Ne d’ordre: 2995

THESE

présentée
devant ’université de Rennes 1

pour obtenir

le grade de : DOCTEUR DE L'UNIVERSITE DE RENNES 1
Mention INFORMATIQUE

par
Gilles POKAM
Equipe d’accueil : CAPS

Ecole doctorale : MATISSE
Composante universitaire : IFSIC

Titre de la thése :

Techniques de compilation pour la gestion et 'optimisation
de la consommation d’énergie des architectures VLIW

soutenue le 15 Juillet 2004 devant la commission d’examen

M. : Christophe WOLINSKI Président

MM. : Nigel TOPHAM Rapporteurs
Pascal SAINRAT

MM. : Erven ROHOU Examinateurs
André SEZNEC

Francois BobiIN

Ainst, le progrés scientifigue nous montre tous les jours que ce
qui semblait étre un trait spécifique de ’esprit humain n’était
qu’une habitude mentale dont on se défait difficilement.

Cheikh Anta Diop, Civilisation ou Barbarie

To my son, Nufi
To my wife, Carine

Acknowledgments

I would like to thank all the members of my thesis committee, Prof. Christophe Wolin-
ski, Prof. Nigel Topham, Prof. Pascal Sainrat, Dr. Erven Rohou, Dr. André Seznec
and Prof. Francois Bodin for their patience in reading my dissertation and for their
fruitful comments and suggestions that make this thesis more readable and accurate.

I would like to thank more particularly Prof. Francois Bodin who directed this
thesis. He offered me the opportunity to join IRISA in order to conduct this research in
the compiler and architecture group, CAPS. I am very thankful to him for his fruitful
advice and continuing support. He also deserves special thanks for the opportunity he
gave me to develop some of the ideas contained in this thesis.

I am also very indebted to Dr. André Seznec, the head of the CAPS group. He
devoted much of his time providing me with advice regarding some of the ideas developed
in this thesis. His advice have been invaluable. I sincerely express to him all my
gratitude.

Many other people contributed to make this thesis possible. Olivier Rochecouste
deserves special thanks for the close collaboration we had on the speculative bit-width
management scheme paper. 1 also want to thank Karine Heydemann; without her
help it would have not been possible to organize the "pot de thése" in time. Blanche
Manikeu was really amazing. She has prepared all the delicious meals of the "pot de
theése". Fatou Traoré has prepared the famous "bissap", a kind of african juice based
on "fleurs d’oseil". Clotilde Hamza and Awa Traoré helped me look after my son Nufi
when I was preparing my presentation. Thank you to all of them.

My best thanks go to my wife Carine and to my son Nufi for having provided me
with the support necessary for overcoming the frustrating phases of this work. Without
their love and permanent support, this thesis would not have been possible.

Finally, I would like to thank my beloved parents, Marie-Madeleine and Daniel
Pokam, for their unconditional support and unshakable belief in me. They have been
giving me incredible support during this past three years. To entirely disclose my
gratitude to them will remain an unachievable task.

Contents

Résumé étendu de la thése

Thesis fundamental

1

2

Background

1.1 VLIW architecture

1.2 VLIW compilation techniques
1.2.1 Trace scheduling,
1.2.2 Superblock scheduling 0oL
1.2.3 Hyperblock scheduling

1.3 CMOS Power consumption basics
1.3.1 Sources of power consumption
1.32 Powermetrics Lo
1.3.3 Power modeling and evaluation

1.4 Power-efficient compilation opportunities

1.5 Summary e e

Low-power ILP compilation issues

2.1 Power/Performance evaluation metric

2.2 Energy-efficiency analysis
2.2.1 Energymodel
222 Costmodel
2.2.3 Tradeoff analysis

2.3 Case study on hyperblocks,
2.3.1 Hyperblock framework model

3

11

27

33
34
36
37
40
41
43
43
47
49
52
54

Contents

2.3.2 Understanding the energy issues 63
2.3.3 Application on the Lx VLIW processor 63
2.4 Related work 67
2.5 SUMMATY o v e e e e e e e 67
Program paths analysis 69
3.1 Suffix arrays background oL, 70
3.2 Profiling scheme 72
3.2.1 Collecting thetrace. 72
3.2.2 Control-flow information accuracy 74
3.2.3 BBWSssignature oo 75
3.3 Identifying BBWS 75
3.3.1 KMRalgorithmo 75
3.3.2 Sorting algorithm description 76
3.3.3 Sorting example L 78
3.4 Qualified BBWS for hot sub-paths 78
3.5 Experimental evaluation 79
3.5.1 Experimental methodology 80
3.5.2 Evaluation. L 81
3.5.3 Application example: adaptive cache reconfiguration 83
3.6 Related work 85
3.7 SUMMATY o o e e e e e e e 85
Power-efficient reconfigurable cache 87
4.1 Design space exploration of configurable caches 88
4.2 Motivating a phase-based resizable cache scheme 89
4.3 Potential cache modelo 90
4.3.1 Baselinemodel Lo 90
4.3.2 Architectural modificationso 91
433 Designcost 93
434 ISAsupport 93
4.4 'Trace-based program addresses analysis 93

4.4.1 Cache size performance profile, Pg(map(x)) 94

Contents 5

4.4.2 Cache size energy profile, Erp(map(x)) 94

4.5 Experimental setup L e 95
4.6 Study of program behavior.o 96
4.7 Approach for managing reconfigurability 98
4.8 Results. s 99
4.8.1 Dynamic energy reduction L. 99
4.8.2 Leakage energy reduction 99
4.8.3 Performance degradation 100

4.9 Related work L 100
4.10 SUmMMATY v o e e e e e e e e e 101
5 Power-efficient reconfigurable processor datapath 105
5.1 Prevalence of narrow-width operands 107
5.2 Approaches for exploiting narrow-width operands 108
5.2.1 Exploiting narrow-width operands via SIMD compilation. 108
5.2.2 Exploiting narrow-width operands in software 109
5.2.3 Exploiting narrow-width operands in hardware 109

5.3 Narrow-width operands distribution analysis 110
5.4 Architectural support for speculative execution 112
5.4.1 Hardware-exposed datapath-width reconfiguration instruction . . 112
5.4.2 Reconfigurable register file model 112
5.4.3 Reconfigurable datapath 113
5.4.4 Recovery mechanism 113
5.4.5 Handling address instructions 115

5.5 Detecting narrow-width regions oL 116
5.5.1 Selecting candidates regions 116
5.5.2 Regions transformation 117

5.6 Solution overview L. 118
5.7 Methodology 119
5.7.1 Platform and Simulation L0 119
5.7.2 Benchmarks 120

5.73 Energymodelo 120

6 Contents

5.8 Results. 122
5.8.1 Recovery mechanism 122

5.8.2 Codesize growth 123

5.8.3 Dynamic energy reduction L. 124

5.8.4 Leakage energy reduction 124

5.9 Summaryo 125
Conclusions and perspectives 127

Bibliography 133

List of Figures

1 Exemple de CFG avec régions. 15
2 Caractéristiques des chemins chauds. 17
3 Modeéle de base (associativité de degré deux). 19
4 Ligne de cache en mode sommeil. 20
5 (a) gsm energy/performance profile; (b) fft energy/performance profile. 21
6 Distribution dynamique des opérandes de petite taille au niveau des blocs

de baseadpcm. 22
7 Fichier de registre byte-slice. 22
8 Pipeline. 23
9 Mécanisme de recouvrement d’erreur. oL 24
10 Ordonnancement de code & l'intérieur d’une région. 25
1.1 Logical view of a generic 4-issue width VLIW architecture. 35
1.2 Original scalar code. oo 36
1.3 Exampleof atrace. 38
1.4 Example of insertion of compensation code. 39
1.5 Superblock example, (a) trace selection, (b) after tail duplication. 40

