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Abstract

This document presents, in a user-oriented approach, the basic concepts and a speci�cation
of Salto, a retargetable System for Assembly Language Transformation and Optimization.
Salto provides a framework for implementing complex manipulations of low-level codes,
necessary when tuning performance-critical applications. This is achieved through the use
of a detailed description of the target architecture, covering the instruction set, hardware con-
�guration, and resource reservation tables of all instructions. An object-based user interface
allows to easily implement complex transformations directly on the abstract representation
of assembly programs, making it easy to cope with new hardware con�gurations, assembly
language formats, and optimization techniques. The resulting software infrastructure lets the
user concentrate on the implementation of actual optimizations and code instrumentation
methods, suppressing the concern about implementing house-keeping tasks.
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Chapter 1

Introduction

Salto is a retargetable framework for developing a whole spectrum of tools that manipulate
programs expressed in assembly language. The objective of such a system is to provide the
user with a single environment that will allow him to implement tools needed for performance
tuning on low-level codes, including assembly code schedulers, and pro�ling and tracing
tools. The latter provide the user with information on where to focus optimizations and
how e�cient they can be, therefore allowing trade-o� choices. Such a system is intended
to address general computing as well as embedded systems, where optimizations are more
critical and aggressive, but also where time-consuming techniques are more tolerable.

A large number of tools have been built to experiment with new optimizations or particu-
lar hardware mechanisms. This development phase is generally time-consuming and requires
much investment. Utilities able to trace or pro�le programs exist, but they are often pro-
vided \as is": they are target-speci�c, and studying the behavior of another architecture or a
di�erent problem is likely to require a thorough rewriting of large pieces of code. As Salto
is retargetable wrt. the instruction set and the hardware details of the target hardware, it
is likely to be a major help for such studies.

With Salto we plan to address the �eld of software analysis and optimization for su-
perscalar and VLIW architectures. The tool provides support for replicated resources and
arbitrary levels of detail in hardware models. Salto overcomes many limitations of previous
solutions: it does not implement any algorithm by itself, and does not commit the user to a
�xed set of techniques. Therefore, it should not be viewed as a compiler. At the same time,
it does not operate on executable codes: the user of the tool can use human-readable infor-
mation available in the assembly code to drive optimization of instrumentation strategies,
whereas in executable code editors, much of this information is already lost.

To the user, Salto provides an object-oriented interface designed to help manipulating
assembly code. The classes provided by the interface allow to represent the complete de-
scription of the control-ow graph of the program (when available) and a model of the target
architecture. They are easily accessible through the user interface and provide a comfortable
way to implement algorithms without having to worry about supporting software.
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1.1 System Overview

Salto is composed of three parts: a kernel, a machine description �le and an optimization
or instrumentation module provided by the user. Figure 1.1 illustrates the organization of
these three components.

SALTO

ex.s

ex.salto.s

to
o

l.s
o

tool.cc

C++

User tool assembly programSalto system

machine
description

kernel library

Figure 1.1: System Overview

� The kernel performs common house-keeping tasks the user doesn't want to worry about.
The parsing of the machine description �le and the assembly code, and the construction
of the internal representation are done automatically. The internal representation is
then available via the kernel's user interface.

� The machine description �le provides a model of hardware con�guration and the com-
plete description of the instruction set, including per-instruction resource reservation
tables.

� The optimization or instrumentation module is supplied by the user, and provides two
entry points: the main function Salto hook, and (optionally) the initialization function
Salto init hook. If supplied, the initialization function is called immediately after
parsing command line arguments. The system then reads the machine description
�le and the assembly code. Once the internal representation is successfully built, the
control is passed to the user by calling Salto hook.
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1.2 Concepts and Features of Salto

Our system is built on three components: the data structures for representing the program,
the machine description used to represent resource usage, and �nally, on the user interface
that enables the writing of instrumentation or scheduling algorithms.

1.2.1 Manipulated Objects

Data structures used in Salto are divided into two groups, depending on their role: on
one hand, the representations of program control ow, and on the other, the descriptions of
resource usage and data dependencies between instructions.

A program written in assembly language can be viewed as consisting of several procedures,
each of which is a list of instructions. Within a procedure, instructions are grouped into basic
blocks.

While parsing the code, Salto builds the list of the procedures it encounters. Each
procedure has a list of basic blocks, and each block \knows" its list of instructions. Figure 1.2
illustrates this object structure. The internal representation of these objects is hidden by the
user interface, as shown in section 1.2.2. Markers are added by the analyzer to give useful
information about the code being processed: basic blocks frontiers (shaded instructions in
�gure 1.2), or procedures frontiers, name of current segment, etc.

Inst. 2

LABEL

ASM

ASM

Inst. 1

Inst. 1

First block

First instruction

Last instruction

First instruction

Last instruction

List of basic blocks List of instructionsList of procedures

CFG 4

CFG 3

BB 1

Last block

BLOCK_BEGIN

BLOCK_END

BLOCK_BEGIN

BLOCK_END

BB 2

Figure 1.2: Organization of Control-Flow Structures

After parsing the code, a control ow graph (CFG) is built for each procedure. The
vertices of a control ow graph are basic blocks and its edges denote the execution order of
the blocks. Edges are labeled to indicate if they correspond to the taken or not-taken branch
(see �gure 1.3 for an example of the graph corresponding to a simple procedure written in
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C language.) A known limitation of this scheme is its conservative nature, due to the static
analysis of the assembly-code. If the target address of a branch instruction is a computed
register value, then the Salto parser leaves the determination of the actual branch target
to a user-supplied tool.

=�
� Computes the GCD of two integers
� using Euclide's method
�=
int gcd(a,b)

int a, b;
f
int result;

if (a<b) a^ =b, b^ =a, a^ =b;
if (a%b) result = gcd(a-b,b);
else result=b;
return result;

g

        xor %i0,%i1,%i0
        xor %i1,%i0,%i1
        xor %i0,%i1,%i0
        mov %i0,%o0

        cmp %i0,%i1
        bge L9
        mov %i0,%o0

        save %sp,-104,%sp

        call .rem,0
        mov %i1,%o1

        cmp %o0,0
        be L7
        sub %i0,%i1,%o0

L7:
        mov %i1,%o0

        ret
        restore %g0,%o0,%o0

L9:

TAKEN

_gcd:

TAKEN

TAKEN

NOT_TAKEN

        b,a L8

        mov %i1,%o1
        call _gcd,0

TAKEN

TAKEN TAKEN

L8:

TAKEN

NOT_TAKEN

Figure 1.3: Control Flow Graph of a Simple Program

The second part of the data structures provided by Salto gives information about the
resources needed by an instruction to complete its execution. A resource is usually a register,
a functional unit or the memory, but it could be any piece of hardware needed to describe
the behavior of the machine (see section 1.2.3 for an explanation on how to de�ne resources.)
Each instruction needs a resource during a number of cycles with a particular access mode:
either read, write or use.

Each instruction is described by a reservation table, which indicates the list of resources
it needs and the mode and cycle a resource is accessed. This information is used when
determining the type of data ow between two instructions: RAW (read after write), WAW
(write after write), WAR (write after read).

The memory is seen as a unique resource and all memory accesses are considered to be
to the same memory location. Salto is conservative when checking data dependences and
thus two memory accesses, one of which is a write, always lead to a dependence. However,
the functions of the user interface make it possible for the user to write his own alias analysis
algorithm to detect such situations and to implement a link to the data dependence analysis
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subsystem of a compiler.

1.2.2 User Interface

The object-oriented user interface provides a exible way to deal with the internal data
structures. Features of Salto in this �eld include:

� access to the code at three di�erent levels: procedure, basic block or instruction;

� modi�cation of the code: insertion, deletion and modi�cation of objects at each ab-
straction level ;

� unparsing;

� access to resource reservation tables;

� computation of dependences and delays between instructions caused by pipeline stalls;

� possibility of attaching arbitrary attributes, or annotations, to any kind of objects.

1.2.3 Target System Descriptions

Salto is designed to be a retargetable tool. Thus, the target machine is described in a
exible way, allowing an accurate description at assembly and hardware level while retaining
the ability to easily modify individual parameters.

This goal is achieved through the use of a Lisp-like language based on the reservation
tables formalism. The description �le is parsed by Salto and an internal representation is
built using RTL (Register Transfer Language) [29]. The target system description covers:

� the lexical and syntactical structure of the assembly language used | how do comments
start, what are register names etc.;

� all the resources referenced by the instructions, needed for the computation of data
dependences and access conicts;

� the list of the instructions recognized by the assembler together with their various for-
mats, and the associated reservation tables, including all prede�ned macro-instructions
of the assembler;

� semantical information to warn Salto about special features implemented in the ar-
chitecture being described, such as register by-pass or delayed branch mechanisms.
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1.2.4 Structure of the Manual

The remainder of this report is organized as follows. Section 2 provides the speci�cation of
target description �les. Section 3 contains the detailed speci�cation of the user interface,
covering the types, classes, functions, and methods we intend to provide in Salto. Finally,
in section 4 we describe two applications developed using a limited prototype of the tool.
These examples are further developed in the appendix. We conclude with an outline of
intended development and experimentation work.
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Chapter 2

Salto Target Description

Speci�cations

This chapter contains reference information on writing target system descriptions. These
descriptions are the only source of information on the behavior of the target system, pro-
viding an e�ective separation of the target characteristics from the implementation of the
transformation toolbox.

This chapter is divided into three major parts. The general notions underlying the
description model are presented in section 2.1. The recommended organization of the actual
description �les is given in section 2.2. Sections 2.3 through 2.7 detail the components
of target descriptions. For each concept represented in a target system description, these
sections present the corresponding constructs, their syntax, and the associated semantical
constraints when applicable.

2.1 Description Overview

The description of the target system contains the information on the architecture and its
basic software environment, namely:

� the outline of assembler syntax and lexical structure;

� the list of hardware resources of the architecture in terms of registers, memories, func-
tional units etc.;

� the description of the instruction set of the architecture, including prede�ned macros
implemented by the assembler;

� the information on instruction semantics, such as branch delays;

� assembly directives (pseudo-instructions of the assembler).
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The basic entities speci�ed in the description of the assembly language are:

� comments, including comment start and end markers,

� register designations,

� operand designations,

� representations of addressing modes,

� mnemonics, macros and assembler directives.

Resources appearing in the target machine description are a model of hardware com-
ponents potentially relevant to the optimization process. Therefore, any resource which
can limit the exploitation of parallelism available in the source code should be represented,
allowing its description to be used in the optimization process.

Resources which share the same set of properties (general registers, replicated functional
units, etc.) are grouped into resource classes. Classes can be then used to designate \generic
resources", such as \one of the general-purpose registers".

References to resources and resource classes appear in the description of reservation tables
of individual instructions or operations. A reservation table indicates which resources are
used by an instruction, at which cycles, and what use the instruction makes of each resource
listed.

The reservation table concept provides a basis for the optimization process in presence of
multiple resources, instruction pipelines, and instruction-speci�c scheduling constraints, by
allowing the detection of conicts and alternative resources. Reservation tables are attached
to instructions when de�ning the target instruction set.

Instruction set descriptions contain the name (i.e., the mnemonic) of each instruction
or operation, its format and operands, and a reservation table that includes all resources
(or resource classes) required for its execution. The description of each macro-instruction
contains the corresponding sequence of basic instructions or operations, and the rules for
constructing their operands from the actual operands of the macro.

The instruction set description is completed by semantical information attached to control
ow instructions. The three types of semantical constraints that are supported are delayed
load, delayed branch, and write by-pass.

Finally, the description of assembly directives allows to analyze data declarations, data
and code interleaving, alignment information etc.

The description of target systems uses a declarative language inspired by RTL, the \Reg-
ister Transfer Language" used in machine descriptions of the GCC compiler suite. A descrip-
tion consists of a sequence of RTL de�nitions, in which any non-standard object must be
de�ned before use. In addition, cpp directives can be used to avoid unnecessary expression
repetition and to provide a hierarchy to the description �les.

12



RTL's syntax is close to that of LISP. Comments start with a semi-colon (\;") and
continue to the end of line. Four types of RTL objects are supported in Salto:

� integers: strings of digits with an optional leading minus sign,

� character strings, enclosed in double quotes (e.g., "string"),

� vectors: sequences of RTL objects separated by spaces and enclosed in square brackets
(e.g., [obj1 obj2 . . . objn]),

� expressions: sequences of RTL objects separated by spaces, preceded by a prede�ned
expression code, and delimited by parentheses (e.g., (expcode op1 op2 . . . opn)).

2.2 Description Organization

Before being read by Salto, the description �le is fed through the cpp preprocessor. Any
cpp-supported directives can be used to help simplify and clarify the target description. Two
cpp features are commonly used:

� #define macro-de�nitions, allowing to describe with a single identi�er any multiply
referenced complex expressions, such as reservation tables common to several instruc-
tions;

� #include �le inclusion directives, which provide a hierarchy of description �les.

Using the above cpp mechanisms, the description of a given target system consist-
ing of a hardware architecture arch and a software environment target , the descrip-
tion will be split into �ve �les named arch.md, arch -resource.def, arch -macro.def,
arch -semantics.def, and target.cc (see �gure 2.1.)

The main �le arch.md contains inclusion directives for the three remaining �les, the de-
scription of the lexical structure of the assembly language and the de�nition of the target
instruction set as manipulated by Salto. File arch -macro.def contains the description
of expansion rules for the prede�ned macros of the assembler. File arch -resource.def

provides the de�nition of hardware resources, resource classes, and reservation tables. Fi-
nally, �le arch -semantics.def provides the de�nition of instruction-speci�c semantical
constraints.

Given the great variety of directive semantics between supported targets, the description
of assembly directives and support routines for their manipulation are provided in a C++
�le named target .cc which is compiled into a shared object �le. This separates all target-
dependent code from the Salto kernel library. The base name of this �le is purposely
di�erent from that of the hardware description �le, since multiple target.cc �les may
have to deal with the peculiarities of various compiler/assembler combinations for the same
hardware architecture.
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arch.md :
arch -resource.def :

<de�nition of hardware resources>
<de�nition of resource classes>
<de�nition of reservation tables>

arch -macro.def :

<description of prede�ned assembler macros>

arch -semantics.def :

<description of speci�c instruction semantics>

<description of lexical units of the assembly language>
<de�nition of the instruction set>

target.cc

<assembler-speci�c directives and actions>

Figure 2.1: Recommended layout of target system description �les

In the following, the syntax of target system descriptions is presented using the BNF
notation. We use the following typographical conventions:

� terminal symbols (keywords, litterals etc.) appear in typewriter font;

� non-terminals appear in italics and enclosed between chevrons (\<" and \>");

� alternatives are represented using the vertical bar (\|");

� optional expressions are followed by the 0j1 superscript;

� expressions that occur at least once are followed by the + superscript;

� expressions that occur zero or more times are followed by the � superscript;

� a fully parenthesized expression or string followed by any of the above superscripts
matches a number of occurrences of that expression or string, as indicated by the
superscript.

2.3 Target Identi�cation

The target architecture is speci�ed using the expression

(target "<target name>")
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where <target name> is the name of the architecture being described. This de�nition is
mandatory.

The target name provided in the description �le can be later extracted by calling the
function getTargetName().

2.4 Hardware Resources

In Salto, a resource represents an element of the target architecture that can inuence its
performance. As a rule of thumb, anything hardware element that can form a bottleneck in
instruction scheduling should be represented as a resource.

Resources are classi�ed according to three criteria:

functionality : resources are used either to store data, or to manipulate it; typical storage
resources are registers and the main memory, and are the only resources that can
be read andwritten; resources that manipulate data can only be used (i.e., busy, or
reserved) and, for our purposes, are called \functional units";

complexity : a basic resource corresponds to a precise component of the target hardware;
composite resources consisting of several adjacent individual resources are also sup-
ported, in order to represent aggregate registers, treated as a single operand by some
instructions;

genericity : resources with similar characteristics may have names that obey a systematic
naming scheme, e.g., a pre�x followed by a numerical su�x; resources sharing the same
characteristics can be grouped into classes whose members can be substituted to each
other when needed, even if they are not systematically named.

2.4.1 Basic Resources

Resources must be named. The choice of names is left to the designer of the description
of the architecture, except for the reserved resource name "mem" which always denotes the
\main" memory (NB: multiple memory resources can be de�ned.)

A resource is characterized by four properties:

� its name, which is used to reference the resource in classes, reservation tables etc.;

� its type which identi�es the type of operations that can be performed on that resource;

� the width of the data paths to and from the resource;

� (only for functional units) the replication level, i.e., the number of equivalent resources
sharing exactly the same characteristics.
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The de�nition of a resource is made using the def ress expression with the following
syntax:

<def ress> : : =
(def ress

<res or class name>
[

(type "<type>")0j1

(width <width>)0j1

(limit <limit>)0j1

])

<res or class name> : : =
(name "<name>") j
(base name "<genname>" <first> <last>)

where

� <name> and <genname> are alphanumeric strings beginning with a letter; <genname>
corresponds to the name pre�x for a numbered replicated resource;

� <first> and <last> are integers delimiting the range of su�xes of the names of a
numbered replicated resource whose name pre�x is <genname>;

� <type> can be either \reg", \functional unit" or \memory"; any other value is
understood as \unknown"; if this �eld is omitted, the last value given in preceding
resource de�nitions is used;

� <width> is an integer indicating the width of the resource in bits;

� (functional units only) <limit> is an integer indicating the number of identical, in-
terchangeable instances of the resource; if this �eld is omitted, the last value given in
preceding resource de�nitions is used; the default initial value is 1.

The reference to an already de�ned resource is made using the expression ress:

<resource ref> : : =
(ress

<res or class name>)

Example:
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The de�nitions

; general registers r0 to r127

(def_ress (base_name "r" 0 127)

[(type "reg") (width 32)])

; instruction decoders (issue units)

(def_ress "issue"

[(type "functional_unit")

(limit 5)])

; DSP ALU

(def_ress (name "dspalu")

[(type "functional_unit")

(limit 1)

(width 32)])

correspond respectively to a set of 128 32-bit registers named "r0" through "r127", a
family of �ve instruction decoders which can be used interchangeably, and a unique DSP
ALU with 32-bit data paths (N.B.: the replication limit of 1 must be explicit: the previous
functional unit de�nition used a higher value, which would otherwise have been reused.)

2.4.2 Resource Aliases

Aliases (alternate names) of resources can be given using the alt name expression. Aliases
are most frequently used to reect usage conventions of resources. The general form of the
alias de�nition is

<alt name> : : =
(alt name

"<name>" "<alias>")

where

� <name> is a string designating a resource already de�ned using def ress;

� <alias> is a string giving the equivalent resource name.

Example:
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The following are the aliases of the TM1000 registers

; register r2 (alias "rp") contains the return value of a function

(alt_name "r2" "rp")

; register r3 (alias "fp") is used as frame pointer by C/C++ programs

; (see restriction in manual)

(alt_name "r3" "fp")

; register r4 (alias "sp") is the stack pointer (last word IN USE, growth

; towards 0)

(alt_name "r4" "sp")

; register r5 (alias "rv") is the scalar return value register

(alt_name "r5" "rv")

2.4.3 Resource Classes

Resource classes provide a means of representing resources that are equivalent wrt. the
renaming. Therefore, the classes should be de�ned in such a way that all resource of a class
should be fully interchangeable.

