEGE loop

= Number of unrolled iterations is adjusted to fit exactly in the
Instruction cache:

> exercise the whole I-cache and the branch prediction
structure

= Size of the table is adjusted to twice the data cache size:
> hit/miss probability is maintained close to 1/2

= + a few other tricks:
> exercise the TLB
> personalize each iteration

» André Seznec
» Caps Team

Irisa

HAVEGE internal state

The usual memory state of any
PRNG

+

André Seznec

» Caps Team
Irisa

Maintaining unpredictable hidden
volatile states

Taken or not-taken
with p=1/2

Hit/misson the L1 cache
with p=1/2

» André Seznec
» Caps Team

Irisa

Security of HAVEGE= internal state

= Reproducing HAVEGE sequences:
> Internal state is needed

= Collecting the internal state is impossible:
> destructive
> or freezing the hardware clock !

= |f an attacker was able to capture (guess) a valid internal state
then he/she must also monitor (guess) all the new states
continuously injected by external events

Dealing with continuous and unmonitorable
reseeding isnot easy !!
» André Seznec
»CapsTeam

Irisa

HAVEGE continuous reseeding

= On each OS interrupt:
> internal state of the generator is modified
» thousands of binary states are touched
> complex interaction between internal general state and OS
servicing:
 service time of an OS interrupt depends on the initial
hardware state
= Any event on the memory system touches the state
> asynchronous events on the memory bus !

» André Seznec
» Caps Team

Irisa

HAVEGE:
uniform distribution and irreproducibility

= When the Walk table is initialized with uniformly distributed
random numbers, generated numbers are uniformly distributed

> use of an initialization phase: HAVEG

= Irreproducibility:
> irreproducibility of the initial state ensures irreproducibility of
the sequences
> even, with the same initial Walk table content, rapid
divergence of the result sequences:
» collecting the ith to i+16th results pass the tests for i= 100000

» André Seznec
» Caps Team

Irisa

HAVEGE 1.0

= [nitialization phase 1.

> HAVEG on instruction cache and branch predictor
= [nitialization phase 2:

> HAVEGE without result production

One CPU second worth recommended per phase

Toour knowledge 1/20s and a single phase is sufficient
= HAVEGE main loop

» André Seznec
» Caps Team

Irisa

Portability

= User level

> access to the hardware clock counter in user mode is
needed

= Just adapt a few parameters:
> | and D cache size, branch predictor sizes
> adjust the number of iterations in the loops to fit the I-cache

» André Seznec
» Caps Team

Irisa

Performances HAVEGEL1.0

= To collect 32 Mbytes on unloaded machines:
> 570 million cycles on UltraSparc Il
> 890 million cycles on Pentium Il (gcc Linux and Windows)
> 780 million cycles on Pentium Il (Visual C++)
> 1140 million cycles on Athlon (gcc Linux and Windows)
> 1300 million cycles on Itanium

over 100 Mbitg/s on all platforms

» André Seznec
» Caps Team

Irisa

HAVEGEZ2.0

= Reengineered for :
> Simplicity:
« A single loop for initialization and production

> Portability:
» Setting the data cache, TB sizes
* Adapting the number of iterations

> Performance for non-cryptographic applications

» André Seznec
» Caps Team

Irisa

Performances HAVEGEZ2.0
(non cryptographic)

= To collect 32 Mbytes on unloaded machines:
> 260 million cycles on UltraSparc Il
> 270 million cycles on Pentium 4 (gcc Linux and Windows)
> 270 million cycles on PowerPC 7400 (MacOS 10)
> 630 million cycles on Itanium

Faster and more uniformally
distributed than random()

» André Seznec
» Caps Team

Irisa

Entropy Gathering + PRNG

Hardware states
N\
\
1’

Andre Seznec

» Caps Team
Irisa

Specific
Externd
Events

HAVEGE

Hardware states
Illions of binary states

External
Events » An(d:ré Sgrznec
» aps Team

Irisa

Further hiding of the internal state

HAV EGE sequences are unpredictable
but,

one may want to use other tricksto
further hide the internal state

» André Seznec
» Caps Team

Irisa

Personalization

= On HAVEGEL1.0:
> 1. random generation of parameters
« constants, initialization, operators

> 2. Recompilation

> 3. At runtime, the sequence depends on:
 activity at run time
 activity at installation time

» André Seznec
» Caps Team

Irisa

Combining PRNGs with HAVEGE

= Yes, but | was really confident in my favorite PRNG
> just embed your favorite PRNG in HardClock() :-)

> and continuously reseed your second favorite with
HAVEGE outputs !

= Reengineer HAVEGE with a robust PRNG:

> take a robust PRNG code, add tests,unroll, etc to exercise
hardware volatile states

» André Seznec
» Caps Team

Irisa

Further possible tricks

= Use of a multithreaded HAVEGE generator:
> share tables, pointers, code,
- but no synchronization !!

= Use self-modifying code:
> modify operators, constants on the fly with random values

» André Seznec
» Caps Team

Irisa

Conclusion

= The interaction between user applications, external events, and
the operating systems creates a lot of uncertainty in the
hardware volatile states in microprocessor:

> orders of magnitude larger than was previously captured by
entropy gathering techniques.

= The hardware clock counter can be used at user level to gather
(part of) this uncertainty:

> HAVEG: a few 100 ’s Kbits/s
= PRNG and volatile entropy gathering can be combined:
> HAVEGE: > 100 Mbits/s
e unaccessible internal state
e continuous and unmonitorable reseeding

André Seznec

» Caps Team

Irisa

Still not convinced ?

= Justtest it:
> http://www.irisa.fr/caps/projects/hipsor/HAVEGE. htm|

= Platforms:
> UltraSparc Il and lll, Solaris
> Pentium Ill, Pentium 4, Athlon - Windows, Linux
> Itanium, Linux
> PowerPC G4, MacOS 10
> PocketPC

» André Seznec
» Caps Team

Irisa

