INSTITUT DE RECHERCHE EN INFORMATIQUE ET SYSTEMES ALEATOIRES
» I R I S E Campus de Beaulieu — 35042 Rennes Cedex — France

Tél. : (33) 02 99 84 71 00 — Fax : (33) 02 99 84 71 71
» http://www.irisa.fr

HArdware Volatile Entropy Gathering and Expansion:
generating unpredictable random number at user level

André Seznec Nicolas Sendrier

Theme 1 — Réseaux et systemes
Projet CAPS

Publication interne n ° 1492 — Octobre 2002 — 20 pages

Abstract: The availability of a random number generator with high cryptographic
qualities on a computer is one of the central issues of cryptographic implementations.

HAVEGE (HArdware Volatile Entropy Gathering and Expansion) is a new software
heuristic for generating unpredictable random numbers on PCs and workstations. PCs and
workstations are built around modern superscalar microprocessors. These processors fea-
ture complex hardware mechanisms that aim to increase performance. A significant part
of the global state of the microprocessor is not architecturally visible through the instruc-
tion set (e.g. caches, branch predictors and buffers). HAVEGE leverages the uncertainty
introduced in the internal states of the processor by external events. HAVEGE combines en-
tropy/uncertainty gathering from the architecturally invisible states of a modern superscalar
microprocessor with pseudo-random number generation.

First we show that the hardware clock cycle counter of the processor can be used to
gather part of the uncertainty introduced by operating system interruptions in the internal
state of the processor. Tens of thousands of unpredictable bits can be gathered per oper-
ating system interruption in average. Then, we show how this entropy gathering technique
can be combined with pseudo-random number generation in HAVEGE. Since the internal
state of HAVEGE includes thousands of internal volatile hardware states, HAVEGE fea-
tures a very high security level. HAVEGE also reaches an unprecedented throughput for a
software unpredictable random number generator: more than 100 Mbits/s with off-the-shelf
workstations and PCs.

Key-words: Superscalar processor, cryptography, hardware counters, unpredictable
random number generators, operating system, operating system interruption.

(Résumé : tsup)

* CODE project, INRIA Rocquencourt

s &

Centre National de la Recherche Scientifique Institut National de Recherche en Informatique
(upressA 6074) Université de Rennes 1 — Insa de Rennes et en Automatique — unité de recherche de Rennes

HAVEGE: un générateur logiciel d’aléa imprévisible en
mode usager
Résumé : Nous présentons HAVEGE, un nouveau générateur de nombres aléatoires

imprévisibles. HAVEGE exploite I'interaction des états matériels non architecturaux des
processeurs superscalaires modernes et des systemes d’exploitation.

1 Introduction

We define an unpredictable random number generator as a practical approximation of a
truly random number generator. Instead of formally proven uniform distribution and for-
mally proven irreproducibility, an unpredictable random number generator features practical
uniform distribution and practical irreproducibility which are defined as follows:

e Practical uniform distribution: it is computationnally unfeasible to distinguish
between the distribution of the outputs from the generator and the uniform distribu-
tion.

e Practical irreproducibility: for any observer or even the user itself, there is no
practical way to exactly complete an uncomplete sequence of generated numbers.

The availability of an unpredictable random number generator on a computer is one of
the central issues of cryptographic implementations. Both current hardware and software
unpredictable random number generators available with off-the-shelf PCs and workstations
are quite slow (respectively 10-100 Kbit/s [11] and 10-100 bit/s [9]). Due to their limited
throughput, these generators are generally used for generating seeds for software pseudo-
random number generators.

HAVEGE (HArdware Volatile Entropy Gathering and Expansion)! is a new software
heuristic for generating unpredictable random numbers on PCs and workstations. PCs and
workstations are built around modern superscalar microprocessors. These processors fea-
ture complex hardware mechanisms that aim to increase performance. A significant part
of the global state of the microprocessor is not architecturally visible through the instruc-
tion set (e.g. caches, branch predictors and buffers). HAVEGE leverages the uncertainty
introduced in the internal states of the processor by external events. HAVEGE combines en-
tropy/uncertainty gathering from the architecturally invisible states of a modern superscalar
microprocessor with pseudo-random number generation.

First, we present the HAVEG (HArdware Volatile Entropy Gathering) family of algo-
rithms. These algorithms indirectly gather (part of) the uncertainty introduced by external
events in the internal volatile hardware states of the processor from the memory hierarchy
and the branch prediction mechanism. The HAVEG algorithm relies on the hardware clock
cycle counter. This counter is used as an indirect probe to extract (part of) the entropy
from the internal volatile hardware states. On current PCs and workstations, the HAVEG
algorithms generates several tens of thousands of unpredictable random bits, in average, per
every operating system interruption.

Then, we extend the HAVEG algorithms to the HAVEGE generator (HArdware Volatile
Entropy Gathering and Expansion). HAVEGE combines HAVEG-like entropy gathering
with simple pseudo-random number generation (walk in a self-modifying table). The HAVEG-
E generator combines two major qualities; a very high throughput (more than 100 Mbits/s

1We coined this name in respect with entropy gathering techniques since we exploit the same sources (i.e.
external events) of uncertainty in the execution of a process.

4 André Seznec Nicolas Sendrier

of unpredictable random numbers) and a very high security level. The security of HAVEGE
relies on its internal state. This internal state consists of classical data mapped in memory
and in thousands of binary volatile hardware states. The global status of those hardware
states is not accessible, even for the user running the generator. Any external event intro-
duces major perturbation in this internal state of the generator. Any attempt to indirectly
collect the invisible part of the internal state alters it.