A resource can belong to several classes, with di�erent renaming and writability charac-
teristics in each class. A resource class de�nition uses the following syntax:

<def class> : : =
(def class

"<class name>" "<type>"
[

(ress j class

<res or class name>
[

(norename)0j1

(noallocate)0j1

]

)+

])

where

� <class name> is the alphanumeric string giving the name of the class;

� <type> is the type of the resources in the class, either \reg", \functional unit" or
\memory"; any other value is understood as \unknown";

� (norename), when present, indicates that the resource cannot be renamed to another
resource, i.e., cannot be substituted by another resource (example: a dedicated register
| stack pointer, frame pointer etc.);
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� (noallocate), when present, indicates that the resource cannot be used as renaming
target, i.e., cannot be substituted to another resource.

References to an already de�ned class are made using the class expression:

<class ref> : : =
(class

<res or class name> )

Example:

Below are the de�nitions of several register classes of the TM architecture:

; read-only registers

(def_class "RO_reg" "reg"

[(ress (base_name "r" 0 1) [(noallocate) (norename)])])

; writable registers

(def_class "DEST_reg" "reg"

[

(ress (base_name "r" 2 127) [])

])

; all registers

(def_class "GP_reg" "reg"

[

(class (name "RO_reg"))

(class (name "DEST_reg"))

])

; C call parameters

(def_class "PARAM_reg" "reg"

[

(ress (base_name "r" 5 8) [(norename)])

])

Notes:

Resource names must be de�ned prior to the de�nition of resource classes, otherwise they
will be ignored.

2.5 Reservation Tables

A reservation table lists all resources used by the corresponding instruction and, for each
resource, describes the type and schedule of the accesses made to that resource, and any
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relevant renaming and scheduling constraints associated with that resource.

Resources can be designated by basic resource and class names, as speci�ed positional
operands of the instruction, or as sets of registers (multi-registers).

Reservation tables are not named. Therefore, to avoid replication of code in the descrip-
tions of instruction sets, each reservation table should be de�ned as a cpp macro, and the
resulting macro subsequently invoked in relevant instruction descriptions.

The syntax of reservation table de�nitions is

<reser table> : : =
(reser table

[

(<any resource ref>
[

(<usage>)
<schedule info>

(class (name "<class name>"))0j1

(norename)0j1

]

)+

])

<any resource ref> : : =
<resource ref> j
<positional param> j
<multiregister>

<positional param> : : =
(match arg

<num arg>)

<multiregister> : : =
(multi reg

<positional param> <index> <size>)

<schedule info> : : =
(at cycle <at>) j
(from cycle <from>) (to cycle <to>)

where

� <usage> is either read or write (registers or memory), or use (functional units);

� <class name> is the name of the class of resources which can be substituted to the
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current resource during resource renaming; this class must already be de�ned;

� (norename), if present, indicates that the resource cannot be substituted (renamed);
this property takes precedence on the speci�cation of a renaming class;

� <positional param> matches the speci�ed operand in the operand list of the in-
struction (or family thereof) to which the reservation table applies; <num arg> is the
position (counted from 0) of the operand;

� <multiregister> corresponds to a multi-register, i.e., an aggregate resource consist-
ing of <size> consecutive hardware registers beginning <index> registers from the
base register designated by match arg; e.g., if the �rst operand of the instruction is
r32, (multireg (match arg 0) 4 2) corresponds to a multi-register set consisting
of registers r36 and r37 | two registers starting four registers past r32; the o�set
<index> can be negative;

� <from> is the number of the �rst cycle at which the resource is reserved;

� <to> is the number of the last cycle at which the resource is reserved;

� <at> is the only cycle at which the resource is reserved: (at cycle n) is equivalent
to (from cycle n) (to cycle n).

Example:

; resource common to all 'ftough' instructions

; instruction loading and decoding

#define ISSUE_FTOUGH (ress (name "issue2") [(use) (at_cycle 1)])

; general registers' class

#define GP_REG_C (class (name "GP_reg"))

; reservation table of 'ftough' instructions on the TM architecture

#define R_FTOUGH \

(reser_table [ \

ISSUE_FTOUGH \

(ress (name "ftough") [(use) (from_cycle 1) (to_cycle 16)]) \

(ress (match_arg 0) [(read) (at_cycle 1) GP_REG_C]) ; guard \

(ress (match_arg 1) [(read) (at_cycle 1) GP_REG_C]) ; rsrc1 \

(ress (match_arg 2) [(read) (at_cycle 1) GP_REG_C]) ; rsrc2 \

(ress (match_arg 3) [(write) (at_cycle 17)]) ; rdest \

])
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2.6 Lexical Structure of the Assembly Language

The description of the lexical structure of the assembly language speci�es the format of
comments, operand separators and the generic operand-matching patterns used in identifying
instruction operands during program parsing.

2.6.1 Comments

Three types of comments are supported:

� line comments,

� end-of-line comments,

� stream comments.

Line comments begin with a speci�c character or string in the �rst non-blank position of
a line. End-of-line comments are the comments at the end of an otherwise non-empty line;
they start with a speci�c character or string and are terminated by the end-of-line character.
Stream comments are started and terminated by speci�c characters or strings.

Comment identi�cation is controlled by the following de�nition:

� line comments on a line of their own:

<line comment chars> : : =
(line comment chars

"<string>")

where <string> is the character or the sequence of characters that start a line com-
ment;

� end-of-line comments (comments following assembly language text):

<comment chars> : : =
(comment chars

"<string>")

where <string> is the character or the sequence of characters that start an end-of-line
comment;

� start and termination of stream comments:

<comment start> : : =
(comment start

"<start string>")

<comment end> : : =
(comment end

"<end string>")
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where

{ <start string> is the character or sequence of characters that begins a stream
comment;

{ <end string> is the character or sequence of characters that terminates a stream
comment;

Example:

(comment_chars "#") ; end-of-line comment start on the MIPS

(comment_chars "!#") ; end-of-line comment start on the SPARC

(comment_start "(*") ; start of a stream comment on the TM family

(comment_end "*)") ; end of a stream comment on the TM family

2.6.2 Non-Blank Separators

Single-character non-blank separators are listed in an aggregate de�nition of the form

<def exact> : : =
(def exact

"<string>" )

where <string> is a concatenation of the supported terminal symbols.

Multi-character separators are listed using a de�nition of the form

<def separ> : : =
(def separ

["<string>"+])

where each <string> is the literal representation of a multi-character separator.

Notes:

1. The de�nition of instruction formats in the description of the instruction set can only
use separators de�ned by means of a def exact or def separ expression.

2. If there are multiple def exact or def separ de�nitions, only the most recent one of
each form is e�ective.

2.6.3 Pattern-Matching Tokens

The matching between actual operands in the assembly program and the symbolic operands
in the description of the target instruction set relies on a set of meta-variables which must
be recognized in appropriate positions when parsing the assembly program. In the target
machine description, the meta-variables are designated using single-character tokens, and are
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associated with regular expression patterns describing the expected external representation
of the corresponding actual operands.

A family of prede�ned input functions allows to read speci�c assembly language objects:
identi�ers, register names, arithmetic expressions, immediate integer or oating-point values:

� regex reads a sequence of characters matching a given regular expression <reg exp>;

� read exp reads an arithmetical expression;

� read imm reads an integer value (signed or not);

� read flp reads a oating-point value.

The full de�nition of a meta-variable follows the syntax

<meta var def> : : =
(def token

"<char>"
[

(regex "<reg exp>") j
(read exp) j
(read flp) j
(read imm <size> "<sign>")

] )

where

� <char> can be any non-blank alphabetic character not in the separator character sets
(de�ned using def exact and def separ),

� <reg exp> is the regular expression de�ning the pattern to be matched,

� <size> is the size of the immediate value in bits,

� <sign>, if equal to \signed", indicates that the number should be interpreted as
signed. Any other value of <sign> forces the number to be treated as unsigned.

The syntax of admissible regular expressions is a subset of the classical regular expression
syntax of grep and Emacs:

� a single dot (\.") matches any single character;

� a set of characters enclosed in square brackets (\[" and \]") matches any single charac-
ter from that set; two characters separated by a dash (\-") in the set de�ne an interval
in terms of the ASCII code, from the character preceding the dash to the character
following the dash, inclusive; a set starting with a caret (\^") matches any character
not present in the set;
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� a sequence of patterns matches the longest matching sequence of characters, starting
from the leftmost pattern;

� an asterisk (\*") indicates zero or more occurrences of the preceding pattern;

� a sequence of patterns enclosed between a matching pair of strings \\(" and \\)" is
treated as a single pattern;

� the string \\|" speci�es the alternative between the largest single patterns adjacent to
it;

� a backslash (\\") suppresses the special meaning of the immediately following character
(backslash, dot, asterisk etc.).

Example:

; TM1000 tokens: registers or expressions

#define REG_TOKEN(CHAR)\

(def_token \

CHAR [(regex "r1[0-1][0-9]\\|r12[0-7]\\|\

r[1-9][0-9]\\|r[0-9]")

])

#define EXP_TOKEN(CHAR)\

(def_token CHAR [ (read_exp) ])

REG_TOKEN("d") ; destination register

REG_TOKEN("s") ; first source register

REG_TOKEN("t") ; second source register

REG_TOKEN("g") ; guard register

EXP_TOKEN("m") ; modifier

Notes:

1. It is good practice to order patterns in a regular expression so that the most speci�c
patterns come �rst, and that the most general ones be at the end of the expression.

2. The choice of meta-variable names de�ned using def token is purely arbitrary; the
author of a machine description is free to choose a naming convention that is best
suited for the design of the target system.
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2.7 Instruction Sets

The description of the instruction set is made by providing individual descriptions of assem-
bler-supported instruction/operation mnemonics and macros. Each instruction/operation
description contains the name of the mnemonic, the meta-variable pattern identifying its
operands, the reservation table information, and possibly, semantical information (presence
of delays introduced by the instruction, etc.).

2.7.1 VLIW Instruction Width

The number of operations in a VLIW instruction (the maximum number of operations that
can be issued in a single clock cycle) is de�ned using the expression

<inst width> : : =
(inst width

<size>)

where <size> is an integer. If this de�nition is omitted, the default value of 1 is assumed.

2.7.2 Semantical Information

Semantical information supported by Salto covers the speci�cation of operands of control
ow instructions, and the de�nitions of load, write, and branch delays (and the associated
limitations on instruction scheduling).

In its most general form, the semantical information follows syntax

<semantical info> : : =
(sem

[<semantical property>+])

<semantical property> : : =
<control target> j
(return) j
<delay slot> j
(noreorder)

Basic semantical information on branch, jump and call instructions uses a common for-
mat

<control target> : : =
(<control flow insn>

<num arg>)

where

� <control flow insn> is either branch, jump, or call, depending on whether the
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instruction concerned is a conditional branch, an (unconditional) jump, or a subroutine
call;

� <num arg> is the position of the target address in the parameter list of the instruction,
counted from zero; if the target is not known at compile time (i.e., indirect addressing
is being used), the value of <num arg> is -1.

The expression (return) indicates the return to an implicit address.

Delay slot information is provided using the delay slot expression:

<delay slot> : : =
(delay slot

<slot>)

where

� <slot> is the integer representing the branch delay, i.e., the number of instructions
issued before the execution resumes at the new address.

The restrictions on instruction reordering introduced by the presence of delay slots are
expressed using the (noreorder) property. If present, (noreorder) forbids the instructions
preceding the current instruction to be rescheduled after it, and the instructions following
it to be rescheduled before it. This restriction applies to instructions which terminate or are
issued within the branch delay after the issue of the relevant control instruction.

Given the large variety and complexity of write-back by-pass de�nitions, by-pass facili-
ties are expressed through a user-supplied hook function updateDelay(...) which produces
updated instruction-to-instruction delay values on demand. In particular, this function (if
available) is automatically called during the computation of minimum scheduling delay be-
tween instructions (see methods int INST::getDelay() and int INST::getResDelay() in
section 3.3.5.)

2.7.3 Native Instructions

The general form of an instruction/operation de�nition is

<def asm> : : =
(def asm

"<name>"
[

(input "<format>")
<res table>

<semantical info>0j1

(info "<any-text>")0j1

])

where

� <name> is the mnemonic of the instruction/operation;
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� <format> is a string representing the format of instruction operands; <format> con-
sists only of terminal symbols de�ned using def exact and def separ expressions and
of meta-variables de�ned using def token;

� <res table> is an expression describing the reservation table of the instruction or
operation, either directly, or via a cpp macro-de�nition created using a #define direc-
tive;

� <semantical info> describes the scheduling constraints introduced by the instruc-
tion/operation;

� the info �eld can contain any text. This �eld is used to attach an arbitrary textual
information to an assembly instruction de�nition, and is not interpreted by Salto.
The text can be extracted at run time by calling method INST::getAsmInfo() on the
instructions of the program (see section 3.3.5.)

Notes:

� The expression <format> (containing possibly an empty string) and a non-empty
expression <res table> are mandatory. However, the semantical information section
is optional.

� If the target architecture uses an in�x instruction format (e.g., \opnd1 INSN opnd2

... opndn", a suitable preprocessing tool should transform instructions speci�ed this
format into a pre�x one, in which the instruction precedes all its operands.

Example:

(def_asm "fadd" ; floating-point addition

[(input "g,m,s,t,d") ; d <- s+t, plus guard (g) and modifier (m)

R_FLOAT_ALU ; reservation table of FP arithmetic

])

(def_asm "jmpi" ; jump to immediate address

[(input "g,m") ; if (LSbit(g) == 1) then PC <- m

R_BRANCH ; reservation table of branching insns

(sem [ BRANCH(1) ; "m" is the immediate address operand

(delay_slot 3) ; branch delay is 3

(noreorder) ; prevent insn reordering

])

])

2.7.4 Macro-Instructions

Macro-instructions of the assembly language are described in two steps:

� de�nition of the name and the operands of the macro;
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� de�nition of the expansion of the macro-instruction into native instructions and their
respective operands.

The �rst de�nition uses the def macro expression. Its syntax is close to that of a native
instruction description, except that the semantical information section is replaced with the
expansion of the macro-instruction into native instructions:

<def macro> : : =
(def macro

"<name>"
[

(input "<format>")

(info "<any-text>")0j1

<macro expansion>
])

where

� <name> is the mnemonic of the macro-instruction;

� <format> is a string representing the format of instruction operands; <format> con-
sists only of terminal symbols de�ned using def exact and of meta-variables de�ned
using def token; it is assumed that all operands follow the mnemonic and that only
single-character separators are used between operands;

� <macro expansion> is an expansion of the macro-instruction into native instructions,
described using an expand construct (de�ned below);

� the info �eld can contain any text. This �eld is used to attach an arbitrary textual
information to an assembly instruction de�nition, and is not interpreted by Salto. The
text can be extracted at run time by calling method INST::getAsmInfo() on the
instructions of the program (see section 3.3.5.)

Example:

; MIPS branch to immediate offset if greater or equal

(def_macro "bge"

[ (input "s,t,i" ) ; if (s>=t) then PC <- PC + i

EXPAND_BGE_1 ; expansion: EXPAND_BGE_1

])

Notes:

Macros are expanded during the parsing of the input program.

The expansion of macro-instructions is described using expand expressions which de�ne
the expansion of the macro into native instructions. Each native instruction in the expansion
is described by its name, its input format, and a vector of operand construction directives.
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For each meta-variable (formal parameter) in the input format of each native instruction
in the expansion of the macro, there is a matching element in the vector operand construction
vector. Each such �eld describes the way the corresponding actual parameter is built from
the actual parameters of the macro and from prede�ned elements.

The expressions that can appear in the operand construction vector are divided in two
groups: three basic forms, and three compound expressions that use the basic forms:

� an expression with reg indicating that the operand is the speci�ed register;

� an expression match arg indicating that the operand is one of the actual operands of
the macro, located at the speci�ed position (counted from zero);

� an expression const expr indicating that the operand is the arithmetic expression
given;

� an expression add expr indicating that the operand is constructed by adding an integer
expression speci�ed using const expr to the actual macro parameter speci�ed by its
position in match arg;

� an expression multi reg (see section 2.5 above) indicating that operand is a multi-
register data set consisting of <size> consecutive hardware registers beginning <
index> registers from the base register designated by match arg or with reg;

� an expression imm part indicating that the operand is built using a speci�ed part
(lower- or upper-weight bits) of the actual parameter; the part selected is indicated
by the non-terminal <part>; the size of the subset extracted is given by <width>;
<sign> indicated the type of extension to be applied to the subset extracted (either
signed or unsigned).
NOTE: this expression is intended to be applied to immediate operands only.

The syntax of the de�nitions of macro-instruction expansions is
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<macro expansion> : : =
(expand

[

(build asm

"<ins name>" "<ins format>"
[

(with reg "<reg>")�

<positional param>�

(const expr "<expr>")�

(multireg

<base register> <index> <size>
)�

(add expr

<positional param>
(const expr "<expr>")

)�

(imm part

"<part>" "<sign>" <width>
<positional param>

)�

]

)+

])

<base register> : : =
<positional param> j(with reg "<reg>")

where

� <ins name> is the name of the macro-instruction;

� <ins format> is the string describing the format of the operands of the macro-
instruction; the string "*" indicates that the appropriate format should be determined
at run-time;

� the expression (with reg <reg>) indicates that the register reg should explicitly be
used when expanding this macro-instruction;

� <expr> is an arithmetical expression evaluating to a constant, such as "7*4";

� <index> is a (possibly negative) integer used to compute the name of the �rst register
of a multi-register (an aggregate register spanning several hardware registers and used
as a single operand) from the register designated by <base register>;

� <size> is an integer describing the width, in hardware registers, of the multi-register
data set;

� <part> is either upper or lower;

31



� <sign> is either signed or unsigned; signed indicates that the value extracted should
be sign extended to the width expected by the destination resource

� <width> is an integer indicating the size, in bits, of the subset to extract.

Example:

The following example shows the expansion of a branching macro \bge" (\branch if grea-
ter or equal") used by MIPS assemblers:

; replaces "bge s,t,i" by the sequence :

; $at <- (s < t) ? 1 : 0

; if ($at == 0) then PC <- PC + i

#define M_BGE_1\

(expand [\

(build_asm "slt" "d,s,t" \

[(with_reg "$at") \

(match_arg 0) \

(match_arg 1)])\

(build_asm "beq" "s,t,i" \

[(with_reg "$at") \

(with_reg "$0") \

(match_arg 2)]) \

])

2.8 Target-Speci�c Functionalities

Target-speci�c preprocessing of assembly �les is implemented in �les named arch .cc for
each supported target system arch . These �les must provide the implementation of the
following functions:

void prog db::setTargetDependentInfo(void): the main interface function which sets
up the appropriate pseudo-opcode table and performs any additional initialization
tasks that might be required for the current target;

void target emit hook(FILE *fg ): code to be executed before the transformed program
is output to �le *fg .

void target label hook(symbolS *xsymb ): function to be executed when a user-de�ned
label (i.e., potentially a procedure entry point) is encountered. xsymb points to the
symbol object associated with the label.

The pseudo-opcode table provides the list of supported assembler directives and the
associated actions. Entries in the table contain the name of the directive with the leading
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dot ('.') stripped, and the name of the function to be executed when that directive is
encountered.

A generic set of directives and their associated actions is implemented by the class
generic pseudotab. Additional directives and actions (including replacement actions for
generic directive names) are provided in target-speci�c derived class target pseudotab. The
de�nition and the implementation of class target pseudotab must be supplied by the user
in �le target.cc.

2.9 Putting It All Together

To illustrate the speci�cation given above, let us take a closer look at several excerpts from
a preliminary Salto description of the Philips TriMedia TM1000 architecture. The full
description is given in appendix A.