1.6 Hyperblock example, (a) after basic blocks selection, (b) after tail dupli-

1.7 if-conversion example, (a) basic block candidates, (b) if-converted code. 42

1.8 Charging operation. 44
1.9 Discharging operation. 44
1.10 n-MOS transistor layout. 45
1.11 Ip as a function of Vgg, Vipand Vpg. o . . oo 46
1.12 Trend in power supply and threshold voltage scaling. 47

7

1.13
1.14
1.15

2.1

2.2
2.3
2.4
2.5

3.1

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7

List of Figures

Dynamic power and static power consumption trends. 48
Power /performance tradeoff. Lo oo 49
Power analysis levels. 50

Shape of the curves corresponding to the cases C < 0, C =0, and C > 0

of the inequality (7) for various values of /PCy and IPCRr. 60
Original CFG. e 62
CFG in SSA. e 62
if-converted CFG.o 62

Energy-delay (top left), static scheduled length (top right), operation
count (bottom left) and IPC (bottom right). 66

Example of processing of an input trace 7' into an initial suffix array

representation Pos. e e e e e 71
CEG. . . e 73
CFG with three strong regions. 73
CDG with instrumented nodes. oL 73
Example of sub-path. 74
Example of BBWS identification 76
Hot path characteristics., 79
Simulation framework. Lo Lo o o 80
Local coverage. 81
Global coverage. e 81
Distance Teuse. w e e e e 84
Dcache miss distribution (dijkstra).o 84
Baseline architecture of a 2-way associative cache. 90
Drowsy cache line circuit. 91
Reconfiguration scenario. 91

(a) gsm energy/performance profile; (b) fft energy /performance profile. 97
Energy and performance profiles 103
(left) Dynamic energy consumption; (right) Performance degradation. . 104

Relative leakage energy compared with the base cache. 104

List of Figures 9

5.1 Cumulated distribution of operands bit-width. The first bar shows results
for one operand; the second bar shows results when both operands are

considered. L 107
5.2 Ccodeexample. 108
5.3 Dynamic bit-width distribution at the granularity of a basic block for

adpem. 110
5.4 Average operand bit-width convergence. 111
5.5 Byte-slice register file. L 113
5.6 datapath. 114
5.7 Recovery mechanism. 115

5.8 Average narrow-width regions characteristics (bargraph) and regions rep-

resentativeness in program (linepoint). L. 116
5.9 Bit-Width sensitive scheduling example. 118
5.10 Optimization flow-graph., 119
5.11 ACCUracy. v v v e o s e e e e e 122
5.12 IPC degradation for different valuesof randp. 123
5.13 Breakdown of the datapath dynamic energy savings and overall gain. . . 124
5.14 Register file static energy savings. 125

5.15 Distribution of power consumption. L. 129

Résumé étendu de la thése

L’intérét récent des systémes informatiques pour la réduction de la consommation
d’énergie reléve principalement de deux constats. Tout d’abord, I’essor rapide du marché
des systémes embarqués repose sur I’emploi de batteries d’alimentation; il devient donc
indispensable de trouver de nouvelles solutions visant & minimiser le sur-cott induit par
l'utilisation de ces ressources (durée de vie, fiabilité, capacité des batteries, etc). De
fagon plus générale, on ne peut plus concevoir de nos jours des processeurs rapides sans
tenir compte des problémes de dissipation d’énergie liés & un haut niveau d’intégration
et a l'utilisation de hautes fréquences.

Afin de produire des systémes a basse consommation d’énergie, de nombreuses so-
lutions matérielles ont été proposées. Cependant, la consommation en énergie d’un
processeur ne dépend pas uniquement de son architecture, mais aussi du code exécuté.
En particulier, la consommation d’énergie pour une tache donnée dépend fortement de
Iefficacité du code produit par le compilateur. Dans le cas des architectures VLIW,
ceci est d’autant plus critique que la gestion du parallélisme d’instructions est confiée
au compilateur.

Objectifs de la thése

Cette thése s’emploie principalement & réduire la consommation d’énergie des architec-
tures VLIW tout en essayant de préserver les performances. Contrairement & certaines
approches logicielles tendant a favoriser I’optimisation de code pour obtenir des gains en
énergie, nous présentons des arguments en faveur d’une approche synergique intégrant
matériel et logiciel & la fois. L’idée principale défendue tout au long de cette thése
repose sur le fait que seule une compréhension avancée du comportement dynamique
d’un programme au niveau du compilateur est susceptible de produire un meilleur con-
trole de la gestion de la consommation d’énergie. Pour cela, nous introduisons une
technique d’analyse statique du comportement dynamique d’un programme afin de par-
venir & identifier et caractériser les chemins les plus fréquemment exécutés ("chemins
chauds"). L’objectif visé étant la réduction de la consommation d’énergie, nous mon-
trons par la suite que sur directive du compilateur, ’architecture de la machine peut
étre modifiée pour s’adapter & un état dynamique du programme. Nous présentons les
conditions d’une telle reconfiguration ainsi que les éventuelles modifications & apporter

11

12 Résumé étendu de la thése

a Parchitecture, & la fois pour le systéme des caches que pour le chemin de données d’'un
processeur VLIW.

Contributions de la thése

Analyse du compromis énergie/performance

Dans de nombreux cas, optimiser le temps d’exécution réduit aussi la consommation
d’énergie et de maniére générale, la problématique de la réduction de la consommation
d’énergie est similaire & celle de la réduction du temps d’exécution [107]. En effet,
il s’agit de mettre en oeuvre des transformations de programme qui minimisent les
opérations entrainant une forte consommation d’énergie telles que les accés mémoires
ou une consommation inutile telle que celle provoquée par des cycle d’attente ("stall").
Ces transformations sont généralement évaluées sur la base d’'une fonction objective que
I'on peut définir & partir d’'un modéle de consommation d’énergie.

Dans le Chapitre 2, nous avons considéré une fonction objective, PTFE, qui est
I’équivalent de l'inverse du produit énergie-délai [40]. Ce produit est une mesure efficace
de la consommation électrique et permet de tenir compte de la performance et de
I’énergie & la fois.

1 Per formance

PTE

= = 1
E,, x Cycleyy, Energy (1)

Dans I’équation (1), le terme E,, désigne I’énergie par opération alors que C'ycle,y
est le temps de cycle associé & I'exécution de cette opération. La fonction objective
PTFE sert & comparer deux instances différentes d’une méme application au niveau
logiciel. De ce fait, PT'FE permet de mesurer les besoins liés & une augmentation des
performances par rapport a ceux liés & ’accroissement de la consommation d’énergie.
Cette fonction objective rend donc aisé la comparaison du ratio performance/énergie de
deux instances différentes d’'un méme programme.

Le modéle de dissipation d’énergie employée dans cette étude est celui d’'une archi-
tecture VLIW capable d’exécuter N opérations en paralléle. Il s’exprime de la maniére
suivante [14]:

EPB,, =E,+IPCy, Espp+m-p-Es+1-q- Epnss (2)

Dans I’équation (2), EPB,,, désigne I’énergie associée a l’exécution d’une instruc-
tion longue wy; E. est le cotit de base associé a ’exécution d’une instruction, IPC,, le
nombre d’instructions différent d’un nop au sein d’une instruction longue. La troisiéme
et la quatriéme sous-expressions dans (2) représentent ’énergie correspondant a la pé-
nalité due & un défaut dans le cache de données et d’instructions, respectivement. Dans

Résumé étendu de la thése 13

ces deux derniéres sous-expressions, m et [désignent le nombre de stall et de nop suite
aux défauts dans le cache de données et d’instructions, respectivement; la variable p et
la variable ¢ la probabilité associée & chacun de ses événements, et F et Fy,;ss I'énergie
dissipée par le processeur lors d’une pénalité due & un défaut dans le cache de données
et d’instructions, respectivement.