The remainder of the paper is organized as follows. Section 2 briefly discusses the
current practice on unpredictable random number generators. In Section 3, we describe
some of the states of internal components that may generate uncertainty in the execution
time of simple sequences of instructions. Then we point out that most of these states are
not directly monitorable by the user and will also be modified by all the external events.
Section 4 presents quantitative measures of the non-architectural hardware states that are
modified by operating system interruptions in the memory hierarchy and in the branch
prediction tables with a Sun Solaris workstation featuring an UltraSparc II and with a
Linux Pentium IIT workstation. Section 5 introduces the HAVEG family of algorithms.
These algorithms gather the uncertainty introduced in internal volatile hardware states by
operating system interruptions. Section 6 presents the HAVEGE generator: a user level
self-modifying random walk (the walk is self-modified using the hardware cycle counter) is
used to both generate sequences of unpredictable random at an unprecedented rate (up to
100 Mbit/s on current processors) and continuously gather and propagate the uncertainty
introduced by external events in internal hardware states. Uniform distribution qualities
are analyzed. The internal invisible state of the HAVEGE generator is analyzed. Finally,
Section 7 summarizes this study.

2 Random numbers in cryptography

Random numbers are used in many cryptographic applications like secret key generation
or authentication protocols. If an opponent can guess even a small proportion of the random
bits, then the security of the system may be dramatically endangered. Being able to produce
safe random numbers is a necessary condition for implementing cryptography.

2.1 Practice

Hardware truly random number generators rely on non deterministic processes. The
most convincing implementations use quantum mechanics [10, 19] and can achieve a rate of
up to one megabit per second. Radioactivity can also produce truly random bits [21] but
at a much lower rate (240 bits per second). Many other hardware generators exist. They
usually exploit the thermal noise in electronic devices. For instance, Intel Random Number
Generator [17, 5] uses such a noise, and performs at an average rate of 75 kilobits per second
[11]. However, while these generators are based on non deterministic physical process, most
of them are slightly biased and do not pass uniform distribution tests [9] (Section 4.1 in [9]

In the absence of dedicated hardware random number generators on a computers, there
is a possibility to exploit the randomness from chaotic air turbulence in disk drives [2].

Irisa

HArdware Volatile Entropy Gathering and Expansion: generating unpredictable random number at user levelb

However Jakobsson et al. [9] evaluated to only 5 random bits per minute, the amount of
“proven” randomness that could be extracted by this process. Such an approach is therefore
not very practical. Jakobsson et al also proposed a “utility” mode where 577 bits per minute
are obtained. Standard statistical tests [15] were unable to distinguish the output of the
utility mode from truly random sequence.

Fortunately, many events occurring in a computer, though deterministic by nature, are
sources of uncertainty. RFC 1750 [8] explains how the occurrences of various events (mouse,
keyboard, disk, network, ...) can be used to build a random number generator. Such gen-
erators have been implemented; first in Linux (/dev/random), then for most Unix platforms
with the Entropy Gathering Daemon?. However, they perform at a relatively low rate (a
few bytes per second for /dev/random if the machine is not active). Practical solutions in
cryptography use a pseudo-random number generator whose seed is obtained by entropy
gathering techniques. This is the case, for instance, of the random number generator of
PGP? and of Yarrow [12]*.

Our approach is an extension of these entropy gathering techniques. These implemen-
tations were using only measurable external parameters (date, duration, size of the data,
data itself, ...). Our approach leverages the modifications that external events induce on
the global state of the machine particularly on unmonitorable internal states.

2.2 “Demonstrating” unpredictable randomness

Unpredictable random generators have to exhibit two important qualities. First the
distribution of the generated sequence of numbers must be as uniform as possible. Second,
reproducing the exact sequence of generated numbers should be impossible in practice.

2.2.1 “Evidence” of practical uniform distribution

Proving that a sequence of bits is uniformly distributed is virtually impossible. However
most non-uniform sequences have properties that make them fail some algorithmic tests.

The battery of tests for uniform distribution used in this paper includes the FIPS-140-
1 test sequence for random number generators®, entropy test, chi2 test, Monte Carlo tests
[7, 14], [15]® and the NIST statiscal suite[6]. Diehard was also used as the empirical evidence
of the randomness of their “utility” mode random generator by Jakobson et al. [9].

Failing these tests will prove that a sequence is not uniformly distributed. Passing the
tests does not prove that the sequence is completely random, but might be considered as a
good indicator that finding (and exploiting) a bias in the sequence will be an unsurmountable

task
2http://www.lothar.com/tech/crypto/
3Pretty Good Privacy, http://www.pgpl.org/ or http://www.pgp.com/
4http://www.counterpane.com/yarrow.html
5see http://csrc.ncsl.nist.gov/fips/fips1401.htm
SDieHard is a popular battery of tests for uniform distribution of number sequence that has been developed
by George Marsiglia over the last thirty years. DieHard is available at http://stat.fsu.edu/“geo/

PIn-° 1492

6 André Seznec Nicolas Sendrier

2.2.2 Showing practical irreproducibility

In order to show the practical irreproducibility of the generated sequences, we will show
that there is no mean for the user itself and a fortiori for an external observer to collect the
internal state of the generator.

2.3 Security assumptions

Unpredictable random number generation is seen as a matter of security. Security in-
volves many components that may be individuallt attacked. Because the purpose of this
paper is only unpredictable random number generation, we will suppose that the opponent
may access the output of the random number generator, that he/she may log on as a user
and even as a superuser to similar hardware platforms where the random number generator
is running. We even consider that he/she has access to the platform (e.g. time sharing)
where the random number generator is running. However we assume that he/she can run
only in user mode, for instance he/she can not read or write data sections belonging to the
random number generator.