2.9.1 De�ning the Resources

The minimal description of the resources available on the TM1000 is quite compact. It can
be extended with special-purpose registers such as PCSW, but in the �rst place, it consists
of the general registers and the memory:

;; SECTION I: REGISTERS

;; ====================

;;

;; * there are 128 general registers named r0 through r127

(def_ress

(base_name "r" 0 127)

[(type "reg") (width 32)])

;; memory: "memI is a reserved name, but the resource corresponding

;; to the name must be explicitly defined

(def_ress (name "mem")

[(type "memory")

(width 32)])

2.9.2 De�ning the Functional Units

The de�nition of functional units contains directly the replication level of each unit, i.e., the
number of distinct operations on that functional unit type that can be issued within a single
cycle. Here, the number of issue units is thus limited to �ve, corresponding to the �ve issue
slots available on the TM1000:

;; Subsection II.1: ISSUE UNITS
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;; ----------------------------

;;

(def_ress (name "issue")

[(type "functional_unit")

(limit 5)]) ; five issue slots

#define ISSUE (ress (name "issue") USE_AT_1)

;; Subsection II.2: COMPUTATION AND MEMORY ACCESS UNITS

;; ----------------------------------------------------

;; CPP macro - all functional unit declarations follow the same format

#define FU_DECL(fu_name,replication) \

(def_ress (name fu_name) \

[(type "functional_unit") \

(width 32) \

(limit replication) \

])

;; dummy memory access unit for exclusions between DMEM and DMEMSPEC FUs

;; They will BOTH have to use this resource at cycle 1, but while DMEM

;; operations take just one token, DMEMSPEC ops squat both :-)

FU_DECL("mem_dummy_fu", 2)

;; integer ALU units: basic integer operations; replication level: 5

FU_DECL("alu", 5)

;; BRANCH units: branch and jump operations; replication level: 2

FU_DECL("branch", 2)

;; FCOMP unit: floating-point comparisons, status info (including clock);

;; replication level: 1

FU_DECL("fcomp", 1)

The case of a limited number of write-back buses is handled by requiring the use of a
\writeback bus" resource by all instructions that perform a register write, and by limiting
the replication level of that resource to the required value:

;; the number of write-back buses is limited to 5 (as of TM1000) while

;; instruction latencies are variable (1, 2, 3 or 17)

;; Therefore, we need a model of that limitation...

FU_DECL("writeback_bus", 5)

;; Each register write must be represented by the reservation of a

;; write-back bus at the last cycle of the instruction.
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#define WRITEBACK_BUS_AT(N) (ress (name "writeback_bus") USE_AT_CYCLE(N))

2.9.3 De�ning the Reservation Tables

In their simplest form, reservation tables on the TM1000 depend on the format of the
instruction (number and kind of its operands) and on the functional unit type for that
instruction.

Therefore, the reservation tables can be �rst de�ned as cpp macros, then instantiated
with values appropriate for each category of instructions. The following are de�nitions of the
two most frequently used reservation table forms; information on issue slot access, functional
unit type and the latency of the instruction is provided when the macros are instantiated.

;; there''s a couple common defs for reservation tables...

;; ...at cycle 1

#define USE_AT_1 [(use) (at_cycle 1)]

#define READ_AT_1 [(read) (at_cycle 1)]

;; ...we also need reservations at cycle n

#define USE_AT_CYCLE(N) [(use) (at_cycle N)]

#define WRITE_AT_CYCLE(N) [(write) (at_cycle N)]

;; Default reservation table: guard, no modifier, three addresses, and use

;; everything at cycle 1 except result register and write-back bus

;; in other words, "IF rguard OP rsrc1 rsrc2 -> rdest"

#define THREE_ADDR_TABLE(ISSUE_INFO,FU,N) \

(reser_table \

[ \

ISSUE_INFO \

(ress (name FU) USE_AT_1) \

(ress (match_arg 0) READ_AT_1) \

(ress (match_arg 1) READ_AT_1) \

(ress (match_arg 2) READ_AT_1) \

(ress (match_arg 3) WRITE_AT_CYCLE(N)) \

WRITEBACK_BUS_AT(N) \

])

;; operations of the form "IF rguard OP(modifier) rsrc1 -> rdest": guard,

;; modifier, one source and one destination register

#define MOD_SRC1_DEST_TABLE(ISSUE_INFO,FU,N) \

(reser_table \

[ \

ISSUE_INFO \
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(ress (name FU) USE_AT_1) \

(ress (match_arg 0) READ_AT_1) \

(ress (match_arg 2) READ_AT_1) \

(ress (match_arg 3) WRITE_AT_CYCLE(N)) \

WRITEBACK_BUS_AT(N) \

])

2.9.4 Instruction Semantics

The modeling of instruction semantics for the TM1000 is currently restricted to the delay
slots and the information on the branch target location, which is known for immediate jumps,
but not for indirect ones:

;; Right now, there is only one type of constraints: delay slots, common to

;; all branch instructions.

;; conditional _branch_ information:

#define BRANCH_SEM_INFO \

(sem [ \

(delay_slot 3) \

(branch -1) \

])

;; unconditional _jump_ information: well, it is still a branch if the guard

;; is given

#define JUMP_SEM_INFO \

(sem [ \

(delay_slot 3) \

(jump 1) \

])

;; _return_ information - the instruction terminates a procedure/function

#define RETURN_SEM_INFO \

(sem [ \

(delay_slot 3) \

(noreorder) \

(return) \

])

2.9.5 Instruction De�nitions

Instruction de�nitions associate instruction names with input format information and reser-
vation tables. Therefore, they rely on a previous de�nition of operand representations. Here's
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the de�nition of input tokens for an instruction format nearly matching the actual input for-
mat of the TM1000 assembler (except for the guard which has to be placed after the opcode
together with instruction operands):

;; Section II.1: COMMENTS AND SEPARATORS

;; =====================================

(comment_chars "!")

;; parentheses, dash, "greater" sign (right chevron), 'I' and 'F' as

;; separators

(def_exact "()IF->")

;; Section II.2: META-VARIABLE TOKENS

;; ==================================

;;

;; register tokens are quite nice:

#define REGISTER_REGEXP "r12[0-7]\\|r1[0-1][0-9]\\|r[1-9][0-9]\\|r[0-9]"

(def_token "g" [(regex REGISTER_REGEXP)]) ; guard register

(def_token "s" [(regex REGISTER_REGEXP)]) ; first source register

(def_token "t" [(regex REGISTER_REGEXP)]) ; second source register

(def_token "d" [(regex REGISTER_REGEXP)]) ; destination register

;; sometimes r0 must be explicitly given

(def_token "0" [(regex "r0")])

;; modifier tokens: integer expressions, possibly containing identifiers

(def_token "m" [(read_exp)])

Finally, the instructions are de�ned using all the above components:

;; Section III: INSTRUCTION SET SPECIFICATION

;; ==========================================

;;

;; Section III.1: VLIW INSTRUCTION WIDTH

;; =====================================

;;

;; five issue slots per cycle

(inst_width 5)

;; Section III.2: NATIVE INSTRUCTIONS

;; ==================================

;;

;; Instructions are assumed to complete at cycle following the latency cycle
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;; - there''s an EXPLICIT decode/read cycle at t=1 (0 is insn fetch...)

;; Latencies given as parameters of reservation tables take this already

;; into account.

;;

;; BTW, spaces are not significant in the format string and ARE IGNORED

;; during unparsing - this needs post-processing :-)

#define INPUT_THREE_ADDR input "IF g s t -> d"

#define INPUT_DEST input "IF g -> d"

#define INPUT_MOD input "IF g (m)"

#define INPUT_MOD_DEST input "IF g (m) -> d"

#define INPUT_MOD_SRC1 input "IF g (m) s"

#define INPUT_MOD_SRC1_DEST input "IF g (m) s -> d"

#define INPUT_MOD_SRC1_SRC2 input "IF g (m) s t"

#define INPUT_SRC1 input "IF g s"

#define INPUT_SRC1_DEST input "IF g s -> d"

#define INPUT_SRC1_SRC2 input "IF g s t"

#define INPUT_NOP input "IF g"

;; Section III.2.1: ALU OPERATIONS

;; ===============================

;;

;; most "alu" operations are three-address ops completed in one cycle;

;; the write takes place at the next cycle (t=2)

#define ALU_THREE_ADDR_OP(op) \

(def_asm op \

[(INPUT_THREE_ADDR) \

THREE_ADDR_TABLE(ISSUE,"alu",2) \

])

ALU_THREE_ADDR_OP("iadd") ; signed integer addition

ALU_THREE_ADDR_OP("isub") ; signed integer subtraction

;; etc. etc.

;; "alu" ops that use an immediate value, source1 and dest register

#define ALU_MOD_SRC1_DEST_OP(op) \

(def_asm op \

[(INPUT_MOD_SRC1_DEST) \

MOD_SRC1_DEST_TABLE(ISSUE,"alu",2) \

])

ALU_MOD_SRC1_DEST_OP("ileqi") ; signed less or equal than imm

ALU_MOD_SRC1_DEST_OP("igtri") ; signed greater than immediate

;; etc. etc.
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Chapter 3

Salto User Interface Speci�cation

This chapter describes the objects and functionalities directly available to the user of the
system.

3.1 Classes and Objects

The assembly module, or program, processed by Salto is seen as a list of procedures. Each
procedure is represented by means of a control ow graph (CFG). A control ow graph is a
directed, possibly cyclic graph whose nodes are basic blocks, and whose edges correspond to
control transfers (jumps) resulting from branch instructions.

Each basic block consists of a list of instructions, labels, and assembler directives. The
information attached to an instruction consists of its source line number, opcode, a list of
operands, and a reservation table of all resources involved in the execution of that instruction.
Internally, Salto uses two internal directives BEGIN BASIC BLOCK and END BASIC BLOCK to
mark the beginning and the end of a basic block.

Instructions reference machine resources in two mutually exclusive ways: through uses
and through accesses. The former are associated with functional units and characterize the
fact that a given functional unit is required at a given stage of instruction execution. The
latter are associated with storage resources, such as registers and memory locations, and
describe data storage and extraction.

Resource requirements for a section of code can be represented using a user-modi�able
reservation table which can then be used in optimizations involving instruction reordering.

Finally, any kind of additional information can be attached to a Salto object using
attributes, which can contain any type of data.

The object classes and types provided by the interface are the following:

class CFG is used to represent functions as control ow graphs. The vertices of this graph
are objects of class BB (see below) and the edges are labeled depending on the result
of the branch instruction (TAKEN or NOT TAKEN);
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class BB is used to represent basic blocks, i.e., linear sequences of instructions;

class INST implements assembly instructions, labels, and directives. An instruction is not
necessarily a mnemonic of the processor's instruction set: it can be a macro-instruction,
a pseudo-instruction (directive), a label, or a Salto marker (e.g., begin/end of basic
block, begin/end of loop etc.);

class OperandInfo models instruction operands, providing a simple means of manipulating
operand contents: register names, constant symbols and values, etc.;

class SaltoAttribute provides the implementation of the attribute concept.

class reserv table1 implements reservation tables, used in scheduling algorithms;

Additional classes used in resource management are presented in section 3.6.

3.2 Salto-Speci�c Types

In addition to the classes, �ve data types are provided in order to represent speci�c properties
of objects. These are:

enum cft type: enumerated type indicating the nature of the control ow associated with a
conditional branch. The only values are TAKEN and NOT TAKEN, corresponding respec-
tively to the success (branch) and the failure (do not branch) of the condition.

enum xNode Type: enumerated type indicating the category to which an instruction belongs.
The complete list of instruction types is given below:

Value Description Example

X ASM TYPE Assembler mnemonic ld [%o1+4],%o2

X MACRO TYPE Macro equivalent to one or more
mnemonics

nop

X LABEL TYPE Label L12:

X EQUAL TYPE Constant declaration MAX = 64

X PSEUDO TYPE Pseudo-instruction (directive) .global main

X INFO TYPE Salto-generated annotation BEGIN BASIC BLOCK

enum dependence: enumerated type characterizing the nature of the data hazard between
two instructions. The set of possible values is:

Value Meaning
NONE no common data
RAW Read-after-write hazard (ow dependence)
WAR Write-after-read (anti-dependence)
WAW Write-after-write (output dependence)
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enum res ref type: enumerated type indicating the type of reference made to a resource
by an instruction. The set of possible values is

Value Meaning Example

RES ID REF basic resource r12

CLASS ID REF resource class any global register

MULTI REF block of registers %f0 as 64-bit register

ARG REF instruction argument operand #3

enum res type: enumerated type indicating the type of the hardware resource being ac-
cessed. The set of possible values is

Value Meaning Example

REGISTER RTYPE register "r12"

FUNCT UNIT RTYPE functional unit "alu"

MEMORY RTYPE memory reference "an identifier"

3.3 Salto Primitives

The primitives of Salto are divided into two groups: global functions, operating at top
level in the target code, and class methods, which manipulate the contents and properties
of speci�c Salto objects.

3.3.1 Programming Conventions Used in the Interface

All indices in lists (position of CFG in the program, of a basic block in a CFG, etc.) start
from 0.

Failure of a function returning a pointer is indicated by returning NULL .

The �rst and last instruction in a basic block are special internal markers and can neither
be moved nor extracted.

An instruction can belong to at most one basic block. To be moved from one block to
another, an instruction must be �rst removed from its original block, then inserted into the
destination one.

3.3.2 Global Primitives

Global functions provide the means of manipulating the list of procedures appearing in a
program, extracting the name of the target architecture, and �nding the position of an object
(CFG, basic block, instruction) in its container (program, CFG, or basic block).

void loadFile(char *fileName ) reads and parses the assembly �le fileName . N.B.: this
function should only be used if a new �le has to be processed. In normal operation,
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an input �le has already been read and parsed before the user application started
executing.

char *getTargetName(void) returns the name of target architecture as speci�ed in the
target description being used, for example "sparc" or "mips".

unsigned int numberOfCFG(void) returns the number of distinct control ow graphs in
the program, that is, the number of procedures.

CFG *getCFG(unsigned int pos ) returns the control ow graph of the pos -th procedure
in the current program. pos must be a value between 0 and numberOfCFG() - 1.
Otherwise, an error message is generated and NULL is returned.

unsigned int numberOfInstructions(void) returns the number of instructions (includ-
ing labels and directives) in the program seen as a at list of instructions. N.B.: the
expansion of macros was performed beforehand, when the input program was parsed.

INST *getInstruction(unsigned int pos ) returns the pos -th instruction in the pro-
gram seen as a at list of instructions. pos must be a value between 0 andnumberOf-
Instructions(). Otherwise, an error message is generated and NULL is returned.

void removeCFG(int pos ) suppresses the pos -th procedure from the program. pos must
be a value between 0 and numberOfCFG() - 1. Otherwise, an error message is gener-
ated and the call has no e�ect.

unsigned int getPositionInPgm(CFG *cfg ) returns the position of the speci�ed proce-
dure in the current program. If the procedure has not been found in the abstract
representation of the program, an error message is generated.

unsigned int getPositionInCFG(BB *b ) returns the position of the speci�ed basic block
within its enclosing procedure. If the basic block has not been found in the abstract
representation of the program, an error message is generated.

unsigned int getPositionInBB(INST *st) returns the position of the speci�ed instruc-
tion within its enclosing basic block. If the instruction has not been found in the
abstract representation of the program, an error message is generated.

void produceCode(FILE *outFile ) unparses the internal representation of the current
assembly program to the speci�ed �le. outFile must already be open for writing.
The default value of outFile is stdout .

void producePrologue(FILE *outFile ) unparses the internal representation of the pro-
logue of current assembly program to the speci�ed �le. The prologue consists of all
instructions (directives, data labels etc.) from the beginning of the program up to
(but not including) the �rst CFG of the program. outFile must already be open for
writing. The default value of outFile is stdout .

42



void produceEpilogue(FILE *outFile ) unparses the internal representation of the epi-
logue of the current assembly program to the speci�ed �le. The epilogue consists of
all instructions located past the end of the last CFG of the program. outFile must
already be open for writing. The default value of outFile is stdout .

3.3.3 Control Flow Graphs

The data in CFG objects is entirely privatized: all modi�cations of their values are performed
through the methods listed below:

char * CFG::getName(void) returns the name of the procedure corresponding to this CFG,
i.e., the �rst label of its �rst basic block. A NULL pointer is returned if the CFG is
empty.

unsigned int CFG::numberOfBB(void) returns the number of basic blocks in the proce-
dure.

BB *CFG::getBB(unsigned int pos ) returns the pos -th basic block of the procedure. pos
must be a value between 0 and this->numberOfBB() - 1. Otherwise, an error message
is generated and NULL is returned.

void CFG::deleteBB(unsigned int pos ) deletes the pos -th basic block and its instruc-
tions from the control ow graph and updates the edges of the graph. Prints an error
message and does not modify the graph if pos is out of bounds.

BB *CFG::createNewBB(void) creates a new basic block with no instructions in it.

BB *CFG::extractBB(unsigned int pos ) extracts a basic block from the procedure with-
out destroying its contents or modifying the dependences (edges) of the graph. Al-
lows the basic block to be inserted elsewhere. pos must be a value between 0 and
this->numberOfBB() - 1. See also methods CFG::linkBB() and CFG::unlinkBB().

void CFG::insertBB(unsigned int pos , BB *b ) inserts a previously extracted or new-
ly created basic block into the control ow graph at the position speci�ed by pos . No
edges are added to the graph. pos must be a value between 0 and this->numberOfBB()
- 1. See also methods CFG::linkBB() and CFG::unlinkBB().

void CFG::linkBB(BB *source , BB *sink , enum cft type t ) adds an edge between
basic blocks source and sink. The parameter t indicates whether the edge corre-
sponds to the branch being taken (test condition satis�ed, t = TAKEN) or not (test
condition failed, t = NOT TAKEN).

void CFG::unLinkBB(BB *source , BB *sink ) suppresses the edge between basic blocks
source and sink .
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void CFG::producePrologue(FILE *outFile ) writes to �le outFile the totality of the
(pseudo-)code preceding the �rst basic block of the current procedure. This may include
directives, data labels, comments etc.

void CFG::produceEpilogue(FILE *outFile ) writes to �le outFile the (pseudo-)code
following the last basic block of the current procedure.

void CFG::produceCode(FILE *outFile ) writes to �le outFile the complete code of the
current procedure, including its prologue and epilogue.

3.3.4 Basic Blocks

The objects of class BB represent the basic blocks of the target code, that is, lists of instruc-
tions containing neither branches nor jumps, except at the end. As for class CFG , there is
no direct access to the data of class BB . All accesses are made through the methods listed
below:

unsigned int BB::numberOfInstructions(void) returns the number of instructions in
the current basic block. NOTE: as macro expansion is performed beforehand, the
count returned will be that corresponding to the expanded code.

unsigned int BB::numberOfAsm(void) returns the number of actual assembler mnemon-
ics in the current basic block. NOTE: as macro expansion is performed beforehand,
the count returned will be that corresponding to the expanded code.

INST *BB::getInstruction(unsigned int pos ) returns the pos -th instruction in the
current basic block. pos must be a value between 0 and this -> numberOfInstruc-

tions() - 1. If pos is out of bounds, NULL is returned and an error message is
generated.