Ce modéle met en évidence deux points fondamentaux. Tout d’abord, I'estimation
de la consommation dépend de données de profile sur ’exécution du programme. Ces
données ne sont pas nécessairement stables d’un jeu de données a ’autre. Enfin, il ne
suffit pas d’améliorer localement la performance d’un fragment de code (i.e. une boucle)
pour obtenir une diminution de la consommation totale d’un programme. En effet, la
plupart des optimisations de code liées & la transformation de programme pour machines
VLIW introduisent une expansion de la taille du code. Outre la mémoire d’instructions
consommeée, cette expansion de la taille du code induit également un accroissement des
défauts de cache d’instructions qui a un impact direct sur les performances et sur la
consommation d’énergie.

Afin de mieux saisir I'impact qu’une telle optimisation de code peut avoir sur la
consommation électrique d’un processeur, nous avons entrepris ’étude d’une transfor-
mation de code, les hyperblocs [68], qui vise & accroitre les performances d’un programme
en introduisant une certaine expansion de la taille du code. La fonction objective PTE
a été utilisée pour évaluer 'impact des hyperblocs sur la consommation d’énergie.

Les transformations hyperblocs s’opérant au niveau du graphe de controle de flot,
nous avons considéré pour la suite de cette étude le bloc de base comme étant la plus
petite granularité d’ordonnancement possible. Dés lors, la fonction objective PT E peut
étre récrite de la maniére suivante:

1 _ TIPC
EBB X CyCl@BB N N x EBB

PTE = (3)

Dans la nouvelle formulation de PTE ci-dessus, IPC représente le nombre moyen
d’opérations exécutées par instruction longue et N le nombre total d’opérations dans
le bloc de base considéré. L’énergie consommée par le bloc de base est définie par le
terme EBB-

Une transformation hyperbloc transforme une région R du graphe de contréle de flot
en un large bloc de base H. Pour qu’'une telle transformation soit valide, nous posons
la condition suivante:

PT'Eyg > PTER (4)

De l'inégalité ci-dessus on peut exprimer la fonction de transformation Fj;, d’une
région R du graphe de controle de flot en un hyperbloc H de la maniére suivante:

14 Résumé étendu de la thése

A-TPCg

(5)

ou

A=fu Ny np-Ec+ Ny -5y Es
B=m-Ng-fr-Tg-Ec+ Ng-5g-Es (6)
C=(m-Ng-fr-Tig— fu-Nu-nug)-Eop

Les variables f, N, n, et s désignent la fréquence d’exécution, le nombre d’opérations,
le nombre d’instructions longues et le nombre de stall pour une région R ou un hyperbloc
H. La variable m représente le nombre de blocs de base au sein d’une région R avant
transformation. Les mémes variables avec une barre au dessus désignent une moyenne.

L’analyse du compromis entre ’application de la transformation en hyperbloc en
vue d’accroitre les performances et la réduction de la consommation d’énergie varie en
fonction du signe de la variable C. Les cas C' >= 0 sont ceux qui sont susceptibles de
produire de bon résultats, la quantité m-Ng- fr-Tig étant en effet supérieure & fr-Ny-ng
qui décrit les caractéristiques de ’hyperbloc résultant de la transformation de la région
R. La transformation devient cependant problématique dés que m - Ng - fr - ig >
fr - Ng - ng, c’est & dire dés que C' < 0. Le signe de C dans ce cas de figure peut
s’expliquer par plusieurs raisons, I'une d’entre elles étant une augmentation de la valeur
de n & cause de certaines contentions pour des ressources partagées telle que 'accés &
des ports mémoire, ou alors une augmentation de la valeur de N a cause de I'ajout de
code de compensation pour réparer les effets de bord dus a I’élimination des instructions
de branchement.

L’évaluation de ce modéle a montré que la prise en compte de ’heuristique de trans-
formation d’une région du graphe de contréle de flot en un hyperbloc peut rapporter 17%
de gain du produit énergie-délai. Ce résultat, toutefois, n’a été évalué que sur un petit
sous ensemble d’applications Powerstone [95] qui présentaient déja un nombre impor-
tant de régions susceptibles d’étre transformées en hyperbloc. Ce constat montre bien
les limites qu’'une telle approche peut avoir, tant les opportunités de transformations
en hyperbloc restent mesurées. Ceci étant dd, entre autres, au trés faible parallélisme
d’instructions inhérent & plusieurs applications [79]. D’ou notre ambition d’accroitre les
opportunités d’optimisation en exposant certains aspects du comportement dynamique
d’un programme au compilateur.

Vers une analyse statique du comportement dynamique de programme

Afin d’identifier et de caractériser les chemins les plus exécutés d’un programme (dans
la suite appelés "chemins chauds"), il est nécessaire de s’attaquer a 1’étude statique
du comportement dynamique d’un programme. Les techniques employées & cet effet

procédent souvent par profilage. Cependant, si le profilage ne se limite qu’a la collecte

Résumé étendu de la thése 15

des chemins du programme confinés & une procédure [10], & une boucle ou & une fonction,
il est impossible d’obtenir une vision globale de ’ensemble de ’application. Il s’en suit
donc que les optimisations qui en découlent sont de portée trés souvent limitée. Aussi
est-il indispensable de collecter les informations relatives aux chemins de contréle avec
une granularité plus grosse afin d’obtenir de meilleur opportunités d’optimisation.

L’approche que nous proposons dans le Chapitre 3 ambitionne de collecter les
chemins de contréle d’un programme pour une exécution compléte de ’application. Elle
est semblable a celle proposée par Larus [60] en cela que nous nous attaquons a la méme
granularité du programme, c’est & dire & toute ’application. Cependant, I’approche pro-
posée par Larus se fonde sur un algorithme de compression nommé SEQUITUR [78]
pour réduire la taille des informations collectées. SEQUITUR étant un algorithme de
compression "online", il est toujours important mais difficile de réduire la taille de la
trace de sorte & ne pas compromettre le temps d’exécution de ’application. En plus, la
représentation de la trace utilisée, qui est un graphe orienté acyclique (DAG), ne permet
pas de discriminer entre plusieurs instances dynamiques d’'un méme chemin statique;
chaque représentation dynamique d’'un méme chemin statique étant confondue par un
méme et seul noeud dans le DAG.

RO=(5,6,7}
R1={11,12,13}
R2=(8,9,10}

P=..51151151185...

Figure 1: Exemple de CFG avec régions.

Pour les raisons citées ci-dessus, plus particuliérement pour celles liées au temps
d’exécution, nous avons envisagé une approche "offline". Une premiére phase dans
notre approche consiste a collecter les chemins exécutés. Il s’en suit donc un probléme
de taille de la trace. Nous nous sommes donc intéressés a la collecte d’un sous-ensemble
seulement des blocs exécutés (voir Figure 1). Ces blocs ont étés choisis de fagon trés
judicieuse de sorte que chaque bloc représente un sous-graphe d’exécution du graphe de
controle de flot. Un des avantages de cette approche est que l’identification des régions
les plus fréquemment exécutées se fait au détriment des blocs de base les plus exécutés,
ce qui conduit & réduire considérablement la taille de la trace. Les blocs représentant
des boucles ont été compressés de maniére a ne retenir qu’une seule instance dynamique
des différentes exécutions. La combinaison de ces techniques nous a permis d’atteindre
un taux de compression de la trace de 'ordre de 74% sur des applications de MiBench

16 Résumé étendu de la thése

[42].