3 Parameters influencing the execution time of a sequence of in-
structions

In microprocessor systems built around modern superscalar processors, the precise num-
ber of cycles needed to execute a (very short) sequence of instructions depends on many in-
ternal states of hardware components inside the microprocessor as well as on externalevents
to the process.

In this section, we first list some of the components and associated internal hardware
states of modern superscalar processors that impact the number of cycles that separates
two successive reads of the hardware cycle counter. Then, we discuss the means that are
available for an attacker to reproduce (guess with a reasonable probability of success) these
internal states of the processor.

3.1 Components

Let us consider a simple sequence of instructions including at least one conditional branch
and one load /store that separates two consecutive reads of the hardware clock cycle counters.

The number of cycles for executing this short sequence will depend on branch prediction
outcome and on the presence or absence of data and instructions in the memory hierarchy (L1
and L2 caches, TLBs). In addition to these binary status (present/absent or correct/wrong),
the execution time of a sequence also depends on the precise status of all instructions in all
stages of the execution pipeline. Moreover modern superscalar processors feature numerous
buffers that optimizes performance. The response time of the memory hierarchy servicing a
miss depends on the precise status of all these buffers. Additionnaly, the response time of
the memory on a L2 cache miss will depend on any conflicting event on the memory system
or on the system bus.

Irisa

HArdware Volatile Entropy Gathering and Expansion: generating unpredictable random number at user level?

3.2 Reproducibility of the internal states of the processor

Our security assumption (Section 2.3) is that the attacker can access the platform where
the random generator is running in user mode, but not as a superuser. Using the hardware
cycle counter in order to produce unpredictable random numbers would not be a wvalid
approach if this attacker was able to reproduce the global state of the processor and then
to reproduce the sequence.

PC or workstation instruction sets do not provide user level direct ways to monitor the
internal states of the processor. The user will be able to indirectly detect the presence or
the absence of a data block in the cache by using the hardware clock counter in conjunction
with the read of the data. Such an action will displace other data blocks and instruction
blocks and will also modify buffer states and branch prediction table entries. The knowledge
of the global state of a microprocessor for an arbitrary point in any program is unattainable
for the proprietary of the process and a fortiori for the attacker.

The only possible mean for an observer to record the global internal states of a micropro-
cessor system would be to freeze the hardware clock and probe all states in the processor.
Such functionality is provided for testing the processor in development labs, but is not
available at user level on commodity PCs and workstations !

The number of cycles needed to execute an instruction sequence does not depend on the
whole global state of the processor, but only on the fraction of the hardware that it really
activates. For instance, a loop which task only consists of reading the hardware clock counter
will exhibit a very regular behavior. An attacker would have a reasonable probability to
reproduce a significant part of the same sequence. Therefore the random generator should
activate a large fraction of the unmonitorable hardware states in the processor.

However, no matter the activated hardware complexity, in the absence of external injec-
tion of new states, any algorithm would only produce deterministic results. The operating
system interruptions (and all the external events) introduce modifications of the internal
hardware states of the processor.

As a consequence:

A robust unpredictable random generator should activate a significant amount
of unmonitorable hardware states that are touched with each operating system
interrupt.

4 Operating system interruptions and unmonitorable hardware s-
tates

Among the states that are affected by an operating system interruptions, let us cite the
contents of the instruction and data caches, the translation buffers (TLBs), the L2 cache
and the branch prediction structures.

In this section, we report estimates on the minimum numbers of blocks or entries that are
displaced from data/instruction L1/L2 caches and instruction/data TLBs by a single operat-
ing system interruption. Intuitively this represents a minimal evaluation of the perturbation

PI n-° 1492

8 André Seznec Nicolas Sendrier

introduced by the interruption. We also report the “minimum” cumulated perturbation
with 100 consecutive interruptions. These numbers are reported for a non-loaded machine
(no other heavy process running) since with a loaded machine more blocks (in average) will
be evicted.

Our evaluation was done on a Sun Workstation featuring an Ultrasparc II running with
Solaris. A partial analysis of a Linux PC featuring a Pentium III is also presented.

4.1 Experimental methodology

We consider here five memorization structures. We successively measure the impact of
process interruptions by the operating system on these hardware structures as follow:

An algorithm using a working set that meets the size of the hardware structure is ran.
A while loop on the hardware clock counter waits for the occurrence of an operating system
interruption. On the return from the interruption, while the working set is reinstalled in the
hardware structure, the hardware clock counter is used to determine which element were
displaced by the interruption. When accessing back a data/instruction block (or a new page)
after the return from the interruption, we timed its access with the hardware counter. For
each of the structures, we were able to determine a threshold indicating whether the block
has been displaced or not for the UltraSparc II. For the Pentium III featuring out-of-order
execution, our evaluation was much more difficult and is only partial.

4.2 Analysis on UltraSparc IT and Solaris
4.2.1 L1 data caches

The UltraSparc L1 data cache is 16Kbyte and direct-mapped. It features 512 32-byte
cache sectors. A miss fetches only 16 bytes while the second 16-byte block will be fetched
only on demand. The state of sector location is therefore represented by the physical address
of the data sector mapped onto it and the presence/absence of the two halves of the sector.

We experimentally measured that on a non-loaded machine most of the operating system
call touch about 80-200 data cache sectors (with a peak around 100-110 cache sectors) while,
depending on the runs, 1-10 % of the operating system calls displace almost all the blocks
from the cache. For 100 consecutive interruptions, the number of displaced blocks always
exceeded 11,500 in our experiences.