INST *BB::getAsm(unsigned int pos ) returns the pos -th assembler mnemonic of the
current basic block. pos must be a value between 0 and this -> numberOfAsm() -

1, otherwise NULL is returned and an error message is generated.

void BB::extractInstruction(unsigned int pos ) suppresses the pos -th instruction fr-
om the current basic block. pos must be a value between 1 and this -> numberOfIn-

structions() - 2, otherwise an error message is generated and the call has no e�ect.
Reminder: the �rst and the last instruction of the basic block are Salto markers and
cannot be removed.

void BB::extractInstruction(INST *st ) suppresses the speci�ed instruction from the
current basic block. Instruction st must belong to the current basic block, otherwise
an error message is generated and the call has no e�ect. Reminder: the �rst and the
last instruction of the basic block are Salto markers and cannot be removed.
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void BB::extractAsm(unsigned int pos ) suppresses the pos -th assembly instruction fr-
om the current basic block. pos must be a value between 0 and this -> numberOf-

Asm() - 1, otherwise an error mesage is issued and the call has no e�ect.

void BB::insertInstruction(unsigned int pos , INST *st ) inserts a new instruction
before the instruction at position pos in the current basic block. pos must be a value
between 1 and this -> numberOfInstructions() - 1, otherwise an error message
is generated and the call has no e�ect. The position given is that at which the inserted
instruction should appear after the call. N.B.: an instruction can only belong to one
basic block: if instructions are moved between blocks, they must �rst be extracted
from the original block, then inserted into the destination one.

void BB::insertAsm(unsigned int pos , INST *st ) inserts a new assembly instruction
before the assembly instruction at position pos in the current basic block. pos must
be a value between 0 and this -> numberOfAsm(), otherwise an error message is gen-
erated and the call has no e�ect. The position given is that at which the inserted
instruction should appear in the assembly instruction list after the call. If the po-
sition given is 0 and the block contains no assembly instructions, or if the position
given is this -> numberOfAsm(), the assembly instruction st is inserted as the last
instruction of the block. N.B.: an instruction can only belong to one basic block: if
instructions are moved between blocks, they must �rst be extracted from the original
block, then inserted into the destination one.

void BB::swapInstruction(unsigned int pos1 , unsigned int pos2 ) exchange the
instructions located at positions pos1 and pos2 in the current basic block. pos1 and
pos2 must be comprised between 1 and this -> numberOfInstructions() - 2.

void BB::orderAccordingToCycles(void) reorders the instructions of the basic block ac-
cording to the schedule attributed beforehand to each instruction using calls to INST::-
setCycle().

void BB::addNecessaryNops(void) insert all necessary NOP pseudo-instructions corre-
sponding to the cycles for which no instructions are scheduled. See also orderAccor-

dingToCycles() and INST::setCycle().

unsigned int BB::numberOfSuc(void) returns the number of successors of the current
basic block in its enclosing control ow graph.

unsigned int BB::numberOfPred(void) returns the number of predecessors of the current
basic block in its enclosing control ow graph.

BB *BB::getSuc(unsigned int pos ) returns the pos -th successor of the current basic
block in the enclosing control ow graph. pos must be between 0 and this -> num-

berOfSuc() - 1, otherwise NULL is returned and an error message is generated.

BB *BB::getPred(unsigned int pos ): returns the pos -th predecessor of the current ba-
sic block in the enclosing control ow graph. pos must be between 0 and this ->

numberOfPred() - 1, otherwise NULL is returned and an error message is generated.
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enum cft type BB::getSucType(unsigned int pos ) returns the type of the pos -th suc-
cessor of the current basic block in the enclosing control ow graph. pos must be
between 0 and this -> numberOfSuc() - 1, otherwise the call returns NOT TAKEN

and an error message is generated.

enum cft type BB::getPredType(unsigned int pos ): returns the type of the pos -th
predecessor of the current basic block in the enclosing control ow graph. pos must be
between 0 and this -> numberOfPred() - 1, otherwise the call returns NOT TAKEN

and an error message is generated.

void BB::addSuc(BB *b , enum cft type t ) adds a successor of the current basic block
and updates the predecessor list of the basic block being added. The parameter t indi-
cates whether the edge corresponds to the branch being taken (test condition satis�ed,
t == TAKEN ) or not (test condition failed, t == NOT TAKEN ).

void BB::addPred(BB *b , enum cft type t ) adds a predecessor of the current basic bl-
ock and updates the successor list of the basic block being added. The parameter
t indicates whether the edge corresponds to the branch being taken (test condition
satis�ed, t == TAKEN ) or not (test condition failed, t == NOT TAKEN ).

void BB::notPredAnymore(unsigned int pos ) suppresses the edge between the current
basic block and its pos -th predecessor. pos must be a value between 0 and this ->

numberOfPred() - 1, otherwise an error message is generated.

void BB::notSucAnymore(int pos ) suppresses the edge between the current basic block
and its pos -th successor. pos must be a value between 0 and this -> numberOfSuc()

- 1, otherwise an error message is generated.

unsigned int BB::contains(INST *st ) checks whether or not instruction st belongs to
the current basic block. Returns 0 if the instruction was not found or was a marker
pseudo-instruction. A non-zero return value is the position of the instruction in the
basic block.

void BB::produceCode(FILE *fg ) writes the external representation of the current basic
block to the �le fg .

INST *BB::firstInstruction(void) returns the �rst instruction of the current basic bl-
ock. It is necessarily a marker pseudo-instruction BEGIN BASIC BLOCK (type
X INFO TYPE).

INST *BB::lastInstruction(void) returns the last instruction of the current basic block.
It is necessarily a marker pseudo-instruction END BASIC BLOCK (type X INFO TYPE).
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3.3.5 Instructions

The class INST implements a representation of target code instructions. As for the classes
CFG and BB , all data of class INST objects are private and can only be manipulated using
the methods listed below.

Type and property predicates

The type and several semantical propreties of an instruction can be checked by calling the
following predicates:

xNode Type INST::getType(void) returns the type of the current instruction (see sec-
tion 3.2 above.)

bool INST::isLabel(void) returns true if the current instruction is a label.

bool INST::isPseudo(void) returns true if the current instruction is a \pseudo-instruc-
tion", i.e., an assembler directive.

bool INST::isAsm(void) returns true if the current instruction is an actual assembler
instruction.

bool INST::isBranch(void) returns true if the current instruction is a conditional br-
anch. NOTE: applies only to actual assembler instructions; otherwise, returns false
and generates an error message.

bool INST::isJump(void) returns true if the current instruction is an unconditional jump.
NOTE: applies only to actual assembler instructions; otherwise, fails with an error
message.

bool INST::isCall(void) returns true if the current instruction is a subroutine call.
NOTE: applies only to actual assembler instructions; otherwise, returns false and
generates an error message.

bool INST::isReturn(void) returns true if the current instruction is a return from sub-
routine. NOTE: applies only to actual assembler instructions; otherwise, returns false
and generates an error message.

bool INST::isNop(void) returns true if the current instruction is a NOP. NOTE: ap-
plies only to actual assembler instructions and macros; otherwise, returns false and
generates an error message.

bool INST::isCTI(void) returns true if the current instruction is a control transfer in-
struction (branch, jump, call or return). NOTE: applies only to actual assembler
instructions and macros; otherwise, returns false and generates an error message.
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Construction and duplication of instructions

New instructions can be created using the following set of functions:

INST *newAsm(char *opcode , unsigned int numOps = 0, ...) returns a new assem-
bler instruction with mnemonic opcode and numOps operands, built using the �rst
instruction format speci�ed for that mnemonic in the machine description �le. In-
struction operands are passed in the optional argument part as C++ references to
class OperandInfo objects. A reservation table matching the operands of the instruc-
tion is also created and attached to the instruction. NOTE: each operand is passed as
a separate argument.

INST *newAsm(char *opcode , char *format , unsigned int numOps = 0, ...)

returns a new assembler instruction with mnemonic opcode and numOps operands,
built using the speci�ed instruction format. A matching instruction declaration must
exist in the machine description �le. Operands are passed in the optional argument
part as C++ references to class OperandInfo objects. A reservation table matching
the operands of the instruction is also created and attached to the instruction. NOTE:
each operand is passed as a separate argument.

INST *newLabel(char *name ) returns a new label with the speci�ed name. NOTE: name
should not contain the trailing colon character (`:').

INST *newPseudo(char *text ) returns a new pseudo-instruction whose textual represen-
tation (including the leading dot) is text .

The duplication of an instruction is implemented through the method `copy()':

INST *INST::copy(void) returns a copy (a clone) of the current instruction.

Issue cycle manipulation

The cycle at which the instruction is to be issued can be directly manipulated through the
following two methods:

int INST::getCycle(void) extracts the cycle at which the instruction will be issued. By
convention, a negative value indicates that the instruction has not been scheduled yet.

void INST::setCycle(int c ) sets the cycle at which the instruction will be issued.

Name, informative annotations, and textual representation

The INST interface provides access to the textual representation of instructions and to :

char *INST::getName(void) called on an assembly instruction or a macro, returns the
mnemonic without the arguments. On a label, returns the textual representation of
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its symbol, without the trailing colon. On a pseudo-instruction (assembler directive),
returns the name of the directive, including the leading dot (`.').

char *INST::getAsmInfo(void) returns the contents of the textual information �eld at-
tached to the assembler instruction or macro-operation de�nition matching the current
instruction. Note: this method should only be called on assembler instructions and
macros.

char *INST::unparse(void) returns the unparsed (external) representation of the current
instruction irrespective of attributes attached to that instruction. The memory space
for the string is allocated through a call to new char[] and should be released after
use.

char *INST::unparse(char *st ) stores in st the unparsed (external) representation of
the current instruction, irrespective of attributes attached to that instruction. The size
of the memory area pointed to by st must be su�cient to hold the unparsed text.

void INST::produceCode(FILE *outFile ) writes the unparsed representation of the cur-
rent instruction to the �le outFile . If an attribute of type UNPARSE ATT containing
a pointer to a character string is attached to the instruction, only the that string is
written, instead of the textual representation of the instruction. Comments speci�ed
through attributes of type COMMENT ATT attached to the instruction are printed in their
order of attachment after the textual representation of the instruction.

Operands

The following methods provide the means of extracting and replacing instruction operands.
They should only be called on actual assembly instructions. Operand abstractions (class
OperandInfo ) are further discussed in section 3.4.)

unsigned int INST::numberOfOperands(void) returns the number of operands attached
to the instruction.

operand *INST::getRawOperand(unsigned int pos ) returns the low-level representation
of the pos -th operand of the instruction. pos must be in the range 0..this ->

numberOfOperands() - 1, otherwise an error message is generated and the call re-
turns NULL.

void INST::setRawOperand(unsigned int pos , operand *op ) sets the pos -th low-le-
vel operand of the instruction to op . pos must be in the range 0..this -> num-

berOfOperands() - 1, otherwise an error message is generated and the call has no
e�ect.

OperandInfo &INST::getOperand(unsigned int pos ) returns the abstraction of the pos -
th operand of the instruction. pos must be in the range 0..this -> numberOfOper-

ands() - 1, otherwise an error message is generated and the call returns a reference
to an operand of type unknownOpdT.
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void INST::setOperand(unsigned int pos , OperandInfo &op ) sets the pos -th oper-
and of the instruction from the operand abstraction op . pos must be in the range
0..this -> numberOfOpe-rands() - 1, otherwise an error message is generated and
the call has no e�ect.

Resource accesses

int INST::numberOfInput(void) returns the number of resources read by the current in-
struction. NOTE: applies only to actual assembler instructions.

int INST::numberOfOutput(void) returns the number of resources written by the current
instruction. NOTE: applies only to actual assembler instructions.

int INST::numberOfUse(void) returns the number of resources used by the current in-
struction. NOTE: applies only to actual assembler instructions.

res ref *INST::getInput(int pos ) returns the pos -th resource read by the current in-
struction; pos must be in the range 0..numberOfInput() - 1. NOTES: 1) the order of
resources returned by getInput() does not necessarily match the chronological order
in which they are accessed by the instruction; 2) this method applies only to actual
assembler instructions.

res ref *INST::getOutput(int pos ) returns the pos -th resource written by the current
instruction; pos must be in the range 0..numberOfOutput() - 1. NOTES: 1) the order
of resources returned by getOutput() does not necessarily match the chronological
order in which they are accessed by the instruction; 2) this method applies only to
actual assembler instructions.

res ref *INST::getUse(int pos ) returns the pos -th resource used by the current in-
struction; pos must be in the range 0..numberOfUse() - 1. NOTE: the order of
resources returned by getUSe() does not necessarily match the chronological order in
which they are used by the instruction; 2) this method applies only to actual assembler
instructions.

void INST::setInput(int pos , res ref *r ) updates the description of the pos -th re-
source read by the instruction; pos must be in the range 0..numberOfInput() - 1.
NOTE: applies only to actual assembler instructions.

void INST::setOutput(int pos , res ref *r ) updates the description of the pos -th re-
source written by the instruction; pos must be in the range 0..numberOfOutput() -

1. NOTE: applies only to actual assembler instructions.

void INST::setUse(int pos , res ref *r ) updates the description of the pos -th re-
source used by the instruction; pos must be in the range 0..numberOfUse() - 1.
NOTE: applies only to actual assembler instructions.
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void INST::getResUsageMode(res ref *r , int *tab , int len ) �lls the integer array
tab of size len with the markers indicating the nature of references made by the
current instruction to the resource r at each cycle of its execution. Non-zero entries in
the array correspond to the cycles at which the resource is referenced by the instruction.
NOTE: applies only to actual assembler instructions; otherwise, fails with an error
message.

void INST::setResUsageMode(res ref *r , int *tab , int len ) sets the use informa-
tion of resource *r from the integer array *tab of size len containing the markers
indicating the nature of references made by the current instruction to the resource *r
at each cycle of its execution. NOTE: applies only to actual assembler instructions;
otherwise, fails with an error message.

int INST::noReorder(void) returns TRUE (non-zero) if the instruction cannot be moved,
e.g., if it lies in a delay slot . NOTE: applies only to actual assembler instructions;
otherwise, fails with an error message.

enum dependence INST::dependsOn(INST *ii , bool noCtrlFlow , bool noMem )

returns the type of the data dependence between instruction ii and current instruc-
tion, assuming that ii is executed before the current instruction. By default, both
noCtrlFlow and noMem are not set (value false). The value returned is one of
NONE, RAW, WAW and WAR (see section 3.2 above.) If the ag noCtrlFlow is set,
INST::dependsOn(...) does not check whether instruction ii follows current in-
struction in the control ow (otherwise, it returns NONE.) If the ag noMem is set,
no tests are made for memory dependences. N.B.: both instructions (this and ii )
should belong to the same basic block.

int INST::getDelay(INST *ii ) determines the minimum delay between current instruc-
tion and instruction *ii that will solve all data aliasing conicts. If the function int

updateDelay(int delay , INST *first , INST *last , enum dependence dep ) is
de�ned, it is called with first == this and last == ii to account for the write-
back by-pass, if any.

int INST::getResDelay(INST *ii ) determines the minimum delay between current in-
struction and instruction *ii that will solve all resource conicts, assuming that there
is exactly one instance of every functional unit. If the function int updateDelay(int

delay , INST *first , INST *last , enum dependence dep ) is de�ned either in
user's tool, or in the target-speci�c module of Salto (searched in that order), it is
called with first == this and last == ii to account for the write-back bypass, if
any.

3.4 Operand Abstraction

The contents of instruction operands should only be manipulated through the operand ab-
straction class OperandInfo. This class provides primitives allowing to extract and modify
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operand values, including register renaming and arbitrary expression substitutions.

The abstract operand contains information on the low-level Salto object representing
the actual operand and, for resource operands (registers and memory), gives the type and
schedule of accesses made to the operand by the instruction it is attached to. Access schedules
are given wrt. the issue cycle of the instruction (0 by convention). Multi-cycle accesses must
span an interval of consecutive cycles.

NOTE: expression operands are supposed to evaluate to the form <symbol> + [<symbol>]
+ [<signed constant>].

3.4.1 Constructors

A family of six constructors is provided to allow for a fast and easy construction of operand
abstractions:

OperandInfo(operand *op , accessT acc =notAccessed, uint from =0, uint to =0)

builds an operand abstraction from the low-level operand op . If present, the remaining
�elds (acc , fromCycle , toCycle ) de�ne the type and the schedule of the access.

OperandInfo(char *name , accessT acc =notAccessed, uint from =0, uint to =0)

builds the abstraction of an access to the resource *rsrcName . If present, the remaining
�elds (acc , fromCycle , toCycle ) de�ne the type and the schedule of the access.

OperandInfo(SymbolS *symb ) builds the abstraction of a reference to a symbol whose low-
level Salto representation is *symb . There is no access information, since the operand
is not a resource.

OperandInfo(int cst ) builds the abstraction of a reference to an integer constant cst .

OperandInfo(double fpcst ) builds the abstraction of a reference to a oating-point con-
stant fpcst .

OperandInfo(void) builds an empty operand abstraction, to be completed through further
initializations.

3.4.2 Type Manipulation

The type of an operand abstraction can be checked/modi�ed by calling the following predi-
cates and property methods:

operandT OperandInfo::getType(void) returns the type of the operand. The type can
be unknownOpdT, resIdentOpdT, multiresIdentOpdT, FPconstOpdT, exprOpdT,
addExprOpdT, upOrLowPartOpdT, resPlaceholderOpdT, or multiresPlaceholderOpdT.

void OperandInfo::setType(operandT type ) sets the type of the operand abstraction to
type .
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bool OperandInfo::isResIdent(void) returns true if the operand is a reference to a
single resource (register or memory).

bool OperandInfo::isMultiresIdent(void) returns true if the operand is a reference to
an aggregate resource (such as SPARC's double-precision pseudo-registers consisting
of two adjacent %f registers).

bool OperandInfo::isFPconst(void) returns true if the operand is a oating-point con-
stant.

bool OperandInfo::isExpr(void) returns true if the operand is a constant integer ex-
pression as de�ned above.

bool OperandInfo::isAddExpr(void) returns true if the operand is an integer expression
containing an addition of symbol values or a metavariable term (such as a macro
parameter).

bool OperandInfo::isUpOrLowPart(void) returns true if the operand is an MSB or LSB
part of a resource's contents.

bool OperandInfo::isResPlaceholder(void) returns true if the operand is a meta-var-
iable (such as a macro parameter) instantiated with a reference to a single resource.

bool OperandInfo::isMultiresPlaceholder(void) returns true if the operand is a meta-
variable (such as a macro parameter) instantiated with a reference to an aggregate
resource.

Operand contents manipulation

The contents of operand abstractions should only be manipulated using the methods given
below.

res ref OperandInfo::getRawResource(void) returns the pointer to the low-level res-
ource reference associated with the operand.

void OperandInfo::setRawResource(res ref *rsrc ) sets the pointer to the low-level re-
source reference associated with the operand.

char *OperandInfo::getName(void) returns the name of the resource associated with the
operand.

char *OperandInfo::rename(char *newName ) renames the resource associated with the
operand to newName . The subject must be a resource reference abstraction. The new
resource must belong to the same class as the original one. On success, the value
returned is the name of the original resource. On failure, the method returns NULL.
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unsigned int OperandInfo::substitute(char *oldText , char *newText ) substitutes
newText for every non-overlapping occurrence of oldText in the (unparsed) represen-
tation of the expression corresponding to the abstraction. The textual representation
produced by substituting newText for oldText is checked for syntaxical correctness,
then parsed to rebuild the expression. The method fails if the operand is not an ab-
straction of a constant expression. The value returned is the number of substitutions
performed. CATCH: make sure that the value of oldText matches the actual external
representation of the expression you want to substitute.

operand *OperandInfo::getValue(void) returns the low-level operand representation cor-
responding to the abstraction.

void OperandInfo::setValue(char *resName ) sets the abstraction to be a reference to
resource resName .

void OperandInfo::setValue(char *multiresName , unsigned int offset , size )

sets the abstraction to be a reference to an aggregate resource of base name multi-

resName , consisting of size elements starting at position offset in the resource
vector.

void OperandInfo::setValue(double fpValue ) sets the abstraction to be the oating-
point constant fpValue .