Toute suite de blocs de base qui se répéte dans la trace est conservée dans un sous-
ensemble de référence de blocs de base, appelé BBWS, représentant les blocs de base
statiques. Afin de pouvoir distinguer deux chemins dynamiques dont les blocs de base
sont issus du méme BBWS;, on associe & chaque BBWS une annotation qui le décrit de
maniére unique. Les informations que I'on peut trouver dans une annotation sont trés
variées. Pour nos expériences, nous avons considéré un identificateur unique par région,
le nombre de cycles requis pour exécuter une région, le nombre de défauts dans le cache
de données et d’instructions.

L’originalité de notre approche réside dans la technique employée pour détecter les
BBWS. Nous nous basons sur des tableaux de suffixe [71], généralement utilisés en
bioinformatique, pour trier les BBWS dans la trace. Nous montrons que ’emploi de
table de suffixes offre plusieurs avantages en comparaison & une représentation DAG:

1. permet des opérations de tri en O(p + In(N)), oil p est la longueur du pattern
recherché et N la taille de la trace;

2. permet de chercher la plus longue séquence répétée de BBWS dans la trace, Imax;

3. permet de chercher toutes les séquences répétées de taille n dans la trace, n <
Imax;

4. permet de déterminer la fréquence de distribution de chaque BBWS de taille n
dans la trace;

5. permet d’identifier exactement les différentes positions de chaque BBWS de taille
n dans la trace.

L’algorithme que nous avons implémenté est une adaptation intelligente de I’algorithme
de Karp, Miller et Rosenberg [54] utilisé pour la recherche de séquences répétées dans un
string. Nous montrons que ce probléme est analogue & celui de la recherche des chemins
chauds et que de simples modifications apportées a ’algorithme de base permettent
d’identifier rapidement tous les BBWS de la trace.

Tous les BBWS d’une trace ne sont cependant pas automatiquement des chemins
chauds. Il est donc nécessaire d’identifier parmi les BBWS ceux qui ont la propension
& le devenir. Nous introduisons trois critéres qui permettent de discriminer parmi les
BBWS ceux qui représentent des chemins chauds, c¢’est-a-dire des chemins fréquemment
exécutés (Voir Figure 2).

Le premier critére concerne la couverture locale d'un BBWS. Ce critére permet de
prendre une mesure du temps d’exécution de la région ou aussi du nombre d’instructions
dynamiques exécutées dans la région, avant qu’une transition & une nouvelle région se
produise.

Résumé étendu de la thése 17

distance
of reuse width
hot path W hot path W hot path
OSi pOSi+k p05i+k|

local coverage

T — position
+

global coverage

Figure 2: Caractéristiques des chemins chauds.

Le deuxiéme critére est la couverture globale d’'un BBWS. Ce critére est relatif au
poids de la région sur I’ensemble de I'’exécution de ’application. C’est en fait le produit
de la couverture locale par la fréquence d’exécution dynamique de la région.

Enfin, le dernier critére est la distance de réutilisation d’'un BBWS. Ce dernier
permet d’obtenir une approximation de la température d’'un BBWS. En effet, plus la
distance de réutilisation est grande, plus petite est la probabilité pour qu’'un BBWS soit
un chemin chaud. En supposant que Position désigne I’ensemble des positions dans la
trace d'un BBWS mais qui ne se chevauchent pas, la distance de réutilisation moyenne
d’un BBWS peut se calculer comme suit:

> (posl-fl + ’LUZdth) % OS;

5 =
| Position|

(7)

Dans ’équation (7), width représente la taille d’'un BBWS et % la fonction de mod-
ulo. Les chemins chauds sont choisis en fonction de leur couverture locale qui doit
étre relativement élevée, mais aussi de la distance de réutilisation qui elle doit étre
relativement petite.

Nous avons entrepris de valider notre approche sur un large sous-ensemble d’applications
MiBench [42], la plate forme expérimentale étant composée de SimpleScalar [22] et de
SALTO [16]. En somme, nous avons été dans la mesure de couvrir 48% du code dy-
namique par la détection des chemins chauds. Résultat impressionnant, compte tenu du
fait que cette proportion du code représente seulement 0.15% du code statique. Afin de
démontrer les avantages qu'une telle approche peut offrir, nous nous sommes aussi at-
telés & évaluer une technique d’optimisation visant & réduire la consommation d’énergie
sous directive du compilateur. Nous avons notamment entrepris d’adapter la taille du
cache de données en fonction de la taille des chemins chauds. Cette expérience a montré
que 12% de gain en énergie pouvait étre gagné en ajustant la taille du cache de données
& celle d'un chemin chaud.

18 Résumé étendu de la thése

Techniques de reconfiguration du cache

Les caches mémoire permettent d’améliorer les performances en maintenant une fraction
importante du code source et des données sur la puce, réduisant ainsi la consommation
d’énergie liée aux trafics mémoires. Cependant, & cause du haut niveau d’intégration, un
cache peut occuper jusqu’a 50% de la surface d’une puce, dissipant ainsi une large part
d’énergie. Afin de palier ce probléme, des caches mémoire configurables ont donc été
progressivement introduits dans certains systémes [44, 70]. L’intérét des caches mémoire
configurables pour les systémes embarqués est cependant encore assez limité. En effet,
actuellement la plupart des solutions proposées offrent la possibilité de configurer un
cache mémoire qu’une seule et unique fois avant ’exécution de ’application.

Nous proposons dans le Chapitre 4 de modifier la structure d’un cache configurable
afin de permettre au compilateur de le reconfigurer en fonction des changements de
phase dynamique de ’application. Nous montrons que le modéle de cache que nous
introduisons offre un fort potentiel de réduction de la consommation d’énergie, tout en
se gardant également de trop dégrader les performances.

L’idée de ce chapitre découle de la constatation que au cours d’une exécution,
I'utilisation du cache varie beaucoup et donc que sa configuration optimale n’est pas
toujours la méme. De ce fait, il est indéniable qu'un cache reconfigurable sur la base
de phases d’exécution, et non sur la base d’une exécution compléte de ’application, est
susceptible d’apporter la flexibilité nécessaire pour réduire la consommation d’énergie.

Nous réutilisons deux techniques récemment introduites pour faciliter la reconfigu-
ration du cache. Toutes ces deux techniques adressent la reconfiguration du cache au
niveau de 'application.

1. La technique selective cache way proposée par Albonesi [1|. Cette technique pro-
pose de partitionner un cache associatif le long de ses étiquettes et de ses données.
L’énergie peut étre sauvée en éteignant certains bancs du cache sur demande, suiv-
ant la taille du cache requise pour ’exécution de I’application. Les modifications
apportées au matériel sont simples, avec seulement un masque de registre pour
activer/déactiver des bancs de cache. Cependant, cette approche peut seulement
étre adaptée a des caches totalement associatifs;

2. La technique way-concatenation proposée par Zhang et al. [117]. Dans cette tech-
nique, les auteurs proposent d’exploiter 'arrangement en bancs d’un cache pour
parvenir & le reconfigurer comme un cache a correspondance directe ou un cache
associatif mais avec un degré d’associativité moindre. L’arrangement proposé ex-
ploite une technique appelée le way-concatenation qui permet de fusionner des
bancs du cache tout en maintenant toujours toute la capacité du cache. Cette
approche réduit ’énergie dynamique puisque, avec la méme taille de cache, des
caches d’associativité inférieure opérent moins d’activités de commutation que
ceux & plus fort degré d’associativité. De plus, le cotit d’implémentation s’est
avéré minimal.

Résumé étendu de la thése 19

Address

‘ Tag ‘ ‘Index ‘Offset‘

drowsy bit

Way #1

Figure 3: Modéle de base (associativité de degré deux).

1’idée proposée est donc d’employer une combinaison de ces deux techniques afin
de pouvoir modifier la taille et/ou I’ associativité d'un cache. Le modéle de cache sur
lequel nous nous basons et que nous allons progressivement modifier pour parvenir 4 un
cache reconfigurable par-phase est celui de [117] (cf. Figure 3)..