4.2.2 L1 instruction cache and the conditional branch predictor

The 16Kbyte instruction cache on the UltraSparc is 2-way set-associative and features
32-byte cache blocks. On the UltraSparc, the branch predictor is incorporated in the I-cache:
a 2-bit counter is associated with every pair of instructions and a prediction of the address
of the next 4-instruction block is associated with every 4-instruction group.

The state of a cache set can be represented by the ordered set of the instruction blocks
addresses mapped onto it and the associated branch prediction information. An operating
system call will flush down part of the I-cache, and therefore will also flush part of the
branch prediction information.

Irisa

HArdware Volatile Entropy Gathering and Expansion: generating unpredictable random number at user level9

We measured that, on a non loaded UltraSparc machine, most operating system inter-
ruption displace around 250 32-byte blocks of instructions , while 100 consecutive operating
systems displace at least 30,000 blocks”.

4.2.3 TLBs

The UltraSparc II features a data TLB and an instruction TLB. Both TLBs have 64
entries and are fully associative and feature a Not Last Used replacement policy. The global
state of the TLB can be represented by the set of the addresses of the pages mapped by the
TLB and the state of the logic needed for implementing the replacement policy.

We experimentally measured that, on a non loaded machine, every operating system
interruption displaces a significant amount of data TLB entries (minimum 16, 52 in average
1), but only displaces a few instruction TLB entries (6 in average). For 100 consecutive
operating system interruptions, the minimum cumulated number of displaced blocks always
exceeded 4,500 for the data TLB, but only 600 for the instruction TLB.

4.2.4 L2 caches

The UltraSparc II processor is used in conjunction with a 1 Mbyte L2 cache featuring
64-byte blocks.

In the vast majority of cases, an operating system interruption replaces between 850 and
950 blocks. The minimum cumulated number of ejected blocks for 100 operating systems
interruptions always exceeded 95,000.

4.2.5 Summary on UltraSparc II and Solaris

On a Sun workstation featuring an UltraSparc II and Solaris, the five memorization
structures we have considered in this section are subject to lose a significant amount of
volatile non-architectural hardware information on operating system interruptions.

4.3 Partial analysis on Linux Pentium IIT PC

While the internal hardware states in an out-of-order execution processor exhibit more
opportunities for uncertainty that an in-order execution processor, the quantitative analysis
of the hardware states modified by operating system interruptions on a Pentium III (or any
out-of-order execution processor) is much more difficult than the one presented before.

For instance, due to out-of-order execution, it is very difficult to discriminate between
a miss and a hit in a cache (partcularly the instruction cache), just through the number of
cycles between two successive reads of the hardware counter.

However we were able to measure that about 150 32-byte blocks in average are replaced
from the L1 cache per OS interruption, and, that, opposite to Solaris, the distribution of the

7This measure is particularly difficult to get precisely. In order to get it, we had to build a basic block
of 4096 instructions that is executed in 1024 cycles (as close as possible) when the complete sequence hits
in the cache. Then we measure the execution time of the sequence after the operating system interruption
and get an approximation of the number of misses by dividing the execution time minus 1024 cycles by 7
(the minimum miss penalty on the UltraSparc). The assumption that the miss is served in a minimum delay
holds because our code did not exercise at all the data cache.

PIn-° 1492

10 André Seznec Nicolas Sendrier

number of evicted blocks had two major points around 10-20 blocks and between 200-260
blocks.

We also showed that every operating interruption displaces at least 40 entries from the
BTB and that many of them displace more than 100 entries. Note that on the Pentium III,
replacing an entry in the 512-entry BTB is displacing a branch target address, but also 36
bits for predicting branch direction.

4.4 Summary

While the numbers presented in this section are only valid for the considered platforms,
the same conclusion will prevail for other processors and other operating systems for PCs
and workstations. For instance, other processors (e.g Alpha 21264, Pentium 4) features more
complex branch prediction mechanisms that will be more affected by the operating system
than the ones on the UltraSparc IT or Pentium III.

5 HAVEG algorithms: gathering (part of) the uncertainty injected
by operating system interrupts

A large number of internal unmonitorable hardware states are modified by any operating
system interruption. Therefore one can expect that a significant uncertainty is injected in
these volatile hardware states on each operating system interruption.

We present a simple family of entropy gathering algorithms, the HAVEG (HArdware
Volatile Entropy Gathering) algorithms. Unlike previous entropy gathering implementa-
tions, HAVEG algorithms are ran at user level. The HAVEG algorithms use the hardware
clock counter to gather uncertainty from a short sequence of instructions that touches a few
unmonitorable hardware states. We have designed HAVEG algorithms to exercise respec-
tively the data cache, (part of) the instruction cache and the branch predictor, the data
TLB and the L2 cache.

The HAVEG algorithm we use for gathering uncertainty from the instruction cache and
branch prediction structure is detailed below. Then we present the volumes of unpredictable
random numbers that can be extracted from different processor components.

5.1 Gathering uncertainty from the I-cache and branch prediction tables

Figure 1 illustrates the HAVEG algorithm we used for gathering part of the uncertainty
injected in the instruction cache and branch prediction tables.

HARDTICK() is a function that reads the hardware clock counter. It also tests the
difference with the last read value. The NBINTERRUPT counter is incremented whenever
this difference is higher than a threshold indicating that there was an interruption between
two successive calls to the function reads.

Throughout the loop, HARDTICK() is called many times and the result of this read is
combined through exclusive-OR and shifts in the Entrop array. The unrolling factor (XX)
was adjusted for each of the targeted architectures. The compiled loop body just fits in
the instruction cache (the trace cache for the Pentium 4) and does not overflow the branch
prediction structures.