The following group of methods is intended for users familiar with the internal structures
of Salto. Each `set...' method updates all internal �elds of the abstraction, leaving it
in a consistent state.

NOTE: all methods return and take C++ references.

ident &OperandInfo::getResIdent(void) returns the low-level single resource reference
description associated with the abstraction.

void OperandInfo::setValue(ident &id ) sets the abstraction to match low-level single
resource reference id .

multi ident &OperandInfo::getMultiresIdent(void) returns the low-level aggregate re-
source reference description associated with the abstraction.

void OperandInfo::setValue(multi ident &multiId ) sets the abstraction to match low-
level aggregate resource reference multiId .

flp const &OperandInfo::getFPconst(void) returns the low-level oating-point constant
representation associated with the abstraction.

void OperandInfo::setValue(flp const &flp ) sets the abstraction to match low-level
oating-point constant representation flp .

exprn &OperandInfo::getExpr(void) returns the low-level constant expression represen-
tation associated with the abstraction.
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void OperandInfo::setValue(exprn &xp ) sets the abstraction to match low-level con-
stant expression representation xp .

add expr &OperandInfo::getAddExpr(void) returns the low-level additive expression rep-
resentation associated with the abstraction.

void OperandInfo::setValue(add expr &addxp ) sets the abstraction to match low-level
additive expression representation addxp .

up or low part &OperandInfo::getUpOrLowPart(void) returns the low-level MSB/LSB
selector representation associated with the abstraction.

void OperandInfo::setValue(up or low part &uplow ) sets the abstraction to match low-
level MSB/LSB selector representation uplow .

placeholder &OperandInfo::getResPlaceholder(void) returns the low-level single re-
source meta-variable representation associated with the abstraction.

void OperandInfo::setValue(placeholder &ph ) sets the abstraction to match low-level
single resource meta-variable representation ph .

multi placeholder &OperandInfo::getMultiresPlaceholder(void) returns the low-le-
vel aggregate resource meta-variable representation associated with the abstraction.

void OperandInfo::setValue(multi placeholder&mph ) sets the abstraction to match low-
level aggregate resource meta-variable representation mph .

Resource access information

accessT OperandInfo::getAccessType(void) returns the type of the access. The type
can be notAccessed, readAccess, writeAccess, or useAccess.

void OperandInfo::setAccessType(accessT access ) sets the access type to access .

unsigned int OperandInfo::getFirstCycle(void) returns the �rst cycle at which the
operand resource is accessed, counted from instruction issue. The value returned is not
meaningful if the access type is notAccessed.

unsigned int OperandInfo::getLastCycle(void) returns the last cycle at which the op-
erand resource is accessed, counted from instruction issue. The value returned is not
meaningful if the access type is notAccessed.

void OperandInfo::setFirstCycle(unsigned int first ) sets the �rst cycle at which
the operand resource is accessed.

void OperandInfo::setLastCycle(unsigned int last ) sets the last cycle at which the
operand resource is accessed.
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3.5 Attributes

Attributes provide a means of annotating instructions and basic blocks with arbitrary infor-
mation. Attributes attached to an object are structured into a list. An attribute has three
properties:

� a value , which is an opaque string of bytes;

� a size , which is an integer representing the length of value in bytes,

� a type , which is an integer representing the nature of the information stored in the
value �eld; for system-de�ned attributes, type is a negative number.

3.5.1 Prede�ned Attributes

There are �ve prede�ned attribute types. The user can de�ne additional types; user-de�ned
types must correspond to strictly positive type codes.

NO ATT is the attribute type returned by the Salto attribute manipulation calls on failure;

UNPARSE ATT modi�es the behavior of produceCode() methods of classes INST and BB; if
this attribute is present, the text produced by the unparser will be the value of the
attribute, and not the external representation of actual basic block or instruction.

CYCLE ATT is used by schedule management functions INST::setCycle(), and INST::get-

Cycle() and BB::orderAccordingToCycles() when setting scheduling information of
instructions in a basic block and reordering the instructions of a basic block according
to their cycle numbers.

COMMENT ATT allows to attach comments to a basic block or an instruction. When unparsing
an instruction, an end-of-line comment is added. When unparsing a basic block, a
number of line comments su�cient to represent the value of the attribute is placed
immediately before the �rst instruction of the basic block.

EXTENDED BB ATT, if attached to a basic block, indicates that this block contains multiple
branch instructions and/or backward jumps to the beginning of the block, but still has
a single entry point (the �rst instruction of the block).

INST IL ID ATT allows to attach to an instruction its ID number in an external tool attached
to Salto.

3.5.2 Attribute Management

SaltoAttribute::SaltoAttribute(int t , void *pt , int size ) default constructor;
builds an attribute of type t , containing the data of size size pointed to by pt ;
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int SaltoAttribute::getAttributeType(void) returns the type of the attribute;

void SaltoAttribute::setAttributeType(int t ) sets the type of the attribute;

void *SaltoAttribute::getAttributeData(void) returns a pointer to the data �eld of
the attribute;

void SaltoAttribute::setAttributeData(void *d ) sets the data pointer of the attrib-
ute to d ;

int SaltoAttribute::getAttributeSize() returns the size of the data �eld of the at-
tribute;

void SaltoAttribute::setAttributeSize(int s ) sets the size of the data �eld of the
attribute to s ;

int SaltoAttribute::getTypeNode() returns the type of the object to which the attribute
is attached; possible return values are CFGNODE, BBNODE and INSTNODE.

void *SaltoAttribute::getPtToSalto() returns a pointer to the Salto object to which
the attribute is attached; this pointer must be re-cast according to the type of the
attribute.

void SaltoAttribute::setPtToSalto(void *sa ) sets the pointer to the Salto object
to which the attribute is attached;

void SaltoAttribute::resetPtToSalto() sets the pointer to Salto object to NULL.

void SaltoAttribute::setPtToSalto(BB &st ) sets the pointer to Salto object to the
address of basic block &st ;

void SaltoAttribute::setPtToSalto(INST &st ) sets the pointer to Salto object to the
address of instruction &st ;

void SaltoAttribute::getCFG(void) returns the pointer to the CFG attribute is attached
to; returns NULL if the attribute is attached to a Salto object of another type.

BB *SaltoAttribute::getBB(void) returns the pointer to the basic block the attribute is
attached to; returns NULL if the attribute is attached to a Salto object of another
type.

INST *SaltoAttribute::getINST(void) returns the pointer to the instruction the attribute
is attached to; returns NULL if the attribute is attached to a Salto object of another
type.

SaltoAttribute *copy(void) copy an attribute; the data �eld is not copied.
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3.5.3 Attribute Usage

The following are methods for attribute manipulation, available on objects of classes CFG ,
BB , and INST .

N.B: since these methods are applicable to objects of several classes, no class pre�x is given
in the prototypes listed.

int numberOfAttributes(void) returns the number of attributes currently attached to
the object;

int numberOfAttributes(int type ) returns the number of attributes of type type al-
ready attached to the object;

SaltoAttribute *getAttribute(int pos ) returns the pos -th attribute of the current ob-
ject;

SaltoAttribute *getAttribute(int pos , int type ) returns the pos -th attribute of
type
type attached to the current object;

void setAttribute(int pos , SaltoAttribute *att ) sets the pos -th attribute of the
current object to att ; prints an error message and returns without side e�ects if no
such attribute exists;

void setAttribute(int pos , int type , SaltoAttribute *att ) sets the pos -th att-
ribute of type type attached to the object to att ; prints an error message and returns
without side e�ects if no such attribute exists;

int attributeType(int pos ) returns the type of the pos -th attribute attached to the
object; returns NO ATT if no such attribute exists;

void *attributeValue(int pos ) returns the pointer to the value of pos -th attribute of
the object; returns NULL if no such attribute exists;

void *attributeValue(int pos , int type ) returns the value of the pos -th attribute of
type type attached to the object; returns NULL if no such attribute exists;

void addAttribute(int type , void *a , int size ) adds an attribute of type type and
size size , and containing the data pointed to by a , at end of attribute list of the cur-
rent object; no copy of data is made;

void addAttribute(int type ) adds an attribute of type type and containing no data;

void addAttribute(void *a , int size ) adds a type-less attribute of size size contain-
ing the data pointed to by a , at end of attribute list of the current object; no copy of
data is made;
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void addAttribute(Attribute *att ) adds a complete attribute pointed to by att at the
end of the attribute list of the object;

void *deleteAttribute(uint pos ) removes the pos -th attribute of the object.

3.6 Reservation Table Management

Resource information accessible to the user covers only resource references: the user cannot
change the properties of the hardware resource itself; only resource references made by
instructions and represented in reservation tables can be accessed and modi�ed.

The accesses to resources attached to operands can be modi�ed using the operand ab-
straction. However, to modify resources which do not appear explicitly in the assembly code,
it is necessary to manipulate the contents of reservation tables.

In the following, we present the current state of the resource interface, which is undergoing
deep restructuring aiming at a more systematic and orthogonal organization.

3.6.1 Resource Descriptions

Resource descriptions in Salto are maintained as a global resource database, searchable by
resource names and ID numbers. Each resource has a unique ID number, a type, a name,
and at most two aliases. The global resource database provides translations from resource
names to IDs and database entries.

Resource type can be any of UNKNOWN RTYPE, REGISTER RTYPE, FUNCT UNIT RTYPE, or
MEMORY RTYPE.

Resource descriptions are implemented through the class rdb res entry providing the
following methods:

char *rdb res entry::name(int which = 0) returns the name of the resource. When
non-default values of which (1 and 2) are given, returns respectively the �rst and the
second alias of the resource.

int rdb res entry::getType(void) returns the type of the resource (see above.)

int rdb res entry::get res limit(void) returns the replication level of the resource.

To access the contents of the global resource database, it must �rst be extracted from
Salto's database server by the following statement:

ResourceDataBase &rdb = xxx server -> GetResT() ;

Once the resource database is extracted, individual resource entries can be searched by name
and by resource ID numbers:

ResId T ResourceDataBase::get res id(char *name ) returns the ID of the resource na-
me .
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char *ResourceDataBase::get res name(ResId T id ) returns the name of the resource
bearing ID number id .

rdb res entry *ResourceDataBase::get res(ResId T id ) returns the resource entry
matching the id given.

int ResourceDataBase::get res limit(char *name ) returns the replication level of re-
source name .

3.6.2 Resource References

Resource references contain information on resource accesses made during the execution of
an instruction. A resource reference represents exactly one resource access: if the same
resource is accessed several times during the execution of an instruction, each access will be
represented by a separate resource reference object.

Resource references are implemented in class res ref, further specialized into res ref id

(basic resource references) and multi ref (multi-register references). The methods available
to the user are:

enum res ref type res ref::get ref type(void) returns the type of the reference.

ResId T res ref::get res id(void) returns the ID of the resource accessed by current
reference.

bool res ref::same res as(res ref *otherRef ) returns true if current reference and
otherRef correspond to accesses to the same resource.

int res ref::get limit(void) returns the replication level of the resource being accessed.

bool res ref::norename(void) returns true if the resource cannot be renamed.

bool multi ref::same multires as(res ref *otherRef ) returns true if the current ref-
erence accesses the same multi-register as otherRef .

res ref *multi ref::get base res(void) returns the base register of the current multi-
resource (i.e., the resource used as reference point in determining the composition of
the multi-register, see section 2.5).

int multi ref::get size(void) returns the number of elements constituting the multi-
register being referenced.

int multi ref::get index(void) returns the o�set of the �rst element of a multi-register
wrt. its base register (see above.)
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3.6.3 Reservation Table Entries

A reservation table entry indicates the nature and the schedule of a resource access: the
information it contains speci�es what operation is performed on the resource (read, write,
use) and when (�rst and last cycle of the access). Resources which are accessed several times
when executing an instruction give raise to as many reservation table entries as there are
distinct accesses being made to the resource.

A reservation table entry provides the following functionalities:

res ref *reserv entry::get res(void) returns the resource reference it describes

void reserv entry::set res(res ref *newRef ) sets the resource reference to newRef .

enum access mode reserv entry::get access mode(void) returns the mode of access
made to the resource referenced by the current entry.

void reserv entry::set access mode(enum access mode newMode ) changes the access
mode of the current entry to newMode .

int &reserv entry::from cycle(void) returns a reference to the integer representing the
�rst cycle of the current access.

int &reserv entry::to cycle(void) returns a reference to the integer representing the
last cycle of the current access.

3.6.4 Reservation Tables

Reservation tables are use to represent resource accesses within a common time frame, allow-
ing to check for resource access conicts over that time frame. A reservation table is attached
to each assembly instruction, but the user can also set up reservation tables spanning several
instructions. Reservation tables are used in instruction scheduling to ensure the feasibility
of a given instruction schedule.

Reservation tables are implemented in the class reserv table1 as lists of reservation
table entries and can be manipulated using the following methods of that class:

int get size(void) returns the number of entries in the reservation table.

void insert res(res ref *ref , enum access type acc , int fr , int to ) adds an
entry which corresponds to the reference ref made in mode acc between cycles fr
and to , inclusive.

void delete res(int pos ) removes the pos -th entry in the current reservation table.

reserv entry* get entry(int pos ) returns the pos -th entry of the current reservation
table.
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reserv entry* get entry(res ref *ref , enum access mode acc ) returns the entry of
the current reservation table in which the resource referenced by ref is accessed in
mode acc .

reserv entry* get entry(ResId T id , enum access mode access ) returns the entry of
the current reservation table in which the resource with ID id is accessed in mode
access .

3.6.5 Usage Examples

To illustrate the operation of the current resource interface, let us have a closer look at two
short examples: low-level dependence checking, and counting of accesses performed by an
instruction.

Flow dependence checking

The following is an excerpt from the implementation of class INST. The method
INST::isRAW(INST *source ) is used internally to check if the current instruction may
depend on instruction source . For read access made by the current instruction (this ),
the method searches for a write access to the same resource performed in the instruction
supplied as argument.

=�
� Does instruction -this- have a RAW hazard with -ii- ?

� We check if -this- reads a resource written by -ii-.

�=
bool
INST::isRAW(INST �ii, bool ignoreMem)
f
int i, j, rRid, rWid;
int nOfInput, nOfOutput;
res ref �rread, �rwrite;

nOfInput = numberOfInput();
for(i=0; i < nOfInput; i++) f
rread = getInput(i); == current insn reads rread
== if 'rread' is a memory reference and we ignore the mem, let's
== just skip it
if (ignoreMem

&&
(rdb . get res(rread ! get res id()) ! getType() == MEMORY RTYPE))

continue;
rRid = rread ! get res id();
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nOfOutput = ii ! numberOfOutput();
for(j=0; j < nOfOutput; j++) f == is it written in instruction 'ii'?
rwrite = ii ! getOutput(j);
rWid = rwrite ! get res id();
if (rWid == rRid)
return true; == if so, there's indeed a RAW hazard between 'ii' and 'this'

g
g
return false;

g

Number of resource accesses

The code below is again taken from the implementation of class INST. The method
INST::numberOfx(...) implements the counting of resource accesses made by an instruc-
tion in the access mode speci�ed as argument.

=�
� Return the number of resources read, written, and used by the

� instruction. The same resource will be counted as many times as it is

� accessed by the instruction.

�=
int

INST::numberOfx(enum access mode acces)
f
reserv table1 �reserv;
reserv entry �entry;
int i, k;

if (!isAsm()) f
saltoWarn("��� INST::numberOfx(): insn %#lx is not an ASM operation!nn",

(unsigned long) this);
return -1;

g
k = 0;
reserv = ((xAsm �)this) ! get reser();
for(i = 0; i < reserv ! get size(); i++) f
entry = reserv ! get entry(i);
if (entry ! get access mode() == acces) k++;

g
return k;

g
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Chapter 4

Application Examples

To illustrate Salto usage, this chapter presents two programs: a basic block execution count
and local scheduler. These examples give an idea of the range of tools that can be imple-
mented using Salto, but are not representative of state-of-the-art pro�ling or scheduling
techniques.

4.1 Instrumentation

The following is a small example of assembly code instrumentation. The goal of this piece of
code is to instrument basic blocks to obtain a basic block invocation count. Salto adds a
comment before each basic block using the COMMENT ATT attribute and adds instrumentation
code at the beginning of each block. The code added saves some register values before calling
the function bbcount which performs the counting proper. This function may be written in
a high-level language. In our example, it is written in C. The function is linked with the
generated assembly code to produce an executable.

The function called for each block is

#include "salto.h"

void add code(BB �bb, int cpt) f
INST �nop;
char instcode[STR MAX];

nop = bb ! newNOP();
sprintf(ch, "nt save register values nn"

"nt mov %d,%%o0nn"
"nt call bbcount nn"
"nt restore values nn", cpt);

nop !addAttribute(UNPARSE ATT, strdup(ch), strlen(ch));
bb ! insertAsm(0, nop);

g
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void Salto hook() f
CFG �proc;
BB �bb;
int i, j, ncfg, nbb, cpt=0;
char ch[20];

ncfg = numberOfCFG();
for(i=0; i < ncfg; i++) f == for each procedure
proc = getCFG(i);
nbb = proc ! numberOfBB();
for(j=0; j < nbb; j++) f == for each basic block
bb = proc ! getBB(j);
sprintf(ch, "bb %d", ++cpt); == comment to add to a BB
bb ! addAttribute(COMMENT ATT, strdup(ch), strlen(ch));
add code(bb, cpt);

g
g
produceCode(stdout); == Finished, now dumps instrumented code on stdout

g

4.2 Local Reordering

As an example of local reordering we have implemented a list scheduling algorithm using
Salto. The main function is reorder, which builds the dependence matrix for the in-
structions of the current block: dep[i][j] equals to 1 if instruction number i depends on
instruction number j. The main loop computes the scheduling cycle for each instruction
until a branch is seen: verify predecessors checks if all instructions that have a data
dependence have already been scheduled. earliest cycle then computes the delays be-
fore all previous results are obtained. IsConflict is used to detect resource conicts. The
branch instructions, if they exist, and the delay slot are processed afterwards. The blocks
are e�ectively reordered by orderAccordingToCycles and NOPs are added if necessary by
addNecessaryNops.