Nous avons introduit une premiére modification qui vise notamment & préserver
la cohérence des données entre deux reconfigurations de cache. En effet, le probléme
posé est que en passant d’une premiére configuration A a une deuxiéme configuration
B, plusieurs lignes de cache peuvent étre dupliquées, causant ainsi une pollution dans
le cache. Pour éviter ces effets de bord, il est impératif d’invalider & chaque écriture
toutes les lignes de cache qui ont été dupliquées. Nous avons émis 'idée de préserver
les étiquettes de toute reconfiguration; ceci afin de pouvoir controler tous les accés en
écriture sur les bancs de données et donc provoquer une invalidation sur toutes les autres
lignes dupliquées.

La seconde modification consiste & préserver les données dans les bancs éteints entre
deux reconfigurations de cache. En effet, ce qui se passe est que, chaque fois que le cache
doit étre redimensionné suivant sa taille, un banc doit étre déconnecté, causant ainsi la
perte des données qui y sont stockées. Pour palier ce probléme, nous avons modifié la
structure du cache pour adapter & un mode dit de sommeil [38]. Dans ce mode, la
tension d’alimentation est réduite pour permettre la préservation du contenu des cellules
mémoires (cf. Figure 4). En plus de préserver le contenu des cellules mémoires, cette
technique présente 'avantage de réduire 1’énergie statique de maniére non négligeable.

Nous avons étudié le comportement de plusieurs applications de MiBench et de
Powerstone afin d’extraire certaines caractéristiques dynamiques liées aux accés au cache
de données. L’étude du comportement de ces applications nous a permis de déceler
certaines affinités entre la taille de cache et le degré d’associativité pour différentes
configurations de cache possible (voir Figure 5).

Ce que l'on peut constater & travers cette figure c’est que certaines applications
restent insensibles & un changement de la taille du cache, la différence dans ce cas de
figure se faisant surtout au niveau du degré d’associativité. Pour d’autres applications
cependant, c’est le contraire qui se produit; le degré d’associativité important peu par

20 Résumé étendu de la thése

way-enable
signal

drowsy bit precharge gate
precharge signal

to precharge
aircuit

drowsy
signal

Fowsy

Tow.
decoder

concatenation mode
vdd 1V

power line
drowsy mode
Vdd 0.3V

j’ drowsy
e e e e =
1
! wordline
! wordline
1
! wordline gate

Figure 4: Ligne de cache en mode sommeil.

rapport & la taille du cache. Suite & ces observations, nous avons adapté la taille
et/ou D’associativité du cache en fonction des caractéristiques de l’application. Les
gains d’énergie dynamique restent, somme toute, modérés, allant de 5% a 12%. Nous
avons aussi noté une dégradation des performances pouvant atteindre 31%; ceci étant
dt & 'emploi de technique de mise en veille, le réveil cotitant de 'ordre de un & deux
cycles. De trés nets gains en énergie statique ont cependant été notés pour la majorité
des applications, le meilleur gain s’élevant a 80%.

Techniques de reconfiguration du chemin de données

Avec l'accroissement des performances, plusieurs processeurs des nouvelles générations
arrivent sur le marché équipés de dispositifs architecturaux tres agressifs dont le but
est de récolter le maximum de performance. Cette tendance s’est également accompa-
gnée d’'une augmentation continue de la taille de mot. Une des raisons qui explique
cela est de satisfaire aux besoins d’un espace d’adressage plus grand. On trouve aussi
une justification du c6té d’une plus grande largeur de bande passante mémoire. Cette
tendance qui s’était tassée autour d’'une largeur du chemin de données de 32 bits croit
progressivement, soutenant maintenant jusqu’a 64-bit pour de nouveaux processeurs tel
que I'Itanuim. Cette augmentation de la largeur du chemin de données a surtout été
bénéfique pour la grande majorité des applications dominées par le traitement scalaire
sur des types de données entier de 32 bits. Cependant, avec la récente confluence des
applications & usage universel et multimédia dans les processeurs embarqués modernes,
ceci n’est plus du tout le cas; plusieurs de ces derniéres applications opérent maintenant
sur des largeurs de données plus étroites, par exemple 8/16 bits de données, ouvrant
ainsi de nouvelles opportunités de réduction de la consommation d’énergie.

Une récente étude menée par Brooks et al. [18] propose de tirer profit de ces opéran-
des de petite taille pour réduire la consommation d’énergie du chemin de données d’un

Legend

32KB, 1-wa)
32KB, 2-wa)
32KB, 4-wa
16KB, 1-wa
16KB, 2-wa\
8KB, 1-way

Résumé étendu de la thése 21
32K config 1-way config
insensitive to 16K config
conflict miss insensitive to
, capacity effect jct miss Legend 32K n-way
32KB, 1-wa o |- insensitive
15 - 32KB, 2-wa to_conﬂlct
miss (n>1)
1 28 32KB, 4-wa
2E 16KB, 1-wa)
05 - 22 ’ 05 =
- = 3 ‘8K cqr)ﬂg 16KB, 2-wa
o § §_ InSGWStIV?IO 8KB, 1-way S
? conflict miss ?g
e s © L n-way config/ ,
© insensitive
-1 to conflict
5 miss (n>1
-15 — 8)
a—) -15 —
o g
@
=25 — §
£
3 \ | | | | | - ‘ ‘ ‘ ‘ ‘ ‘

3 4 5 6 0 1 2 3 4 5 6

o
-
~

cache miss cache miss

Figure 5: (a) gsm energy/performance profile; (b) fft energy/performance profile.

processeur. L’approche proposée par ces auteurs est basée entiérement sur le matériel et
exploite les opérandes de petite taille de fagon dynamique. Au niveau du compilateur,
cependant, aucune technique similaire n’existe pour le moment. Certaines approches
logicielles essaient tout de méme de déterminer de maniére statique la taille de vari-
ables de programme [21, 105, 26, 69]. Ces techniques sont cependant de portée trés
limitée puisque les contraintes d’analyse statique imposent des restrictions trés sévéres
au niveau du choix des variables & analyser et donc des transformations & appliquer.
Par ailleurs, ces transformations doivent en plus se conformer de facon trés stricte a la
sémantique du programme, réduisant un peu plus les opportunités d’optimisation.

Dans le Chapitre 5, nous proposons une nouvelle approche pour évaluer les opérandes
de petite taille au niveau du compilateur. Cette approche intégre logiciel et matériel
& la fois. L’idée principale dans ce chapitre est d’exposer les opérandes de petite taille
obtenues par le biais du profilage au compilateur afin de lui permettre de basculer de
maniére spéculative dans un mode d’exécution a taille de mot réduite. L’intérét que
présente cette approche est que le compilateur peut désormais s’attaquer a un plus grand
sous-ensemble d’opérandes de petite taille, contrairement & une approche purement
logicielle. Comme cela se fait généralement avec une granularité beaucoup plus grosse
au niveau du compilateur, il y a donc la la possibilité d’éteindre certains éléments du
processeur sur des périodes beaucoup plus longues que cela ne se fait avec une approche
matérielle. Ce mécanisme étant fondamentalement spéculatif, un dispositif matériel
permet de revenir & un mode d’exécution normal en cas d’erreur.

Notre approche se fonde sur le fait que certaines instances dynamiques de bloc de
base présentent un nombre élevé d’opérations s’exécutant avec des données de petite
taille, comme le montre la Figure 6 obtenue par le biais du profilage. Pour tirer profit
de ces opérations au niveau du compilateur, il a fallu apporter des modifications &

22 Résumé étendu de la thése

narrow-width regions

100%

80%

60%

40%

Fraction of 8/16 bits

20%

0% .
Cycle time

Figure 6: Distribution dynamique des opérandes de petite taille au niveau des blocs de
baseadpcm.

s, slice-enable signal
&
o)

.
.