Irisa

HArdware Volatile Entropy Gathering and Expansion: generating unpredictable random number at user levelll

The while loop is run until the number of encountered interruptions reaches NMININT.
SIZEENTROPY is the size of the table used for gathering the read value of the hardware
clock counter.

Note that the flow of instructions executed by the loop body of the algorithm is com-
pletely deterministic. Therefore, in the absence of operating system interrupt, the content
of the instruction cache and also, of the branch predictor should be completely predictable:
we checked that the iterations of the loop just after an interruption present much more
uncertainty that the iterations that occur long after the last iteration.

int Entrop[SIZEENTROPY];
int A;
1 while INTERRUPT < NMININT){
2 if (A==0) A++; else A—;
3 Entrop[K] = (Entrop[K] << 5) * (Entrop[K] >> 27) * HARDTICK() *
4 (Entrop[(K + 1) & (SIZEENTROPY - 1)] >> 31);
5 K = (K + 1) & (SIZEENTROPY - 1);
6 **repeated lines 2 to 5 XX times **
7 }

Figure 1: Gathering uncertainty from the instruction cache and branch predictor

The Entrop array gathers (part of) the uncertainty injected in the instruction cache and
the branch predictor by the operating system interrupts. The content of the Entrop array
is recorded in a file and the Entrop array is reinitialized to zero.

5.2 Estimating the amount of collected entropy/uncertainty

Standard evaluation of entropy fails f(k) being the frequency of appearance of event
k from a source, the standard definition of entropy of a random source is:

E=-Y" f(k) log: f(k) (1)
k

Unfortunately, formula (1) does not allow practical evaluation of the entropy of sources with
large entropy (in practice larger than 30 bits).

The source of external entropy of the HAVEG algorithm is the modification of the in-
ternal hardware volatile states by external events such as operating system interruptions.
Thousands of hardware volatile states are touched and modified on each OS interruption.

For instance, on a Solaris UltraSparc II station, setting NMININT to 1 and SIZEEN-
TROPY to 8 shows that the first million 8-word recorded by the HAVEG algorithm illus-
trated in Figure 1 were all distinct. This indicates that the entropy introduced by an
operating system interrupts in the hardware volatile states is larger than 20 bits per OS
interrupts, but does not allow further estimation of the real entropy range.

PIn-° 1492

12 André Seznec Nicolas Sendrier

Empirical estimation of entropy/uncertainty In order to empirically estimate the
range of entropy/uncertainty introduced collected by a HAVEG algorithm on each OS in-
terrupt, we used the following method.

Fixing the size of the Entrop array to 65536, we determine a threshold for NMININT
above which the content of Entrop array is consistently considered as practically uniformly
distributed by our battery of tests. On each experiment, a 16 Mbytes file was collected i.e,
64 successive runs. Then our battery of tests for uniform distribution was run.

Using this empirical estimation, we found that, on all the current target platforms of
HAVEGE [18], the HAVEG algorithm illustrated in Figure 1 allows to gather at least 8K-
64K unpredictable bits in average per operating system interrupt (from 8K on Itanium /Linux
to 64K on Solaris/Ultrasparc IT). That is, at least a few hundred thousands of unpredictable
random bits in less than one CPU second, i.e three to four orders of magnitude more than
the entropy gathered by previously available entropy gathering techniques.

6 HAVEGE: combining entropy/uncertainty gathering and pseudo-
random number generation

The previously available entropy gathering methods cannot accommodate applications
for which very high volume (i.e megabits or gigabits) of random numbers are needed. The
usual way to accommodate such applications is to use a pseudo-random number generator
that has been seeded with a (relatively) short unpredictable random key. This approach
suffers two potential weaknesses. First, the key is relatively short and might be compromised
by brute force. Second, the pseudo-random algorithm might suffer a weakness unknown to
the user, but known to an attacker that might allow him/her to predict the sequence with a
reasonable accuracy. The HAVEG algorithm family could be used to seed a pseudo-random
number generator with longer unpredictable seeds or to periodically reseed a pseudo-random
number generator.

As an alternative, we propose a more secure approach; the HAVEGE algorithm (HArd-
ware Volatile Entropy Gathering and Expansion). HAVEGE combines concurrent contin-
uous hardware volatile entropy gathering with pseudo-random number generation. This
approach allows very high throughput of unpredictable random numbers (more than 100
Mbits/s on our target platforms) and offers a very high security level. At any step, the
internal state of the HAVEGE random number generator consists of the content of large
memory table and of thousands of internal hardware states. Security of the generator is
first based on the inability for the user or an observer to directly monitor the internal state
of the generator without altering it. Second, operating system interruptions and external
events continuously reseed the generator.

6.1 Algorithm presentation

We modified the HAVEG algorithm to generate on-the-fly random numbers through a
very simple algorithm. Two concurrent self-modifying walks in a table, while the collected
entropy continuously updates the walk table.

Irisa

HArdware Volatile Entropy Gathering and Expansion: generating unpredictable random number at user levell3

The HAVEG algorithm family exercises unmonitorable hardware states in a predeter-
mined order. Therefore long after the last interruption the content of the exercised unmon-
itorable hardware states is highly predictable (for instance the content of branch predictor
entry). In the HAVEGE algorithm, the volatile hardware states are visited in chaotic order
and/or are maintained in unpredictable states.