#include "salto.h"

int verify predecessors(int verif, int ��dep, INST ��inst) f
for (int i=0; i<verif; i++)
if ( (dep[verif][i]) && (inst[i]!getCycle() < 0) ) return 0;

return 1;
g

int earliest cycle(int s, int ��dep, INST ��inst) f
int i, z, max = 0;
for (i=0; i<s; i++)
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if (dep[s][i]) f
z = inst[i] ! getCycle() + inst[s] ! getDelay(inst[i]);
if (z>max) max = z;

g
return max;

g

void build dep matrix(int ��dep, INST ��inst, int n) f
for (int i=0; i<n; i++) f
dep[i][i]=0;
for (int j=0; j<i; j++)
dep[i][j] = ( inst[i]!IsDep(inst[j]) 6= 0 );

g
g

INST ��instr;
int ��dep;

void reorder(BB �bb) f
int i, to be scheduled, cycle min, nasm, o�set, branch seen,brindex,last cycle;
TRES �res table = new TRES; == need a reservation table

nasm = bb ! numberOfAsm();
instr = new (INST �)[nasm]; == to avoid calling getAsm each time we need it
for (i=0; i<nasm; i++) instr[i] = bb ! getAsm(i+1);

build dep matrix(dep, instr, nasm); == build the dependence matrix
branch seen = last cycle = 0;

to be scheduled = nasm; == number of instructions to be scheduled
while (to be scheduled && !branch seen) f == before a branch instruction
for (i=0; i < nasm; i++) f
if (instr[i] ! isCTI()) f
brindex = i;
branch seen = 1;
break;

g
== Is this instruction already scheduled ?
if ( (instr[i]!getCycle()) < 0 ) f
== Are all the predecessors scheduled ?
if (verify predecessors(i, dep, instr)) f
== Wait for data dependencies to be resolved
cycle min = earliest cycle(i, dep, instr);
== Now wait for resources to be available: : :
o�set = 0;
while (res table!IsConict(instr[i],cycle min+o�set)) o�set++;
== Mark resources occupancy into reservation table
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res table ! markRes(instr[i], cycle min + o�set);
if (cycle min + o�set > last cycle) last cycle = cycle min+o�set;
== Specify the cycle
instr[i] ! setCycle(cycle min + o�set);
to be scheduled--;
break;

g
g

g
g
== The case of the branch instruction
if (branch seen) f
instr[brindex] ! setCycle(last cycle + 1);
to be scheduled--;

g
== The delay slot instruction, if any
if (to be scheduled) instr[nasm-1] ! setCycle(last cycle + 2);

== Reorder according to values speci�ed by setCycle()
bb ! orderAccordingToCycles();
bb ! addNecessaryNops();
delete res table;
delete instr;

g

4.3 Local Label Renaming

Label renaming is typically needed when replicating code. The modi�cations must be applied
at two distinct types of locations: in label declarations, and in the references to the labels
in instructions.

To rename label references, we have to modify expressions appearing in instruction ar-
guments. This is performed using the expression substitution primitive on operand abstrac-
tions. Labels themselves are replaced with new labels, built from scratch using the new
name.

The application code in the example below performs a brute-force, substring-based re-
naming of all labels and symbols appearing in the code sections of the assembly �le. However,
it is presented for illustrative purposes and does not handle the directives and labels which are
located in sections other than "text", thus potentially introducing inconsistencies between
declarations and uses of data labels.

#include "salto.h"

== replace all non-overlapping occurrences of oldTxt with newTxt in
== src, leaving hte result in dst. NO CHECKS FOR OVERFLOWS ARE MADE.
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== NOTE: the argument order follows the conventions of str: : :() functions.

unsigned int

strSubstitute(char �dst, char �src, char �newTxt, char
�oldTxt)

f
unsigned int res = 0 ;
char �occurrence ;

while ((occurrence = strstr(src, oldTxt))) f
strncpy(dst, src, occurrence - src) ; == leading common text
dst += occurrence - src ;
strcpy(dst, newTxt) ; == new text where old one should be
dst += strlen(newTxt) ;
src = occurrence + strlen(oldTxt) ; == new begin of common txt
res++ ;

g
strcpy(dst, src) ; == �nal step: txt past last occurrence

return res ; == number of substitutions performed
g

char �oldText, �newText;

void usage(void)
f
fprintf(stderr,

"Simple renaming module. Module-specific parameters (after '--'):"

"nnnn"
" -h print this help message and exitnn"
" -from <word> label (sub-)string to be replacednn"
" -to <word> label (sub-)string to use insteadnnnn"
"Both '-from' and '-to' arguments must be given.nn") ;

g

void Salto init hook(int argc, char ��argv)
f
int i;
oldText = NULL ;
newText = NULL ;

for (i = 0; i < argc - 1; i++) f == we leave out the last arg
== (should be a value, not an option)

if (!strcmp(argv[i], "-from")) == (sub-)string to be replaced
oldText = argv[i + 1] ; == it necessarily exists: : :
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if (!strcmp(argv[i], "-to")) == new value to be used in renaming
newText = argv[i + 1] ; == it necessarily exists: : :

if (!strcmp(argv[i], "-h")) f
usage() ; == print help message and exit
exit (0) ; == successfully

g
g

if (!strcmp(argv[i], "-h")) f == help asked for ==> exit successfully
usage() ;
exit (0) ;

g

if ((!oldText)
jj
(!newText)) f == help badly needed ==> fail

usage() ;
exit (1) ;

g

== here, things go ahead normally
g

== user application entry point: : : Either linked dynamically
== (default), or statically (through "make static")

void Salto hook(void)
f
BB �bb;
CFG �cfg;
INST �insn, �label, �directive;
unsigned int ncfg, nbb, ninsts, nopds, i, j, k, l;
int substitutions;

ncfg = numberOfCFG() ; == number of CFG in program
if (!ncfg) return ; == nothing to do if no procedures found

for (i = 0; i < ncfg; i++) f == FOR ALL PROCEDURES
cfg = getCFG(i) ; == get current CFG

nbb = cfg ! numberOfBB() ; == number of basic blocks

for (j = 0; j < nbb; j++) f == FOR ALL BASIC BLOCKS
bb = cfg ! getBB(j) ; == get current BB
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ninsts = bb ! numberOfInstructions(); == number of insns in BB

for (k = 1; k < ninsts - 1; k++) f == FOR ALL INSTRUCTIONS: : :
== NOTE: �rst and last insn are
== reserved oned and shouldn't be
== scanned, hence the range 1..n-2

insn = bb ! getInstruction(k) ; == get current instruction

if (insn ! isAsm()) f

== for ASM insns, replace name substring in operands by
== substituting all non-overlapping occurrences of oldText with
== newText. The replacement is performed on operand abstractions.

nopds = insn ! numberOfOperands() ;

== scan all operands of the instruction
for (l = 0; l < nopds; l++) f
OperandInfo &op = insn ! getOperand(l) ;

if (op . isExpr()) f == only for expressions
== substitute the strings; retvalue is number of substits
substitutions = op . substitute(oldText, newText) ;
if (substitutions) f
insn ! setOperand(l, op) ; == make it e�ective
fprintf(stderr,

"Operand substitution succeeded @"

" CFG/BB/INST/OPD=%d/%d/%d/%d...nn",
i,j,k,l) ;

g
g

g
g
else if (insn ! isLabel()) f

== for labels, replace the label by a new one, whose name
== results from the substitution of oldText with newText: : :

char �oldLabelName, newLabelName[80];

oldLabelName = insn ! getName() ; == get name of label

== replace all non-overlapping occurrences of oldText with
== newText. Note the the str: : :() argument ordering.

substitutions =
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strSubstitute(newLabelName, oldLabelName, newText, oldText) ;

== if at least one substitution succeeded
if (substitutions) f
label = newLabel(newLabelName) ; == make a new label
bb ! insertInstruction(k, label) ; == insert in place

== of original insn at pos k (= old label).
== The old label gets shifted by 1 position

bb ! removeInstruction(k + 1) ; == remove the old label
fprintf(stderr,

"Label replacement succeeded @"

" CFG/BB/INST = %d/%d/%d...nn",
i, j, k) ;

g == if (substitutions)
g == if (insn ! isLabel())

else if (insn ! isPseudo()) f

== for directives, we have to go a little bit into Salto
== internals (note the type cast :-)

char �oldDirective, newDirective[256] ;

== get the full text of the directive
oldDirective = ((xPseudo �) insn) ! getText() ;

== substitute strings
substitutions =
strSubstitute(newDirective, oldDirective, newText, oldText) ;

== process if successful
if (substitutions) f
directive = newPseudo(newDirective) ; == make the new one
bb ! insertInstruction(k, directive) ; == insert in BB
bb ! removeInstruction(k + 1) ; == remove the old label
fprintf(stderr,

"Directive replacement succeeded @"

" CFG/BB/INST = %d/%d/%d...nn",
i, j, k) ;

g == if (substitutions)
g == if (insn ! isPseudo())

g == for all insns
g == for all basic blocks

g == for all procedures

== generate the modi�ed code: : :
produceCode(stdout) ;
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Appendix A

Prototype description of the Philips

TriMedia TM1000 architecture

A.1 De�nition of resources

;;----------------------------------------------------------------------------

;; Philips TriMedia-1000 processor description (restricted to the DSPCPU)

;;

;; RESOURCES section: declaration of hardware resources

;;

;; Zbigniew CHAMSKI <{zchamski,manche}@irisa.fr>

;;----------------------------------------------------------------------------

;; SECTION I: REGISTERS

;; ====================

;;

;; * there are 128 general registers named r0 through r127

(def_ress

(base_name "r" 0 127)

[(type "reg") (width 32)])

;; memory: the name is reserved, but the resource corresponging to the name

;; is NOT defined

(def_ress (name "mem")

[(type "memory")

(width 32)])

(def_ress (name "PC")

[(type "reg") (width 32)])

;; SECTION II: FUNCTIONAL UNITS

;; ============================
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;;

;; * there are twelve (12!) computation/load/store functional units

;;

;; * there are five (5) issue slots (units), restricted wrt. FU''s that can be

;; handled by each issue slot (see issue slot section below)

;;

;; * the FU list with issue constraints is given below (N.B.: latencies

;; given already include the bypass of one cycle on READ-after-WRITE.)

;;

;; ----------------------------------------------------------------------

;; | FU name | pipe depth | latency / delay | issue slots |

;; ======================================================================

;; | alu | 1 | latency = 1 | 1 2 3 4 5 |

;; | branch | 4 (N/A) | delay = 3 | 2 3 4 |

;; | const | 1 | latency = 1 | 1 2 3 4 5 |

;; | dmem | 3 | latency = 3 | 4 5 |

;; | dmemspec | 1 | latency = 3 | 5 |

;; | dspalu | 2 | latency = 2 | 1 3 |

;; | dspmul | 3 | latency = 3 | 2 3 |

;; | falu | 3 | latency = 3 | 1 4 |

;; | fcomp | 1 | latency = 1 | 3 |

;; | ftough | 2 (16+1)| latency = 17 | 2 |

;; | ifmul | 3 | latency = 3 | 2 3 |

;; | shifter | 1 | latency = 1 | 1 2 |

;; ----------------------------------------------------------------------

;; there''s a couple common defs for reservations...

;; ...at cycle 1

#define USE_AT_1 [(use) (at_cycle 1)]

#define READ_AT_1 [(read) (at_cycle 1)]

;; ...we also need reservations at cycle n

#define USE_AT_CYCLE(N) [(use) (at_cycle N)]

#define WRITE_AT_CYCLE(N) [(write) (at_cycle N)]

;; Subsection II.1: ISSUE UNITS

;; ----------------------------

;;

(def_ress (name "issue")

[(type "functional_unit")

(limit 5)]) ; five issue slots

#define ISSUE (ress (name "issue") USE_AT_1)

;; Subsection II.2: COMPUTATION AND MEMORY ACCESS UNITS

;; ----------------------------------------------------
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;; CPP macro - all declarations but one ("mem_dummy_fu") follow the same

;; format

#define FU_DECL(fu_name,replication) \

(def_ress (name fu_name) \

[(type "functional_unit") \

(width 32) \

(limit replication) \

])

;; dummy memory access unit for exclusions between DMEM and DMEMSPEC FUs

;; They will BOTH have to use this resource at cycle 1, but while DMEM

;; operations take just one token, DMEMSPEC ops squat both :-)

FU_DECL("mem_dummy_fu", 2)

;; integer ALU units: basic integer operations; replication level: 5

FU_DECL("alu", 5)

;; BRANCH units: branch and jump operations; replication level: 3

FU_DECL("branch", 3)

;; CONST units: loading immediate values into a register; replication level:

;; 5

FU_DECL("const", 5)

;; DMEM units: memory accesses; replication level: 2

FU_DECL("dmem", 2)

;; DMEMSPEC unit: cache management; replication level: 1

FU_DECL("dmemspec", 1)

;; DSPALU units: quick and efficient arithmetical ops on bytes and

;; half-words; replication level: 2

FU_DECL("dspalu", 2)

;; DSPMUL unit: dot-products, parallel multiplies etc. on bytes and

;; half-words; replication level: 2

FU_DECL("dspmul", 2)

;; FALU unit: floating-point adds/subs/valabses, conversions etc.;

;; replication level: 2

FU_DECL("falu", 2)

;; FCOMP unit: floating-point comparisons, status info (including clock);

;; replication level: 1

FU_DECL("fcomp", 1)
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;; FTOUGH unit: "hard" computations - floating-point divisions and SQRTs;

;; replication level:

FU_DECL("ftough", 1)

;; IFMUL unit: full multiplier - floating-point and integer multiplies;

;; replication level: 2

FU_DECL("ifmul", 2)

;; SHIFTER unit: rotations and shifts; replication level: 2

FU_DECL("shifter", 2)

;; the number of write-back buses is limited to 5 (as of TM1000) while

;; instruction latencies are variable (1,2,3 or 17)

;; Therefore, we need a model of that limitation...

FU_DECL("writeback_bus", 5)

;; Each register write must be represented by the reservation of a

;; write-back bus at the last cycle of the instruction.

#define WRITEBACK_BUS_AT(N) (ress (name "writeback_bus") USE_AT_CYCLE(N))

;; Section III: RESERVATION TABLES

;; ===============================

;; Reservation tables on the TM1000 come in four durations: 1, 2, 3 or 17

;; cycles and with four types of pipelining: none, 2 stages, 3 stages, and

;; FTOUGH (16 cycles non-pipelined computation followed by 1 cycle

;; write-back). In practice, there is one table per "non-issue" functional

;; unit. At the time being we assume that the instructions are represented

;; in canonical prefix format, with guard, modifier, source1, source2 and

;; dest as operands 0 through 4 - someone has to do the corresponding

;; preprocessing job.

;; default reservation table: guard, no modifier, three addresses, and use

;; everything at cycle 1 except result register and write-back bus

;; in other words, "IF rguard OP rsrc1 rsrc2 -> rdest"

;; #define THREE_ADDR_TABLE(ISSUE_INFO,FU,N)

;; (reser_table

;; [

;; ISSUE_INFO

;; (ress (name FU) USE_AT_1) ; 1st stage of func.unit

;; (ress (match_arg 0) READ_AT_1) ; guard

;; (ress (match_arg 1) READ_AT_1) ; 1st opd (modifier skipped)

;; (ress (match_arg 2) READ_AT_1) ; 2nd operand

;; (ress (match_arg 3) WRITE_AT_CYCLE(N)) ; destination register

;; WRITEBACK_BUS_AT(N) ; there''s a write...

;; ])

#define THREE_ADDR_TABLE(ISSUE_INFO,FU,N) \
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(reser_table \

[ \

ISSUE_INFO \

(ress (name FU) USE_AT_1) \

(ress (match_arg 0) READ_AT_1) \

(ress (match_arg 1) READ_AT_1) \

(ress (match_arg 2) READ_AT_1) \

(ress (match_arg 3) WRITE_AT_CYCLE(N)) \

WRITEBACK_BUS_AT(N) \

])

;; operations of the form "IF rguard OP rsrc1 -> dest": guard, one source and

;; one destination address, no modifier

;; #define SRC1_DEST_TABLE(ISSUE_INFO,FU,N)

;; (reser_table

;; [

;; ISSUE_INFO

;; (ress (name FU) USE_AT_1) ; 1st stage of func.unit

;; (ress (match_arg 0) READ_AT_1) ; guard

;; (ress (match_arg 1) READ_AT_1) ; 1st opd (modifier skipped)

;; (ress (match_arg 2) WRITE_AT_CYCLE(N)) ; destination register

;; WRITEBACK_BUS_AT(N) ; there''s a write...

;; ])

#define SRC1_DEST_TABLE(ISSUE_INFO,FU,N) \

(reser_table \

[ \

ISSUE_INFO \

(ress (name FU) USE_AT_1) \

(ress (match_arg 0) READ_AT_1) \

(ress (match_arg 1) READ_AT_1) \

(ress (match_arg 2) WRITE_AT_CYCLE(N)) \

WRITEBACK_BUS_AT(N) \

])

;; operations of the form "IF rguard OP(modifier) rsrc1 -> rdest": guard,

;; modifier, one source and one destination register

;; #define MOD_SRC1_DEST_TABLE(ISSUE_INFO,FU,N)

;; (reser_table

;; [

;; ISSUE_INFO

;; (ress (name FU) USE_AT_1) ; 1st stage of func.unit

;; (ress (match_arg 0) READ_AT_1) ; guard

;; (ress (match_arg 2) READ_AT_1) ; first operand

;; (ress (match_arg 3) WRITE_AT_CYCLE(N)) ; destination register

;; WRITEBACK_BUS_AT(N) ; there''s a write...

;; ])

#define MOD_SRC1_DEST_TABLE(ISSUE_INFO,FU,N) \
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(reser_table \

[ \

ISSUE_INFO \

(ress (name FU) USE_AT_1) \

(ress (match_arg 0) READ_AT_1) \

(ress (match_arg 2) READ_AT_1) \

(ress (match_arg 3) WRITE_AT_CYCLE(N)) \

WRITEBACK_BUS_AT(N) \

])

;; operations of the form "IF rguard OP rsrc1 rsrc2": guard and two source

;; registers, no modifier, no destination register

;; #define SRC1_SRC2_TABLE(ISSUE_INFO,FU,N)

;; (reser_table

;; [

;; ISSUE_INFO

;; (ress (name FU) USE_AT_1) ; 1st stage of func.unit

;; (ress (match_arg 0) READ_AT_1) ; guard

;; (ress (match_arg 1) READ_AT_1) ; 1st opd (modifier skipped)

;; (ress (match arg 2) READ_AT_1) ; 2nd operand

;; ])

#define SRC1_SRC2_TABLE(ISSUE_INFO,FU,N) \

(reser_table \

[ \

ISSUE_INFO \

(ress (name FU) USE_AT_1) \

(ress (match_arg 0) READ_AT_1) \

(ress (match_arg 1) READ_AT_1) \

(ress (match_arg 2) READ_AT_1) \

])

;; indirect jumps pf the form "IF rguard OP rsrc1 rsrc2": guard and two

;; source registers, no modifier, no destination register

;; #define BRANCH_SRC1_SRC2_TABLE(ISSUE_INFO,FU,N)

;; (reser_table

;; [

;; ISSUE_INFO

;; (ress (name FU) USE_AT_1) ; 1st stage of func.unit

;; (ress (match_arg 0) READ_AT_1) ; guard

;; (ress (match_arg 1) READ_AT_1) ; 1st opd (modifier skipped)

;; (ress (match arg 2) READ_AT_1) ; 2nd operand

;; (ress (name "PC") WRITE_AT_CYCLE(1)) ; write PC immediately

;; ])

#define BRANCH_SRC1_SRC2_TABLE(ISSUE_INFO,FU,N) \

(reser_table \

[ \

ISSUE_INFO \
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(ress (name FU) USE_AT_1) \

(ress (match_arg 0) READ_AT_1) \

(ress (match_arg 1) READ_AT_1) \

(ress (match_arg 2) READ_AT_1) \

(ress (name "PC") WRITE_AT_CYCLE(1)) \

])

;; operations of the form "IF rguard OP rdest": guard and destination

;; register, no modifier, no source registers

;; #define DEST_TABLE(ISSUE_INFO,FU,N)

;; (reser_table

;; [

;; ISSUE_INFO

;; (ress (name FU) USE_AT_1) ; 1st stage of func.unit

;; (ress (match_arg 0) READ_AT_1) ; guard

;; (ress (match_arg 1) WRITE_AT_CYCLE(N)) ; destination register

;; WRITEBACK_BUS_AT(N) ; there''s a write...