KN 8 bits 8 bits 16 bits
KN
. 01] 1001 0011 0000 0000 0000 0000 0000 0000
[}
-8 10} 1001 0011 00101100 0000 0000 0000 0000
g
el
2
3
11| 1001 0011 0010 1000 110000100000 0010
e s et b & el
32 bits

Figure 7: Fichier de registre byte-slice.

I’architecture et développer de nouvelles techniques d’optimisation.

Le premier support architectural que nous avons introduit s’attaque au fichier de
registre. L’objectif ici est de modifier la largeur du fichier de registre afin de ’adapter
4 des modes d’exécution sur des tailles de mot de &8, 16, ou 32 bits. L’architecture
byte-slice proposée offre cette fonctionnalité. Le principe est de partitionner de fagon
logique un fichier de registre conventionnel en 3 bancs de registres de taille de mot de 8,
8, et 16 bits, respectivement. Un signal slice-enable permet d’activer ou de désactiver
les deux derniers bancs logiques du fichier de registre, le premier banc étant maintenu
actif de facon permanente. Lorsque le signal assurant ’activation d’'un banc logique
est désactivé, celui-ci est mis en mode sommeil afin de préserver le contenu des cellules
mémoires. La reconfiguration du chemin de données du processeur peut également
s’étendre au pipeline tout entier. Pour ce faire, nous avons entrepris la mise en oeuvre

Résumé étendu de la thése 23

1 1 1 1
1 1 1 1

: write-back : : :

1 1 1 1

\ [8/16/32] \ , ,

slice-enable signal | signal | \ \
([8/16/32] signal) 1 1 I I
—— 1 1 1 1
\ bypass \ , ,

\ v : [8/16/321 : :

I signal \ \

1 1 1

1 1 1

1 1 1

I 1

\ ALU > » Lsu '

1 P 1

—A—> [/16/32‘ 1 |

18/14/32] signal 1] 1

sigpal | \ |

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

RR . EX . MEM .+ WB .

1 1 1 1

Figure 8: Pipeline.

des techniques de clock-gating sur certains composants du pipeline comme les latch et
les unités arithmétiques et logiques. Le schéma du fichier de registre ainsi que celui du
pipeline sont donnés sur la Figure 7 et la Figure 8, respectivement.

Les erreurs de prédiction du mode d’exécution sont gérées par le matériel. Un
dispositif simple de recouvrement d’erreurs assure le basculement du mode d’exécution
du processeur opérant sur une petite taille de mot a un mode d’exécution exploitant
toute la largeur du chemin de données, c’est-a-dire avec une taille de mot sur 32 bits.
Des étiquettes rattachées a chaque registre servent de support pour la mise en oeuvre de
cette fonctionnalité (cf. Figure 7). Ces étiquettes ont pour but notamment d’indiquer la
largeur normale du chemin de données. Elles sont générées a chaque fois qu’un nouveau
résultat est produit par I'unité arithmétique et logique et & chaque fois aussi qu’une
donnée est lue en mémoire. La vérification du mode d’exécution est entreprise a 1’étage
d’exécution du pipeline, au niveau de 'unité arithmétique et logique, comme I’indique
la Figure 9.

Afin d’augmenter les chances d’obtenir des régions contenant un nombre élevé d’opérandes
de petite taille, nous avons considéré le cas particulier des instructions d’accés mé-
moire. Ces instructions manipulent des adresses mémoire de taille de mot trés souvent
supérieure & 8 ou 16 bits. Nous avons donc considéré une architecture dans laquelle
le calcul d’adresse est séparé de 'accés mémoire, un peu & 'image d’une architecture
découplée. Cependant, au contraire d’une architecture découplée, nous avons supposé
Pexistence de registres spéciaux entiérement dédiés au calcul d’adresse (par exemple des
accumulateurs).

La formation des régions contenant des opérandes de petite taille est entreprise par
le compilateur. Ces régions sont préalablement annotées lors d’'une phase de profilage
et sont transformées de la maniére suivante:

24 Résumé étendu de la thése

reading source operands

1
1
RR stage taq bits 1
and tag bits : 1
! I
: comparison 1
| source operands !
EX stage compare the tag bits | % !
to current mode 1 ALU :
1
] !
exception
incorrect
mode
continue execution replay trap continue execution
and correct mode and shrink the datapath

Figure 9: Mécanisme de recouvrement d’erreur.

1. les instructions d’accés mémoire dont I'un des opérandes au moins est représenté
sur une taille de mot de plus de 16 bits sont transformées en une instruction de
calcul d’adresse et une instruction d’accés a la mémoire via un registre accumula-
teur.

2. toutes les instructions d’un bloc de base sont réordonnancées de telle sorte que
chaque instruction ayant au moins une opérande de 32 bits est déplacée dans un
bloc de base voisin (voire Figure 10).

Nous avons mené des expérimentations en utilisant des applications Powerstone.
Nos expériences ont montré que les dégradations de performance étaient fortement liées
4 la pénalité associée & une mauvaise prédiction. Pour des pénalités faibles, de I’ordre de
5 cycles, les dégradations sont négligeables et n’affectent presque pas les performances.
En revanche, pour des pénalités élevées, de I’ordre de 25 cycles, les dégradations peuvent
trés vite atteindre 30% ou 60% selon que le taux de prédiction est faible ou fort. De
maniére générale, on a constaté un gain de 17% d’énergie dynamique et de 22% d’énergie
statique sur ’ensemble des applications.

Conclusions

En conclusion, cette thése a abordé différentes techniques pour trouver un compro-
mis entre performance et consommation d’énergie pour des processeurs embarqués du
type VLIW. Aprés avoir étudié les limites imposées par une approche logicielle, notre
recherche nous a conduit & considéré des solutions mixtes, intégrant le logiciel et le
matériel & la fois.

Résumé étendu de la thése 25

B MoveUp: instructions that can be safely moved to begin
B MoveDown: instructions that can be safely moved to the next basic block(s)

[0 renamed instructions (with one of its source operand width on 32 bits)

BB

| @
BB2
scheduling))
BB3 BB4 BB3

32 bits 32 bits

Figure 10: Ordonnancement de code & 'intérieur d’une région.

BB1

BB2

8/16 bits
region

Dans un premier temps, nous nous sommes d’abord intéressés a 1’étude statique
du comportement dynamique d’'un programme. L’intérét d’une telle approche est de
pouvoir identifier les chemins les plus fréquemment exécutés d’un programme, autrement
dit les chemins chauds. A cet effet, nous avons introduit une nouvelle méthode statique
d’identification des chemins chauds qui se base sur des tableaux de suffixe. L’approche
proposée montre que 48% du code dynamique peut étre couvert par les chemins chauds,
la taille du code statique équivalent ne représentant que 0.15% du programme. Cette
approche, comparée aux techniques actuellement proposées, permet I’'implémentation
d’algorithmes de recherche de pattern dans une trace en temps O(In(N)), N étant la
taille de la trace a analyser.

Avec l'identification des chemins chauds, on peut extraire certaines caractéristiques
dynamiques liées a ’exécution du programme. Au regard de cette caractérisation des
chemins chauds, on peut se permettre d’adapter le matériel en fonction des exigences
dynamiques de ’exécution du programme. Dans un deuxiéme temps donc, nous nous
sommes intéressés & la reconfiguration du matériel sous directive du compilateur. Plus
particuliérement, nous nous sommes intéressés a la reconfiguration des caches mémoire
et du chemin de données du processeur. Concernant les caches mémoire, nous avons
montré que par rapport & une approche de reconfiguration du cache au niveau de
I’application, un modéle de cache reconfigurable sur la base de phases d’exécution d’un
programme peut apporter des gains substantiels en énergie dynamique (allant de 5 &
12%) et en énergie statique (de I'ordre de 80%). De la méme maniére, on a montré qu’en
exposant les opérandes dynamiques de petite taille au compilateur, celui-ci pouvait de
fagon spéculative adapter la taille du chemin de données a celle des opérandes contenues

26 Résumé étendu de la thése

dans une région donnée. Nous avons montré qu’'un gain de 17% d’énergie dynamique
pouvait ainsi étre gagné et qu’une économie d’énergie statique de 22% était également
réalisable sur le fichier de registre.