HAVEGE description An HAVEGE 2 algorithm is illustrated on Figure 2. It has been
designed to fully activate both instruction and data L1 caches. It also activates a significant
part of the branch prediction tables.

int Walk[128*1024];
register int pt,PT,PT2;
register int i;
0 INITIALIZATION of pt,PT2 and Walk[0,..,16383] with ! through HAVEG
0 unpredictable random numbers ! for instance
1 loop{
2 if (pt & 0x4000) X++; ! ezercising the branch predictor
3 if (pt & 0x8000) X++; ! idem
4 PT=pt & 0x1fff; pt= Walk[PT]; ! exercising the L1 data cache
5 PT2=Walk[(PT2 & 0xfff)"((PT " 0x1000) & 0x1000)]; ! idem
6 RESULT[i]=PT2"pt; ! hiding the walk content
7 T = ((T << 7) + HardClock()) * (T >> 25); ! reading the hardware clock counter
8 pt =pt * T;
9 Walk[PT]= pt; ! updating the Walk table
10 i++;
11 ** lines 2 to 9 repeated 101 times ** ! for using the whole instruction cache
12 X+= Walk[pt & 0x1ff]; exercising the data TLB
13}

Figure 2: An HAVEGE algorithm (version for UltraSparc IT and Pentium III)

First an initialization phase consists in filling a memory table Walk twice as large as the
L1 data cache with unpredictable random numbers. This is equivalent to seed the generator.
This phase can be done using an HAVEG algorithm for instance.

The HAVEGE main loop is described below:

e HardClock() is a function that reads and returns the hardware clock counter value.

e Two concurrent walks are performed in parallel in a table of 8K 4-byte integers. The
table is twice as large as the L1 data cache. That is, if the walks are random then, for
each of the reads, the probability of a hit in the L1 cache is very close to %

8The implementation we distribute is slightly different. But the underlying principles of its design are
those presented here.

PI n-° 1492

14 André Seznec Nicolas Sendrier

e Two distinct table entries are read through indirect pointers on each step (Lines 4 and
5). They are exclusive-ORED to generate a random number (Line 6). The purpose of
the exclusive-OR of the two data read on the Walk table is to hide the content of the
Walk table from any possible observer. If we had used directly the data read in the
data as a random number then an observer might have been able to follow the walk
for a while and might try to guess (part of) the content of the table.

e Two data dependent tests (line 2 and line 3) were introduced in each iteration of
the walk to make its behavior dependent on branch prediction information. For both
branches, the probability of the branch being taken is % if the content of the table is
unpredictable.

e The number of the unrolled steps (101) in the main loop of HAVEGE was tuned to
get the inner loop body code just fitting in the instruction cache (for both Pentium III
and UltraSparc IT)°. This maximizes the number of instruction blocks (and associated
branch prediction information) removed from the instruction cache on each operating
system interruption.

e Line 12 in the algorithm was added to fully activate the data TLB. 128 pages are
potentially touched by this instruction, i.e twice as the number of entries on the Ul-
traSparc II and Pentium III. Probability of the accessed page of being present in the
TLB is close to % This last step in the algorithm is introduced to take part of the
entropy introduced in the data TLB during operating system interruptions. However
servicing a TLB miss is time consuming. To optimize the throughput of the generator,
in a while iteration, the TLB is indirectly probed only once (the other accesses to the
TLB will hit except just after the return from the interruption). This is sufficient to
gather all the entropy injected in TLB by an OS interrupt.

6.2 Internal state of the HAVEGE generator

With a pseudo-random number generator, at any step in the computation, one can define
its internal state as the values of internal variables and tables. This internal state determines
the future behavior of the generator and the sequence of numbers that it will generate.

At any moment, one can also define the internal state of the HAVEGE generator as the
content of the Walk table, the values of PT and PT2 pointers and the values of all volatile
hardware states in the processor (branch predictors, instruction and data caches, ...), on
the system bus and in the memory system that are touched by HAVEGE. This determines
the execution time of the sequences of instructions in HAVEGE. If one was able to capture
this internal state at a given point then he/she would be (theoretically) able to replicate
the generated sequence from this point until the next occurrence of an interruption or until
a new external event on the system bus or the memory system. However, collecting the
internal state of the HAVEGE generator is infeasible at user-level, and any external event
modifies it.

9This unrolling factor depends on the compiler and on the compiler options

Irisa

HArdware Volatile Entropy Gathering and Expansion: generating unpredictable random number at user levell5

We describe below part of the volatile information that belong to the internal state of
the HAVEGE generator on an UltraSparc II workstation. A very similar analysis can be
done for the Pentium III.

L1 Data cache From the HAVEGE generator, each of the 512 32-byte cache lines of the
L1 data cache can be in one of seven possible states. Either it maps one of the two possible
32-byte blocks A0 or Al from the Walk table or it maps a block irrelevant from HAVEGE.
If it maps a relevant block then it maps only one or both the 16-byte sub-blocks. That is,
the L1 cache is in one of 7512 possible states.

Data TLB The loop in HAVEGE touches 128 memory pages. From the HAVEGE algo-
rithm perspective, an entry in the data TLB has 129 possible states: mapping one of the
128 pages or mapping another (irrelevant) page.

The data TLB on the Ultrasparc features 64 entries and is fully associative. From the
HAVEGE generator perspective, the internal hardware state is represented by an ordered
set of 64 pages. In normal mode, i.e long after the last interruption, all these pages belong

to the Walk table and there are 16248!! possible combinations.

L1 instruction cache The inner loop body in the self modifying walk (just) fits in the L1
instruction cache. The L1 instruction cache is two-way set-associative and branch prediction
is embedded in the instruction cache. It features 256 sets.