;; ])

#define DEST_TABLE(ISSUE_INFO,FU,N) \

(reser_table \

[ \

ISSUE_INFO \

(ress (name FU) USE_AT_1) \

(ress (match_arg 0) READ_AT_1) \

(ress (match_arg 1) WRITE_AT_CYCLE(N)) \

WRITEBACK_BUS_AT(N) \

])

;; operations of the form "IF rguard OP rsrc1": guard and one source

;; register, no modifier, no destination register

;; #define SRC1_TABLE(ISSUE_INFO,FU,N)

;; (reser_table

;; [

;; ISSUE_INFO

;; (ress (name FU) USE_AT_1) ; 1st stage of func.unit

;; (ress (match_arg 0) READ_AT_1) ; guard

;; (ress (match_arg 1) READ_AT_1) ; 1st opd (modifier skipped)

;; ])

#define SRC1_TABLE(ISSUE_INFO,FU,N) \

(reser_table \

[ \

ISSUE_INFO \

(ress (name FU) USE_AT_1) \

(ress (match_arg 0) READ_AT_1) \

(ress (match_arg 1) READ_AT_1) \

])
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;; operations of the form "IF rguard OP(modifier) rdest": guard, modifier,

;; destination, no source register

;; #define MOD_DEST_TABLE(ISSUE_INFO,FU,N)

;; (reser_table

;; [

;; ISSUE_INFO

;; (ress (name FU) USE_AT_1) ; 1st stage of func.unit

;; (ress (match_arg 0) READ_AT_1) ; guard

;; (ress (match_arg 2) WRITE_AT_CYCLE(N)) ; destination register

;; WRITEBACK_BUS_AT(N) ; there''s a write...

;; ])

#define MOD_DEST_TABLE(ISSUE_INFO,FU,N) \

(reser_table \

[ \

ISSUE_INFO \

(ress (name FU) USE_AT_1) \

(ress (match_arg 0) READ_AT_1) \

(ress (match_arg 2) WRITE_AT_CYCLE(N)) \

WRITEBACK_BUS_AT(N) \

])

;; operations of the form "IF rguard OP(modifier)": guard, modifier, no

;; source nor destination registers; NB: the number of cycles is unused

;; #define BRANCH_MOD_TABLE(ISSUE_INFO,FU,N)

;; (reser_table

;; [

;; ISSUE_INFO

;; (ress (name FU) USE_AT_1) ; 1st stage of func.unit

;; (ress (match_arg 0) READ_AT_1) ; guard

;; (ress (name "PC") WRITE_AT_CYCLE(1)) ; write PC immediately

;; ])

#define BRANCH_MOD_TABLE(ISSUE_INFO,FU,N) \

(reser_table \

[ \

ISSUE_INFO \

(ress (name FU) USE_AT_1) \

(ress (match_arg 0) READ_AT_1) \

(ress (name "PC") WRITE_AT_CYCLE(1)) \

])

;; immediate jumps of the form "IF rguard OP(modifier)": guard, modifier, no

;; source nor destination registers; NB: the number of cycles is unused

;; #define MOD_TABLE(ISSUE_INFO,FU,N)

;; (reser_table

;; [

;; ISSUE_INFO

;; (ress (name FU) USE_AT_1) ; 1st stage of func.unit
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;; (ress (match_arg 0) READ_AT_1) ; guard

;; ])

#define MOD_TABLE(ISSUE_INFO,FU,N) \

(reser_table \

[ \

ISSUE_INFO \

(ress (name FU) USE_AT_1) \

(ress (match_arg 0) READ_AT_1) \

])

;; FTOUGH operations with two source operands, 16 cycles arithmetic, 1 cycle

;; write-back...

;; #define FTOUGH_THREE_ADDR_TABLE

;; (reser_table

;; [

;; ISSUE

;; (ress (name "ftough") [(use) (from_cycle 2) (to_cycle 17)])

;; (ress (match_arg 0) READ_AT_1) ; guard

;; (ress (match_arg 1) READ_AT_1) ; 1st opd (modifier skipped)

;; (ress (match arg 2) READ_AT_1) ; second operand

;; (ress (match_arg 3) WRITE_AT_CYCLE(18)) ; destination register

;; WRITEBACK_BUS_AT(18) ; there''s a write...

;; ])

#define FTOUGH_THREE_ADDR_TABLE \

(reser_table \

[ \

ISSUE \

(ress (name "ftough") [(use) (from_cycle 2) (to_cycle 17)]) \

(ress (match_arg 0) READ_AT_1) \

(ress (match_arg 1) READ_AT_1) \

(ress (match_arg 2) READ_AT_1) \

(ress (match_arg 3) WRITE_AT_CYCLE(18)) \

WRITEBACK_BUS_AT(18) \

])

;; FTOUGH operations with one source operand, 16 cycles arithmetic, 1 cycle

;; write-back...

;; #define FTOUGH_SRC1_DEST_TABLE

;; (reser_table

;; [

;; ISSUE

;; (ress (name "ftough") [(use) (from_cycle 2) (to_cycle 17)])

;; (ress (match_arg 0) READ_AT_1) ; guard

;; (ress (match_arg 1) READ_AT_1) ; 1st opd (modifier skipped)

;; (ress (match_arg 2) WRITE_AT_CYCLE(18)) ; destination register

;; WRITEBACK_BUS_AT(18) ; there''s a write...

;; ])
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#define FTOUGH_SRC1_DEST_TABLE \

(reser_table \

[ \

ISSUE \

(ress (name "ftough") [(use) (from_cycle 2) (to_cycle 17)]) \

(ress (match_arg 0) READ_AT_1) \

(ress (match_arg 1) READ_AT_1) \

(ress (match_arg 2) WRITE_AT_CYCLE(18)) \

WRITEBACK_BUS_AT(18) \

])

;; DMEMSPEC operations without a destination register: guard, modifier, and

;; one source register; this operation squats both dummy memory access units

;; so that no DMEM operation can be issued in a cycle in which a DMEMSPEC

;; operation is.

;; #define DMEMSPEC_MOD_SRC1_TABLE(N)

;; (reser_table

;; [

;; ISSUE

;; (ress (name "dmemspec") USE_AT_1)

;; (ress (name "mem_dummy_fu") USE_AT_1) ; 1st token

;; (ress (name "mem_dummy_fu") USE_AT_1) ; 2nd token

;; (ress (match_arg 0) READ_AT_1) ; guard

;; (ress (match_arg 2) READ_AT_1) ; first operand

;; ])

#define DMEMSPEC_MOD_SRC1_TABLE(N) \

(reser_table \

[ \

ISSUE \

(ress (name "dmemspec") USE_AT_1) \

(ress (name "mem_dummy_fu") USE_AT_1) \

(ress (name "mem_dummy_fu") USE_AT_1) \

(ress (match_arg 0) READ_AT_1) \

(ress (match_arg 2) READ_AT_1) \

])

;; DMEMSPEC operations with a destination register: guard, modifier, one

;; source register, and a destination register; this operation squats both

;; dummy memory access units so that no DMEM operation can be issued in a

;; cycle in which a DMEMSPEC operation is.

;; #define DMEMSPEC_MOD_SRC1_DEST_TABLE(N)

;; (reser_table

;; [

;; ISSUE

;; (ress (name "dmemspec") USE_AT_1)

;; (ress (name "mem_dummy_fu") USE_AT_1) ; 1st token

;; (ress (name "mem_dummy_fu") USE_AT_1) ; 2nd token
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;; (ress (match_arg 0) READ_AT_1) ; guard

;; (ress (match_arg 2) READ_AT_1) ; first operand

;; (ress (match_arg 3) WRITE_AT_CYCLE(N)) ; destination register

;; WRITEBACK_BUS_AT(N) ; there''s a write...

;; ])

#define DMEMSPEC_MOD_SRC1_DEST_TABLE(N) \

(reser_table \

[ \

ISSUE \

(ress (name "dmemspec") USE_AT_1) \

(ress (name "mem_dummy_fu") USE_AT_1) \

(ress (name "mem_dummy_fu") USE_AT_1) \

(ress (match_arg 0) READ_AT_1) \

(ress (match_arg 2) READ_AT_1) \

(ress (match_arg 3) WRITE_AT_CYCLE(N)) \

WRITEBACK_BUS_AT(N) \

])

;; DMEM operations with a modifier and one source register: guard, modifier,

;; one source register and one destination register

;; NB1: we assume that the memory read takes place at the first cycle

;; NB2: two DMEM ops can be issued in a cycle, but NONE when a DMEMSPEC op is

;; issued - this is why we use one "mem_dummy_fu" unit per DMEM op...

;; #define DMEM_MOD_SRC1_DEST_TABLE(N)

;; (reser_table

;; [

;; ISSUE

;; (ress (name "dmem") USE_AT_1)

;; (ress (name "mem_dummy_fu") USE_AT_1) ; just one token

;; (ress (name "mem") READ_AT_1) ; memory access

;; (ress (match_arg 0) READ_AT_1) ; guard

;; (ress (match_arg 2) READ_AT_1) ; first operand

;; (ress (match_arg 3) WRITE_AT_CYCLE(N)) ; destination register

;; WRITEBACK_BUS_AT(N) ; there''s a write...

;; ])

#define DMEM_MOD_SRC1_DEST_TABLE(N) \

(reser_table \

[ \

ISSUE \

(ress (name "dmem") USE_AT_1) \

(ress (name "mem_dummy_fu") USE_AT_1) \

(ress (name "mem") READ_AT_1) \

(ress (match_arg 0) READ_AT_1) \

(ress (match_arg 2) READ_AT_1) \

(ress (match_arg 3) WRITE_AT_CYCLE(N)) \

WRITEBACK_BUS_AT(N) \

])
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;; DMEM operations with two source registers and one destination register:

;; no modifier;

;; NB1: we assume that the memory read takes place at the first cycle

;; NB2: two DMEM ops can be issued in a cycle, but NONE when a DMEMSPEC op is

;; issued - this is why we use one "mem_dummy_fu" unit per DMEM op...

;; #define DMEM_THREE_ADDR_TABLE(N)

;; (reser_table

;; [

;; ISSUE

;; (ress (name "dmem") USE_AT_1)

;; (ress (name "mem_dummy_fu") USE_AT_1) ; just one token

;; (ress (name "mem") READ_AT_1) ; memory access

;; (ress (match_arg 0) READ_AT_1) ; guard

;; (ress (match_arg 1) READ_AT_1) ; 1st opd (modifier skipped)

;; (ress (match_arg 2) READ_AT_1) ; second operand

;; (ress (match_arg 3) WRITE_AT_CYCLE(N)) ; destination register

;; WRITEBACK_BUS_AT(N) ; there''s a write...

;; ])

#define DMEM_THREE_ADDR_TABLE(N) \

(reser_table \

[ \

ISSUE \

(ress (name "dmem") USE_AT_1) \

(ress (name "mem_dummy_fu") USE_AT_1) \

(ress (name "mem") READ_AT_1) \

(ress (match_arg 0) READ_AT_1) \

(ress (match_arg 1) READ_AT_1) \

(ress (match_arg 2) READ_AT_1) \

(ress (match_arg 3) WRITE_AT_CYCLE(N)) \

WRITEBACK_BUS_AT(N) \

])

;; DMEM store operations with modifier and two source registers;

;; NB1: we assume that the memory write takes place at the last cycle, and

;; that register reads take place at the first cycle.

;; NB2: two DMEM ops can be issued in a cycle, but NONE when a DMEMSPEC op is

;; issued - this is why we use one "mem_dummy_fu" unit per DMEM op...

;; #define DMEM_MOD_SRC1_SRC2_TABLE(N)

;; (reser_table

;; [

;; ISSUE

;; (ress (name "dmem") USE_AT_1)

;; (ress (name "mem_dummy_fu") USE_AT_1) ; just one token

;; (ress (match_arg 0) READ_AT_1) ; guard

;; (ress (match_arg 2) READ_AT_1) ; 1st operand

;; (ress (match_arg 3) READ_AT_1) ; second operand
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;; (ress (name "mem") WRITE_AT_CYCLE(N)) ; write into memory

;; ])

#define DMEM_MOD_SRC1_SRC2_TABLE(N) \

(reser_table \

[ \

ISSUE \

(ress (name "dmem") USE_AT_1) \

(ress (name "mem_dummy_fu") USE_AT_1) \

(ress (match_arg 0) READ_AT_1) \

(ress (match_arg 2) READ_AT_1) \

(ress (match_arg 3) READ_AT_1) \

(ress (name "mem") WRITE_AT_CYCLE(N)) \

])

A.2 Semantical constraints

;;----------------------------------------------------------------------------

;; Philips TriMedia-1000 processor description (restricted to the DSPCPU)

;;

;; SEMANTICS section: semantical constraints in instructions

;;

;; Zbigniew CHAMSKI <{zchamski,manche}@irisa.fr>

;;----------------------------------------------------------------------------

;; there is only one type of constraints: delay slots, common to all branch

;; instructions.

;; conditional _branch_ information:

;; #define BRANCH_SEM_INFO \

;; (sem [ \

;; (delay_slot 3) ; there are three delay slots \

;; (noreorder) ; forbid reordering of insns \

;; (branch -1) ; indirect addressing \

;; ])

#define BRANCH_SEM_INFO \

(sem [ \

(delay_slot 3) \

(noreorder) \

(branch -1) \

])

;; unconditional _jump_ information: well, it is still a branch if the guard

;; is given

;; #define JUMP_SEM_INFO \
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;; (sem [ \

;; (delay_slot 3) ; there are three delay slots \

;; (noreorder) ; forbid reordering of insns \

;; (jump 1) ; target address in modifier \

;; ])

#define JUMP_SEM_INFO \

(sem [ \

(delay_slot 3) \

(noreorder) \

(jump 1) \

])

A.3 Main �le: assembler structure and the instruction

set

;;---------------------------------------------------------------------------

;; Philips TriMedia-1000 processor description (restricted to the DSPCPU)

;;

;; MAIN FILE: includes, assembler structure and instruction set definition

;;

;; Created by

;; Zbigniew CHAMSKI <{zchamski,manche}@irisa.fr>

;;---------------------------------------------------------------------------

;; Section I: INCLUDE DIRECTIVES

;; =============================

#include "tm1-res.def"

; resource declarations,

; including reservation tables

;; #include "tm1-macro.def" ; no macros as of yet

#include "tm1-sem.def"

; semantical information

;; Section II: LEXICAL STRUCTURE OF THE ASSEMBLER

;; ==============================================

;; Section II.1: COMMENTS AND SEPARATORS

;; =====================================

(line_comment_chars "!")

(comment_chars "#")

;; parentheses, dash, and "greater" sign (right chevron) as
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;; separators...

(def_exact "(),->IF")

;; Section II.2: META-VARIABLE TOKENS

;; ==================================

;;

;; register tokens are quite nice:

#define REGISTER_REGEXP \

"r12[0-7]\\|r1[0-1][0-9]\\|r[1-9][0-9]\\|r[0-9]"

(def_token "g" [(regex REGISTER_REGEXP)]) ; guard register

(def_token "s" [(regex REGISTER_REGEXP)]) ; first source register

(def_token "t" [(regex REGISTER_REGEXP)]) ; second source register

(def_token "d" [(regex REGISTER_REGEXP)]) ; destination register

;; sometimes r0 must be explicitly given

(def_token "0" [(regex "r0")])

;; (def_token "m" [(regex REGISTER_REGEXP)]) ; modificateur bidon

;; modifier tokens: integer expressions, possibly containing identifiers

(def_token "m" [(read_exp)])

;; Section III: INSTRUCTION SET SPECIFICATION

;; ==========================================

;;

;; Section III.1: VLIW INSTRUCTION WIDTH

;; =====================================

;;

;; five issue slots per cycle

(inst_width 5)

;; Section III.2: NATIVE INSTRUCTIONS

;; ==================================

;;

;; Instructions are assumed to complete at cycle following the latency cycle

;; - there''s an EXPLICIT decode/read cycle at t=1 (0 is insn fetch...)

;; Latencies given as parameters of reservation tables take this already

;; into account.

;; BTW, spaces are not significant in the format string and ARE IGNORED

;; during unparsing.

#define INPUT_THREE_ADDR input "IF g s t -> d"

#define INPUT_DEST input "IF g -> d"

#define INPUT_MOD input "IF g (m)"

#define INPUT_MOD_DEST input "IF g (m) -> d"

#define INPUT_MOD_SRC1 input "IF g (m) s"

#define INPUT_MOD_SRC1_DEST input "IF g (m) s -> d"
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#define INPUT_MOD_SRC1_SRC2 input "IF g (m) s t"

#define INPUT_SRC1 input "IF g s"

#define INPUT_SRC1_DEST input "IF g s -> d"

#define INPUT_SRC1_SRC2 input "IF g s t"

;; Section III.2.0: The NOP

;; ========================

;;

;; A 'nop' is a particular case: it can be issued anywhere, anytime, has no

;; operands and simply takes one issue unit...

(def_asm "nop"

[(input "IF g" )

(reser_table

[ ISSUE ])

])

;; Section III.2.1: ALU OPERATIONS

;; ===============================

;;

;; most "alu" operations are three-address ops completed in one cycle

;; the write takes place at the next cycle (t=2)

#define ALU_THREE_ADDR_OP(op) \

(def_asm op \

[(INPUT_THREE_ADDR) \

THREE_ADDR_TABLE(ISSUE,"alu",2) \

])

ALU_THREE_ADDR_OP("iadd") ; signed integer addition

ALU_THREE_ADDR_OP("isub") ; signed integer subtraction

ALU_THREE_ADDR_OP("igtr") ; signed greater

ALU_THREE_ADDR_OP("igeq") ; signed greater or equal

ALU_THREE_ADDR_OP("ieql") ; signed equal

ALU_THREE_ADDR_OP("ineq") ; signed not equal

ALU_THREE_ADDR_OP("ugtr") ; unsigned greater

ALU_THREE_ADDR_OP("ugeq") ; unsigned greater or equal

ALU_THREE_ADDR_OP("bitand") ; bitwise logical and

ALU_THREE_ADDR_OP("bitor") ; bitwise logical or

ALU_THREE_ADDR_OP("bitxor") ; bitwise logical exclusive or

ALU_THREE_ADDR_OP("bitandinv") ; bitwise logical "and not"

ALU_THREE_ADDR_OP("carry") ; carry bit from unsigned add

ALU_THREE_ADDR_OP("izero") ; if zero select zero

ALU_THREE_ADDR_OP("inonzero") ; if nonzero select zero

ALU_THREE_ADDR_OP("packbytes") ; pack least significant bytes

ALU_THREE_ADDR_OP("mergelsb") ; merge least significant bytes

ALU_THREE_ADDR_OP("mergemsb") ; merge most significant bytes

ALU_THREE_ADDR_OP("pack16lsb") ; pack least significant half-words
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ALU_THREE_ADDR_OP("pack16msb") ; pack most significant half-words

ALU_THREE_ADDR_OP("ibytesel") ; signed select byte

ALU_THREE_ADDR_OP("ubytesel") ; unsigned select byte

;; "alu" ops that use an immediate value, source1 and dest register

#define ALU_MOD_SRC1_DEST_OP(op) \

(def_asm op \

[(INPUT_MOD_SRC1_DEST) \

MOD_SRC1_DEST_TABLE(ISSUE,"alu",2) \

])

ALU_MOD_SRC1_DEST_OP("ileqi") ; signed less or equal than imm

ALU_MOD_SRC1_DEST_OP("igtri") ; signed greater than immediate

ALU_MOD_SRC1_DEST_OP("igeqi") ; signed greater or equal than imm

ALU_MOD_SRC1_DEST_OP("ilesi") ; signed less than immediate

ALU_MOD_SRC1_DEST_OP("ieqli") ; signed equal to immediate

ALU_MOD_SRC1_DEST_OP("ineqi") ; signed not equal to immediate

ALU_MOD_SRC1_DEST_OP("uleqi") ; unsigned less or equal than imm

ALU_MOD_SRC1_DEST_OP("ugtri") ; unsigned greater than immediate

ALU_MOD_SRC1_DEST_OP("ugeqi") ; unsigned greater or equal than imm

ALU_MOD_SRC1_DEST_OP("ulesi") ; unsigned less than immediate

ALU_MOD_SRC1_DEST_OP("ueqli") ; unsigned equal to immediate

ALU_MOD_SRC1_DEST_OP("uneqi") ; unsigned not equal to immediate

ALU_MOD_SRC1_DEST_OP("iaddi") ; signed add immediate

ALU_MOD_SRC1_DEST_OP("isubi") ; signed subtract immediate

;; "alu" ops that use one source register and a destination reg

#define ALU_SRC1_DEST_OP(op) \

(def_asm op \

[(INPUT_SRC1_DEST) \

SRC1_DEST_TABLE(ISSUE,"alu",2) \

])

ALU_SRC1_DEST_OP("bitinv") ; bitwise logical not

ALU_SRC1_DEST_OP("sex8") ; sign extend LSbyte

ALU_SRC1_DEST_OP("sex16") ; sign extend LShalf-word

;; h_iabs uses explicitly r0 to compute the absolute values - we need a

;; dedicated reservation table...