Thesis fundamental

Over the past decade, the explosion of the embedded applications market has favored a
large dissemination of a variety of embedded devices. Our everyday life is overwhelmed
of a plethoric number of such devices that are capable of handling various data types
including digital video, audio, graphics and text, to quote only those. These devices
range from very small, low-end, systems such as those used in telemetry counter sensors,
to mid-range portable systems such as mobile phones or PDAs, up to high-end embedded
systems such as those found in radars or set-top boxes. Obviously, the need for the
software developers to continuously improve the performance of these applications has
put a strong emphasis on the processing power demand of modern embedded processors.
This enthusiastic quest for performance has been translated into increased architected
functionalities that have been added to these processors in order to reap maximum
performance, providing them with performance levels that were unaffordable a decade
ago, even for their counter-part general purpose processors.

It is tempting to optimize a processor along one system design aspect to achieve
high-performance. However, when dimensioning an embedded system to meet this
performance demand, the ultimate achievable performance level may not be the only
target. There is an important tradeoff among the system design parameters that makes
that it becomes practically impossible to optimize one parameter in isolation to the
others without risking to worsening overall performance. As a consequence, embedded
system designers must in addition address emerging key design issues such as that
of power consumption, which has a growing impact on the overall system cost. As
for example, when designing for high-performance, it is usual to increase the clock
frequency or augment the degree of instructions level parallelism (ILP), e.g. through
the duplication of functional units. While this does actually improves performance, it
comes at the cost of a growing power consumption envelope. In fact, whereas increasing
the clock frequency has a linear effect on power, the power growth factor due to increased
hardware complexity can raise more than quadratically with respect to the issue width
[80] as shown in Equation (8). In this equation, v is a power growth constant which
depends on the hardware structure and IPC the average number of executed instructions
per cycle which is closely tight to the issue width. For values of v > 2, such as that
corresponding to multiported register files [120], the power growth factor can be quite
significant.

27

28 Thesis fundamental

Power ~ (IPC)" (8)

Considering the power consumption when designing embedded systems is therefore
becoming a compelling problem such that it is even seen as one of the major challenges
of the decades to come [76]. The reason why this challenge will keep up to date may be
evidenced by the ever-increasing need for the processors manufacturers to stay competi-
tive and offer attractive products. As a matter of fact, reducing the energy consumption
of a battery-powered appliance has a direct consequence on the product’s worth to the
consumer. As an example, it can translate into a lengthened autonomy of the appliance.
In addition, it can also guarantee a lowering of the overall system cost since it may then
be possible to design the battery more efficiently, e.g. with a less weight for example.

In more general terms, the power consumption problem appears to be a real stum-
bling block in the application of the Moore’s law since it directly sits on the path towards
achieving higher performance. Indeed, with the Moore’s law driving the semiconductor
industry ahead, the processor’s performance limits are pushed at the forefront every
one and half to two years on average, causing the integration density to continue to
double in the same time span. However, as the integration density doubles, so too do
the number of active gates on a chip, raising the dynamic power consumption in an ex-
ponential manner. The net effect is a decreasing processor reliability due to the concern
of power dissipation, which has much to do with maintaining the processor operating
mode below a given temperature level. This has a direct influence on the packaging
cost and hence on the overall system cost.

The other implication that the power consumption problem has with the Moore’s
law is a matter of keeping it alive for a while, at least for the few next generations of
embedded processors. As the technology scales down below 100 nanometer, maintaining
the Moore’s law up to date is becoming a very challenging problem, essentially because
of technology limits [56]. In fact, as the technology shrinks, the power supply voltage
must also be reduced in order to maintain the dynamic power consumption within an
acceptable level. This reduction of the power supply voltage must also be accompanied
with a reduction of the threshold voltage to provide sufficient noise margins to insure a
reliable functioning of the processor. However, as the threshold voltage, Vi, is lowered,
the current, I;..r, that leaks through the transistor when it is switched off increases
exponentially, exacerbating the static power consumption problem even more. This
relationship is illustrated in Equation (9), where k is a parameter depending on the
device, a a constant slightly greater than 1 and Vp the thermal voltage [47].

—Vin
Ileakz ~kxexVr (9)

Henceforth, to reduce the power consumption has since evolved as a very active field
of research. Until recently, the vast majority of the research devoted to this topic have
mainly focussed on mastering the power consumption at the circuit and the architecture
levels. A good survey of these techniques is described in [13]. This has been done at the

Thesis fundamental 29

detriment of software approaches. Albeit the power consumption is strongly dependent
on the processor architecture, it is principally the execution of a program that causes
power to be consumed. This is essentially true in the context of embedded systems, as
it is evidenced in [107]. This later observation stems from the fact that it is the dynamic
execution of programs that exercises the hardware, causing it to operate certain amount
of transitions, thereby dissipating power. These transitions often account for the so-
called switching activity factor, denoted by a, whose relation to the dynamic power
consumption is given by the first expression of Equation (10), under the term dynamic
power. In this expression, C' models the gate capacitance of a CMOS node, V4 the power
supply voltage and f the processor clock frequency. The second expression models the
static energy due to the current that leaks through the transistor when it is turned off.

P=axCxVZ*f+ Vig* Lear (10)

dynamic power static power

For many embedded systems where the compiler is in charge of delivering a good
code quality, Equation (10) may suggest us a power control mechanism for the compiler
to effectively leverage the switching activity factor, namely by mastering the program
code to produce an energy-oriented schedule that minimizes the value of a. On the other
hand, an effective way to tackle the static energy at compile time may be to reduce the
impact due to the leakage current. This may be achieved by tracking hardware resources
in software that may temporally be put out of use at runtime, shutting off the power
supply voltage to these resources [91]; thereby reducing the impact due the Ijqx term,
i.e. leakage power. There may even be some more interesting opportunities to improve
further the overall system’s energy-efficiency by exploiting the interplay between the
code being executed and the exercised architectural components. This may involve
looking at synergistic architecture-compiler approaches that integrate hardware and
software aspects.

This thesis fits generally to this context. The question that we will be always
referring to throughout this thesis is how to efficiently master power consumption at
the compiler level, while also addressing sustainable performance levels.

Terminology

We assume working with constant frequency. It follows immediately that power and
energy can be used interchangeably. Hence, throughout this thesis, otherwise specified,
these terms will both refer to the same notion. In this sense, when speaking about
energy-efficiency, we also refer to power-efficiency. In the same way, energy-performance
or power-performance will reveal the same concept.

30 Thesis fundamental
Power-performance tradeoff

The processor power consumption can be reduced by tackling any of the parameters
shown in Equation (10). Consider, for instance, the expression of the dynamic power
consumption. Reducing the power supply voltage to almost a half may reduce the dy-
namic power consumption by almost a quarter. In the same manner, reducing the clock
speed may also reduce the power consumption. Therefore, one can think of leveraging
the value of Vyy or f at the compiler level to lower the amount of power consump-
tion. Unfortunately, since the clock frequency is approximatively linear in Vg, [56], as
shown in Equation (11), reducing either one of these values may directly impair on
performance.

_ Vaa —Vin

/ Vaa

(11)

To obtain a significant power reduction without compromising performance, it may
be requested to leverage parameters that may influence each other. Adjusting the power
supply voltage and the processor clock frequency in this way, for instance, has already
been the subject of many studies done at the compiler level, some of which are well
described in [48, 94].