Only two instruction blocks 10 and I1 from the main HAVEGE loop are mapped onto
a given set s of the instruction cache. A LRU replacement policy is implemented on the
instruction cache.

Therefore, from the HAVEGE perspective, each set has 7 different possible states, B
being an instruction block independent from the HAVEGE algorithm: (10, I1), (11, I0), (B,
10), (B, I1), (10, B), (I1, B) and (B, B). Then the instruction cache can be in at least 725
different states.

On the UltraSparc II, the instruction cache also handles the branch prediction for both
targets and directions. For targets,, two states are visible: either the target is correct or
it is not. In the main loop in HAVEGE, there are 202 +1 conditional branches and 101
calls. From the HAVEGE perspective, the target prediction generator features at least 2304
different states. A 2-bit counter is associated with each conditional branch, therefore from
the HAVEGE perspective, the branch predictor can be in 2496 different states.

Summary Considering only the three memorization structures above, it appears that
the internal state of the HAVEGE generator includes thousands of binary internal volatile
hardware states. From the analysis in Section 4, it appears that a significant fraction of
these states are destructed (modified) by an interruption. Each of these states influences
the self modifying walks in HAVEGE.

Moreover, many other volatile hardware states (pipeline states, buffer contents and sta-
tus, L2 caches, etc.) are part of the HAVEGE internal state. Some of the volatile hardware
states touched by an operating system interrupt that are part of the internal HAVEGE state
are correlated. For instance when a instruction block is evicted then, its associated branch

PIn-° 1492

16 André Seznec Nicolas Sendrier

prediction information is also evicted. The next instruction block has also a high probabil-
ity to be evicted. Nevertheless, there is little correlation between the blocks evicted from
the data cache and the blocks evicted from the instruction cache, or between the branch
prediction information destructed and the pages evicted from the data TLB.

6.3 Security of HAVEGE

The security of the HAVEGE generator relies on both the unfeasibility of reproducing
its internal state, and on the continuous and unmonitorable injection of new uncertainty in
its internal state by external events.

First, as pointed out in Section 3.2, there does not exist any user-level mean for the user
itself to collect the precise internal volatile states of the processor at a given point. Therefore,
nobody, even the user can access the global internal state of the HAVEGE generator. To
reproduce the sequence of the generator after a given point (in the absence of new random
states injection), one would have to reinitiate the algorithm with its complete internal state
i.e, e contents of the table, internal variables and the pointers, but also the internal volatile
hardware states. This task is intractable for the attacker. Collecting the hardware state of
the processor requires freezing the hardware clock on the machine while running the random
number generator:

If an attacker has got this right on your machine, then don’t even think about protecting
your data !

Second, the knowledge of the internal state of the HAVEGE generator on a given cycle
is not sufficient to reproduce the sequences. The internal state is also continuously touched
by all the events on the memory system, on the bus system and by the operating system
interrupts. Then even if the external observer had been able to capture the internal state
of the generator at a point then he/she would only be able to follow the walk for a (very)
limited delay unless he/she is also able to guess (monitor) all the new states continuously
injected by external events. This has to be contrasted with the case of usual pseudo-random
number generation. For a pseudo-random number generator, whenever the internal state is
compromised at a point, the complete future sequence is compromised until new reseeding
is explicitly performed .

6.4 Practical Uniform distribution

We checked that the sequences generated by the HAVEGE algorithm consistently pass
our battery of tests for uniform distribution for all supported target platforms [18].

The tests were performed with the following protocol. The Walk table is initialized
with unpredictable numbers through the HAVEG algorithm for gathering entropy from
instruction cache and branch prediction tables presented in Section 5. We also checked that
the content of the Walk table remains uniformly distributed, even after generating random
numbers for a long time.

6.5 Performance

We checked the performance of the presented HAVEGE algorithm on several configura-
tions for both Pentium ITI(II) Linux and UltraSparc II Solaris. In average on Pentium III,

Irisa

HArdware Volatile Entropy Gathering and Expansion: generating unpredictable random number at user levell7

920 million +/- 5 % cycles were needed to collect 32 Mbytes of random numbers, while on
the UltraSparc II, 500 million +/- 5 % cycles were sufficient. This results in a throughput
close to 280 Mbits/s on a 1Ghz Pentium III system and in a throughput of 150 Mbit/s on
our (3-years old) 300 Mhz UltraSparc II. This throughput is 6 to 7 orders of magnitude
larger than the throughput of the /dev/random driver on Linux.

7 Conclusion

In this paper, we have presented, HAVEGE, a new heuristic to build very high perfor-
mance software unpredictable random number generators.

Modern superscalar processors feature a lot of hardware components whose states do
not influence the semantics of “normal” applications, but that have been added to enhance
performance (caches, branch predictors, intermediate buffers, ...). They are also using com-
plex operating systems. Interactions between user applications and the operating system
create uncertainty in the processor states. This uncertainty is very significant within the
memory hierarchy and the branch prediction structures. We have shown that, the hardware
clock counter gives opportunity to indirectly gather this uncertainty and to produce unpre-
dictable random number sequences: tens of thousands of unpredictable bits can be collected
per operating system interruption.

HAVEGE packs pseudo-random number generation and entropy gathering on hardware
volatile states within a simple code. The sequences generated by HAVEGE are unpre-
dictable. Reproducing the sequence would necessitate to replicate the internal state of the
generator, but this internal state consists in part of volatile hardware states. The generator
is also continuously fed with new inputs on every interrupt. Reseeding is therefore auto-
matic. Moreover no one, even the user itself, is able to access the complete internal state
(seed) of the generator, since any attempt (except freezing the hardware clock) to access the
volatile hardware states will alter these volatile states. To the best of our knowledge, the
sequences are also unbiased since they pass an important battery of tests checking uniform
distribution.