(def_asm "h_iabs"

[(input "g 0 t -> d") ; guard r0 source -> dest

(reser_table

[ISSUE

(ress (name "alu") USE_AT_1)

(ress (name "r0") READ_AT_1)

(ress (match_arg 0) READ_AT_1) ; guard register
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(ress (match_arg 2) READ_AT_1) ; value to be abs''ed

(ress (match_arg 3) WRITE_AT_CYCLE(2)) ; result

])

])

;; Section III.2.2: BRANCH OPERATIONS

;; ==================================

;;

;; All branch operations take three delay slots and recover in one cycle

#define BRANCH_IMMEDIATE(op) \

(def_asm op \

[(INPUT_MOD) \

BRANCH_MOD_TABLE(ISSUE,"branch",1) \

JUMP_SEM_INFO \

])

#define BRANCH_INDIRECT(op) \

(def_asm op \

[(INPUT_SRC1_SRC2) \

BRANCH_SRC1_SRC2_TABLE(ISSUE,"branch",1) \

BRANCH_SEM_INFO \

])

BRANCH_IMMEDIATE("ijmpi") ; interruptible jump to imm

BRANCH_IMMEDIATE("jmpi") ; non-interruptible jump to imm

BRANCH_INDIRECT("ijmpf") ; interruptible jump on false

BRANCH_INDIRECT("ijmpt") ; interruptible jump on true

BRANCH_INDIRECT("jmpf") ; jump on false

BRANCH_INDIRECT("jmpt") ; jump on true

;; Section III.2.3: CONST OPERATIONS

;; =================================

;;

;; Just two ops... loading immediate values into registers

(def_asm "iimm" ; load signed immediate

[(INPUT_MOD_DEST)

MOD_DEST_TABLE(ISSUE,"const",2)

])

(def_asm "uimm" ; load unsigned immediate

[(INPUT_MOD_DEST)

MOD_DEST_TABLE(ISSUE,"const",2)

])

;; Section III.2.4: DMEM OPERATIONS
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;; ================================

;;

;; There are three operand patterns:

;; op(m) src1 -> dest, op src1 src2 -> dest, and op(m) src1 src2

;; latency is three cycles

#define DMEM_MOD_SRC1_DEST_OP(op) \

(def_asm op \

[(INPUT_MOD_SRC1_DEST) \

DMEM_MOD_SRC1_DEST_TABLE(4) \

])

;; latency is three cycles

#define DMEM_THREE_ADDR_OP(op) \

(def_asm op \

[(INPUT_THREE_ADDR) \

DMEM_THREE_ADDR_TABLE(4) \

])

;; latency is three cycles

#define DMEM_MOD_SRC1_SRC2_OP(op) \

(def_asm op \

[(INPUT_MOD_SRC1_SRC2) \

DMEM_MOD_SRC1_SRC2_TABLE(4) \

])

DMEM_MOD_SRC1_DEST_OP("ild8d") ; 8-bit signed load w/offset

DMEM_MOD_SRC1_DEST_OP("uld8d") ; 8-bit unsigned load w/offset

DMEM_MOD_SRC1_DEST_OP("ild16d") ; 16-bit signed load w/offset

DMEM_MOD_SRC1_DEST_OP("uld16d") ; 16-bit unsigned load w/offset

DMEM_MOD_SRC1_DEST_OP("ld32d") ; 32-bit load w/offset

DMEM_THREE_ADDR_OP("ild8r") ; signed 8-bit load w/index

DMEM_THREE_ADDR_OP("uld8r") ; unsigned 8-bit load w/index

DMEM_THREE_ADDR_OP("ild16r") ; signed 16-bit load w/index

DMEM_THREE_ADDR_OP("uld16r") ; unsigned 16-bit load w/index

DMEM_THREE_ADDR_OP("ld32r") ; 32-bit load with index

DMEM_THREE_ADDR_OP("ild16x") ; signed 16-bit load w/scaled index

DMEM_THREE_ADDR_OP("uld16x") ; unsigned 16-bit load w/scaled index

DMEM_THREE_ADDR_OP("ld32x") ; 32-bit load with scaled index

DMEM_MOD_SRC1_SRC2_OP("h_st8d") ; 8-bit store with offset

DMEM_MOD_SRC1_SRC2_OP("h_st16d") ; 16-bit store with offset

DMEM_MOD_SRC1_SRC2_OP("h_st32d") ; 32-bit store with offset

;; Section III.2.5: DMEMSPEC OPERATIONS

;; ====================================
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;;

;; latency is three cycles

#define DMEMSPEC_MOD_SRC1_OP(op) \

(def_asm op \

[(INPUT_MOD_SRC1) \

DMEMSPEC_MOD_SRC1_TABLE(4) \

])

;; latency is three cycles

#define DMEMSPEC_MOD_SRC1_DEST_OP(op) \

(def_asm op \

[(INPUT_MOD_SRC1_DEST) \

DMEMSPEC_MOD_SRC1_DEST_TABLE(4) \

])

DMEMSPEC_MOD_SRC1_OP("dcb") ; copy back data cache block

DMEMSPEC_MOD_SRC1_OP("dinvalid") ; invalidate data cache block

DMEMSPEC_MOD_SRC1_DEST_OP("rdstatus") ; read data cache status bits

DMEMSPEC_MOD_SRC1_DEST_OP("rdtag") ; read data cache address tag

;; Section III.2.6: DSPALU OPERATIONS

;; ==================================

;;

#define DSPALU_THREE_ADDR_OP(op) \

(def_asm op \

[(INPUT_THREE_ADDR) \

THREE_ADDR_TABLE(ISSUE,"dspalu",3) \

])

;; DSP valabses: these OPs use explicitly r0 as first operand - let''s enforce

;; it

;; #define DSPALU_r0_SRC2_DEST_OP(op) \

;; [(input "g 0 t -> d") \ ; guard r0 src2 -> dest

;; (reser_table \

;; [ISSUE \

;; (ress (name "dspalu") USE_AT_1) \

;; (ress (name "r0") READ_AT_1) ; must be explicitly given \

;; (ress (match_arg 0) READ_AT_1) ; guard register \

;; (ress (match_arg 2) READ_AT_1) ; value to be abs''ed \

;; (ress (match_arg 3) WRITE_AT_CYCLE(3)) ; result: latency is two \

;; ; cycles when using the bypass \

;; ])

#define DSPALU_r0_SRC2_DEST_OP(op) \

(def_asm op \
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[(input "g 0 t -> d") \

(reser_table \

[ISSUE \

(ress (name "dspalu") USE_AT_1) \

(ress (name "r0") READ_AT_1) \

(ress (match_arg 0) READ_AT_1) \

(ress (match_arg 2) READ_AT_1) \

(ress (match_arg 3) WRITE_AT_CYCLE(3)) \

]) \

])

DSPALU_THREE_ADDR_OP("ume8ii") ; sum of valabses of unsigned diffs

DSPALU_THREE_ADDR_OP("ume8uu") ; sum of valabses of signed diffs

DSPALU_THREE_ADDR_OP("dspiadd") ; clipped signed add

DSPALU_THREE_ADDR_OP("dspisub") ; clipped signed sub

DSPALU_THREE_ADDR_OP("dspuadd") ; clipped unsigned add

DSPALU_THREE_ADDR_OP("dspusub") ; clipped unsigned sub

DSPALU_THREE_ADDR_OP("dspidualadd") ; dual clipped signed add, 1/2 words

DSPALU_THREE_ADDR_OP("dspidualsub") ; dual clipped signed sub, 1/2 words

DSPALU_THREE_ADDR_OP("iavgonep") ; quad unsinged/signed add, bytes

DSPALU_THREE_ADDR_OP("iflip") ; negate src2 if src1 is zero

DSPALU_THREE_ADDR_OP("iclipi") ; clip signed to signed

DSPALU_THREE_ADDR_OP("uclipi") ; clip signed to unsigned

DSPALU_THREE_ADDR_OP("uclipu") ; clip unsigned to unsigned

DSPALU_THREE_ADDR_OP("quadavg") ; unsigned bytewise quad average

DSPALU_THREE_ADDR_OP("dspuquadaddui") ; quad clipped add of unsigned/signed

DSPALU_THREE_ADDR_OP("imax") ; signed maximum

DSPALU_THREE_ADDR_OP("imin") ; signed minimum

DSPALU_r0_SRC2_DEST_OP("h_dspiabs") ; clipped signed absolute value

DSPALU_r0_SRC2_DEST_OP("h_dspidualabs") ; dual clipped signed absval hfwords

;; Section III.2.7: DSPMUL OPERATIONS

;; ==================================

#define DSPMUL_THREE_ADDR_OP(op) \

(def_asm op \

[(INPUT_THREE_ADDR) \

THREE_ADDR_TABLE(ISSUE,"dspalu",3) \

])

DSPMUL_THREE_ADDR_OP("ifir16") ; signed dot-product of 1/2words

DSPMUL_THREE_ADDR_OP("ufir16") ; unsigned dot-product of 1/2words

DSPMUL_THREE_ADDR_OP("ifir8ii") ; signed dot-prod of signed bytes

DSPMUL_THREE_ADDR_OP("ifir8ui") ; signed dot-prod of s''d/uns''d bytes

DSPMUL_THREE_ADDR_OP("ufir8uu") ; unsigned dot-prod of unsigned bytes
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DSPMUL_THREE_ADDR_OP("dspidualmul") ; dual clipped mult''y of signed 1/2wd

DSPMUL_THREE_ADDR_OP("quadumulmsb") ; quad clipped mult''y of unsd MSbytes

;; Section III.2.7: FALU OPERATIONS

;; ================================

;; source-to-dest operations: conversions

#define FALU_SRC1_DEST_OP(op) \

(def_asm op \

[(INPUT_SRC1_DEST) \

SRC1_DEST_TABLE(ISSUE,"falu",4) \

])

#define FALU_THREE_ADDR_OP(op) \

(def_asm op \

[(INPUT_THREE_ADDR) \

THREE_ADDR_TABLE(ISSUE,"falu",4) \

])

FALU_SRC1_DEST_OP("fabsval") ; absolute value of float

FALU_SRC1_DEST_OP("fabsvalflags") ; flags from absolute value of float

FALU_SRC1_DEST_OP("ifixieee") ; convert float to signed, crnt mode

FALU_SRC1_DEST_OP("ifixieeeflags") ; flags from "ifixieee"

FALU_SRC1_DEST_OP("ifixrz") ; convert float to signed, rnd -> 0

FALU_SRC1_DEST_OP("ifixrzflags") ; flags from "ifixrz"

FALU_SRC1_DEST_OP("ifloat") ; convert signed to float

FALU_SRC1_DEST_OP("ifloatflags") ; flags from "ifloat"

FALU_SRC1_DEST_OP("ifloatrz") ; convert signed to float, rnd -> 0

FALU_SRC1_DEST_OP("ifloatrzflags") ; flags from "ifloatrz"

FALU_SRC1_DEST_OP("ufixieee") ; convert float to unsignd, crnt mode

FALU_SRC1_DEST_OP("ufixieeeflags") ; flags from "ufixieee"

FALU_SRC1_DEST_OP("ufixrz") ; convert float to unsignd, rnd -> 0

FALU_SRC1_DEST_OP("ufixrzflags") ; flags from "ufixrz"

FALU_SRC1_DEST_OP("ufloat") ; convert unsignd to float, crnt mode

FALU_SRC1_DEST_OP("ufloatflags") ; flags from "ufloat"

FALU_SRC1_DEST_OP("ufloatrz") ; convert unsignd to float, rnd -> 0

FALU_SRC1_DEST_OP("ufloatrzflags") ; flags from "ufloatrz"

FALU_THREE_ADDR_OP("fadd") ; floating-point addition

FALU_THREE_ADDR_OP("faddflags") ; flags from floating-point addition

FALU_THREE_ADDR_OP("fsub") ; floating-point subtraction

FALU_THREE_ADDR_OP("fsubflags") ; flags from floating-point subtract

;; Section III.2.9: FCOMP OPERATIONS

;; =================================

;;
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;; all ops complete in a single cycle and write the result at t=2

#define FCOMP_DEST_OP(op) \

(def_asm op \

[(INPUT_DEST) \

DEST_TABLE(ISSUE,"fcomp",2) \

])

#define FCOMP_THREE_ADDR_OP(op) \

(def_asm op \

[(INPUT_THREE_ADDR) \

THREE_ADDR_TABLE(ISSUE,"fcomp",2) \

])

#define FCOMP_SRC1_SRC2_OP(op) \

(def_asm op \

[(INPUT_SRC1_SRC2) \

SRC1_SRC2_TABLE(ISSUE,"fcomp",2) \

])

#define FCOMP_SRC1_DEST_OP(op) \

(def_asm op \

[(INPUT_SRC1_DEST) \

SRC1_DEST_TABLE(ISSUE,"fcomp",2) \

])

#define FCOMP_SRC1_OP(op) \

(def_asm op \

[(INPUT_SRC1) \

SRC1_TABLE(ISSUE,"fcomp",2) \

])

FCOMP_DEST_OP("cycles") ; clock reading, LSword

FCOMP_DEST_OP("hicycles") ; clock reading, MSword

FCOMP_DEST_OP("readdpc") ; destination program counter value

FCOMP_DEST_OP("readpcsw") ; read program cntrl and status word

FCOMP_SRC1_OP("writedpc") ; write destination program counter

FCOMP_SRC1_OP("writespc") ; write source program counter

FCOMP_SRC1_SRC2_OP("writepcsw") ; write program cntrl and status word

FCOMP_THREE_ADDR_OP("feql") ; FP "equal" test

FCOMP_THREE_ADDR_OP("feqlflags") ; FP "equal" test flags

FCOMP_THREE_ADDR_OP("fgeq") ; FP "greater or equal" test

FCOMP_THREE_ADDR_OP("fgeqflags") ; FP "greater or equal" test flags

FCOMP_THREE_ADDR_OP("fgtr") ; FP "greater"
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FCOMP_THREE_ADDR_OP("fgtrflags") ; FP "greater" test flags

FCOMP_THREE_ADDR_OP("fneq") ; FP "not equal" test

FCOMP_THREE_ADDR_OP("fneqflags") ; FP "not equal" test flags

FCOMP_SRC1_DEST_OP("fsign") ; FP sign test

FCOMP_SRC1_DEST_OP("fsignflags") ; FP sign test flags

;; Section III.2.10: FTOUGH OPERATIONS

;; ===================================

#define FTOUGH_THREE_ADDR_OP(op) \

(def_asm op \

[(INPUT_THREE_ADDR) \

FTOUGH_THREE_ADDR_TABLE \

])

#define FTOUGH_SRC1_DEST_OP(op) \

(def_asm op \

[(INPUT_SRC1_DEST) \

FTOUGH_SRC1_DEST_TABLE \

])

FTOUGH_THREE_ADDR_OP("fdiv") ; FP division

FTOUGH_THREE_ADDR_OP("fdivflags") ; flags from FP division

FTOUGH_SRC1_DEST_OP("fsqrt") ; FP square root

FTOUGH_SRC1_DEST_OP("fsqrtflags") ; flags from FP square root

;; Section III.2.11: IFMUL OPERATIONS

;; ==================================

;;

;; all ops use a three-stage pipeline and write the result at cycle 4

#define IFMUL_THREE_ADDR_OP(op) \

(def_asm op \

[(INPUT_THREE_ADDR) \

THREE_ADDR_TABLE(ISSUE,"ifmul",4) \

])

IFMUL_THREE_ADDR_OP("dspimul") ; clipped signed multiply

IFMUL_THREE_ADDR_OP("dspumul") ; clipped unsigned multiply

IFMUL_THREE_ADDR_OP("fmul") ; FP multiply

IFMUL_THREE_ADDR_OP("fmulflags") ; flags from FP multiply

IFMUL_THREE_ADDR_OP("imul") ; LSword of signed multiply

IFMUL_THREE_ADDR_OP("imulm") ; MSword of signed multiply

IFMUL_THREE_ADDR_OP("umul") ; LSword of unsigned multiply
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IFMUL_THREE_ADDR_OP("umulm") ; MSword of unsigned multiply

;; Section III.2.12: SHIFTER OPERATIONS

;; ====================================

;;

;; all ops complete in one cycle and write the result at t=2

#define SHIFTER_THREE_ADDR_OP(op) \

(def_asm op \

[(INPUT_THREE_ADDR) \

THREE_ADDR_TABLE(ISSUE,"shifter",2) \

])

#define SHIFTER_MOD_SRC1_DEST_OP(op) \

(def_asm op \

[(INPUT_MOD_SRC1_DEST) \

MOD_SRC1_DEST_TABLE(ISSUE,"shifter",2) \

])

SHIFTER_THREE_ADDR_OP("asl") ; arithmetic shift left

SHIFTER_THREE_ADDR_OP("asr") ; arithmetic shift right

SHIFTER_THREE_ADDR_OP("funshift1") ; funnel-shift (rotate) left 1 byte

SHIFTER_THREE_ADDR_OP("funshift2") ; funnel-shift (rotate) left 2 bytes

SHIFTER_THREE_ADDR_OP("funshift3") ; funnel-shift (rotate) left 3 bytes

SHIFTER_THREE_ADDR_OP("lsr") ; logical shift right

SHIFTER_THREE_ADDR_OP("rol") ; rotate left

SHIFTER_MOD_SRC1_DEST_OP("asli") ; arithmetic shift left by immediate

SHIFTER_MOD_SRC1_DEST_OP("asri") ; arithmetic shift right by immediate

SHIFTER_MOD_SRC1_DEST_OP("lsri") ; logical shift right by immediate

SHIFTER_MOD_SRC1_DEST_OP("roli") ; rotate left by immediate
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