The throughput of the HAVEGE generator is very high (more than 100 Mbit/s). This
means that producing unpredictable random number will consume less resources. Applica-
tions from other domains than cryptography may benefit from a high performance random
number generator exhibiting very reliable uniform distributions.

Among the other advantages of HAVEGE, let us point out that the implementation is
very simple and portable. Developing variations of HAVEGE for other processor architec-
tures, other operating systems and other compilers is straightforward. One has only to adapt
a few parameters related to instruction and data cache sizes and branch predictor sizes. The
program is implemented at user level and does not rely on any operating system call. This is
an important point in cryptography: you don’t need to trust the developer if you can check
the source code. Furthermore, while to the best of our knowledge the generated sequences
do not suffer any exploitable bias, robustness of the HAVEGE generator could be further
increased by combining it with other algorithmic pseudo-random number generation.

PI n-° 1492

18 André Seznec Nicolas Sendrier

The technological trend in computer design is to use more and more complex processors
featuring out-of-order execution and new hardware mechanisms for speculative execution, for
memory (in)dependency prediction [13, 1, 16] as well as on-chip thread parallelism [20, 3, 4].
This will further create new uncertainty in the internal states of the processor and also create
new opportunities to propagate this uncertainty. At the same time, new functionalities are
also added in operating systems, therefore each operating system interruption will touch
an always increasing set of volatile hardware states. Therefore, our approach for generating
unpredictable random numbers on PCs and workstations will remain valid in the foreseeable
future.

Status of HAVEGE (oct. 2002)

HAVEGE is distributed for tests and evaluation:
http://www.irisa.fr/caps/projects/hipsor/HAVEGE.html Currently supported platforms are:

Solaris: UltraSparc I and II, UltraSparc IIT

Linux: Pentium III, Pentium 4, Athlon and Itanium
e Windows: Pentium III, Pentium 4, Athlon
MacOS10 and PowerPC G4

References

[1] G. Chrysos and J. Emer. Memory dependence prediction using store sets. In Proceedings of the
25th Annual International Symposium on Computer Architecture (ISCA-98), pages 142-154,
June 1998.

[2] D. Davis, R. Thaka, and P. Fenstermacher. Cryptographic randomness from air turbulence in
disk drives. Lecture Notes in Computer Science, 839:114—120, 1994.

[3] K. Diefendhorff. Compaq chooses SMT for Alpha. Microprocessor Report, Dec 1999.
[4] K. Diefendhorff. Power4 focuses on memory bandwidth. Microprocessor Report, Oct 1999.

[5] Intel Platform Security Division. The Intel random number generator. Technical report, Intel,
1999.

[6] A. Rukhin et al. A statistical test suite for random and pseudorandom number generators for
cryptographic applications. NIST special publication 800-22, May 2001.

[7] R-W. Hamming. Coding and Information Theory. Prentice-Hall, 1980.
[8] IETF. RFC 1750 : Randomness recommendations for security, 1994.

[9] M. Jakobsson, E. Shriver, B. Hillyer, and A. Juels. A practical secure physical random bit
generator. In Proceedings of the 5th ACM Conference on Computer and Communications
Security, November, 1998, San Francisco, pp. 103-111., 1998.

[10] T. Jennewein, U. Achleitner, G. Weihs, H. Weinfurter, and A. Zeilinger. A fast
and compact quantum random number generator. Preprint quant-ph/9912118, 1999.
http://www.quantum.univie.ac.at/research/rng/.

Irisa

HArdware Volatile Entropy Gathering and Expansion:

[11]
[12]
[13]
[14]
[15]
[16]
[17]
18]

[19]

[20]

[21]

Benjamin Jun and Paul Kocher. The intel random number generator. Cryptography Research,
Inc. White Paper prepared for Intel Corporation, April 1999.

J. Kelsey, B. Schneier, , and N. Ferguson. Yarrow-160: Notes on the design and analysis of the
yarrow cryptographic pseudorandom number generator. In H. Heys and C. Adams, editors,
Selected Areas in Cryptography, SAC’99, number 1758 in LNCS. Springer, 2000.

Richard E. Kessler. The Alpha 21264 microprocessor. IEEE Micro, 19(2):24-36, 1999.

D.E. Knuth. The Art of Computer Programming, Volume 2 / Seminumerical Algorithms.
Addison-Wesley, 1969.

George Marsiglia. Diehard. http://stat.fsu.edu/ geo/.

A. Moshovos and G. S. Sohi. Streamlining inter-operation memory communication via data de-
pendence prediction. In Proceedings of the 30th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO-97), pages 235-247, December 1997.

Intel Platform Security Division Scott Durrant. Random numbers in data security systems.
Technical report, Intel, 1999.

André Seznec and Nicolas Sendrier. Havege: a user-level software unpredictable random num-
ber generator. Technical report, IRISA, 2002.

A. Stefanov, N. Gisin, O. Guinnard, L. Guinnard, and H. Zbinden. Op-
tical quantum random number generator. Preprint quant-ph/9912118, 1999.
http://www.gapoptic.unige.ch/Prototypes/QRNG/.

Dean M. Tullsen, Susan Eggers, and Henry M. Levy. Simultaneous multithreading: Maximizing
on-chip parallelism. In Proceedings of the 22th Annual International Symposium on Computer
Architecture, June 1995.

John Walker. Hotbits: Genuine random numbers, generated by radioactive decay.
http://www.fourmilab.ch/hotbits/.

PIn-° 1492

generating unpredictable random number at user levell9