To consider the power-performance tradeoff may then result to solve an optimization
problem that consists in finding the point of balance where any reduction of one param-
eter is compensated with an equivalent adjustment of the other parameters such that
any performance impairment due to the first is nullified by the others. This steady quest
for balancing between power consumption and performance will underly our definition
of energy-efficient compilation throughout the rest of this thesis.

Objectives of this thesis

The goal of this thesis is to develop a deep understanding of the main sources of
power consumption, viewed from both a hardware and software perspectives, in or-
der to come out with architecture-compiler symbiosis solutions that can better improve
overall energy-efficiency, without jeopardizing performance.

Our analysis standpoint lies in the compiler. Therefore, we will consider program
characteristics in order to converge towards architecture-compiler synergistic solutions
that can exercise the hardware and the software. Our technical approach to this problem
stems from the fact that programs exhibit dynamic execution patterns [97] that can
stress the hardware in different ways. Identifying these patterns in software and then
looking precisely on how they may exercise the underlying hardware components may
lead us to establish effective power control mechanisms. This will imply from us to
leverage the values of the activity factor a in consonance with the other parameters such
as the power supply voltage V5. We propose to address these issues by investigating

Thesis fundamental 31
four main areas of research:

1. ILP compilation. A focus is put on understanding the main effect of ILP com-
pilation on the energy by trying to trace back the main sources of the diminishing
energy returns when applying these techniques;

2. Program behaviors. By attempting to understand the behavior of programs,
we expect to reduce the discrepancy between the quality of the code being pro-
duced by the compiler and the underlying hardware capability. The goal is to
characterize a program execution behavior to achieve a better power-performance
tradeoff;

3. Cache subsystem. Caches account for a large portion of the chip area and there-
fore the energy [45]. We study the cache requirements of different applications,
expecting to isolate some behavioral software/hardware particularity common to
both the applications and the cache components to better leveraging the power-
performance tradeoff;

4. Processor datapath. The processor datapath becomes increasingly critical as
the pipeline is widened to process multiple instructions simultaneously. We inves-
tigate the challenging issue of managing this complexity at the compiler level in
order to balance the energy and the performance in a convenient manner.

Contributions of this thesis

In order to address the goals stated above, this thesis investigates several key research
contributions related to each of the topics mentioned in the objectives.

1. We propose a thorough investigation of the energy-performance tradeoff of ILP
compilation techniques. The main objective here is to understand the classical
view of optimizing for power which mainly relies on performance optimization
to achieve this goal. We challenge this classical view of power management by
proposing an analytical methodology which essentially exploits the variations in
program performance to identify conditions leading to energy consumption in-
crease;

2. We propose a novel approach based on suffix arrays for characterizing dynamic
program behaviors via the static identification of hot program subpaths. We show
the potential of such an approach to improve the compiler efficacy to selectively
applying some optimizations on portions of code based on the underlying program
characteristics;

3. We introduce a potential phase-based reconfigurable cache scheme that can be ex-
ploited at compile time to leverage the energy-performance tradeoff. This proposal

32 Thesis fundamental

is based on a thorough analysis of the dynamic cache requirements of programs.
The main goal here is to characterize some application-specific cache architectural
parameters that can be managed relatively easily at compile time for improving
the energy-performance tradeoff;

4. We introduce bit-width speculation, principally as a means for managing the en-
ergy consumption of a processor datapath at the compiler level. We advocate
changes in the ISA to virtualize both the processor datapath and the register
file widths in order to exploit narrow-width operands at the software level more
efficiently. We achieve this by taking advantage of the strong bitwidth locality
available in many embedded applications in order to speculatively accommodate
the execution of narrow-operands regions on narrower datapaths.

Organization of this thesis
This thesis is organized into five chapters.

e Chapter one first describes the general implementation framework of VLIW pro-
cessors. In particular, we lay emphasis on the processor implementation specifics
and on the role played by the compiler. A comprehensive understanding of the
main power consumption issues is then introduced. We present some terminol-
ogy associated with power consumption, describe the metrics used to characterize
power as well as some available power evaluation models and tools. Particular
attention is paid to the opportunities that can be exploited at compile time to
leverage the power-performance tradeoff;

e Chapter two investigates in more detail the ILP related power issues;

e Chapter three describes our approach for characterizing program behaviors
at compile time and evidences the potential of such an approach by exhibit-
ing some selected optimizations techniques that may improve the overall energy-
performance tradeof;

e Chapter four introduces a potential phase-based reconfigurable cache design
that can be managed at the compiler level to reduce energy;

e Chapter five addresses a new hardware/software approach to speculatively con-
trol the processor datapath power consumption at the compiler level;

Chapter 1

Background

Historically, there have been two major orthogonal directions for improving processor
performance: processor designers have either increased the clock frequency or they have
augmented the processor’s capability of executing more than one instruction per cycle.
In the former case, improvement in the clock frequency has followed an approximate
rate of 30% every two to three years [17], primarily because of the implementation of
ever deeper pipelines [104] with less logic per pipeline stage and, to a lesser extent, of
technology scaling [17]. In the latter case, processor designers have exploited the in-
creasing chip integration density to enhance the instruction throughput by incorporating
more hardware to process multiple instructions per cycle [103]. Unfortunately, as we
are nearing closer to technological limits, it will soon become very difficult to continue
achieving ever narrower process scaling. This will make increasing the clock frequency
and the chip integration density a very challenging task. Therefore, new approaches
for realizing more performance are becoming urgent. This observation is shared among
members of the research community since the interest to invest much more efforts in
the study of complexity-effective designs that can potentially better exploit available
processor resources is growing.

One of the most promising approaches for improving processor performance with-
out taking much care of technological improvements is exploiting instruction parallelism.
Basically, instruction parallelism exploits program characteristics to better take advan-
tage of the available chip area by increasing the number of instructions that can be
executed simultaneously. There are two distinct approaches for doing that. In the first
approach, conventional superscalar processors [103| dynamically search the sequential
instructions stream for on-the-fly instructions that can be executed out-of-order. In the
second approach, the responsibility of finding the instructions that may be executed
in parallel falls by the compiler, and is therefore done entirely in software. This ap-
proach is implemented with Very Long Instructions Word (VLIW) processors [37|. More
and more, however, there are many new approaches that tend to exploit this instruc-
tion parallelism by integrating hardware and software techniques even more tightly. In
particular, some designs have emerged which try to explicitly encode the parallelism

33

34 Background

found at compile time in the instructions. This design is known as Explicitly Parallel
Instruction Computing (EPIC). One such processor is the Itanium [96] from Intel.

The concept of VLIW architecture is becoming very popular in the embedded com-
puting domain, principally because it provides a very low-cost, high-performance alter-
native solution compared to a conventional general purpose design such as a superscalar
processor. For these reasons, VLIW architectures are starting to be adopted in a variety
of processors, especially in the DSP domain. But also in general purpose domain with
the Itanium [96] processor from Intel. The Philips Trimedia processor [34], the Texas In-
strument TMS320C62xx [51], and the Lx processor from HP-LAB/STMicroelectronics
[35] are examples of DSP processors that build on VLIW technology to accelerate pro-
gram execution time. Basically, a VLIW processor allows to reap maximum program
performance with a lower power budget and less design effort than a superscalar pro-
cessor can do, especially because much of the circuit complexity found in the latter,
which makes it possible to dynamically take advantage of the instruction parallelism, is
withdrawn from the processor’s critical path and placed into the compiler.

A VLIW processor exploits instructions level parallelism (ILP) by looking for pro-
gram instructions at compile time that can be directly exposed to the hardware via the
use of very long instructions word. Typically, a very long instructions word embeds
from 2 up to 28 independent operations [67] that can be issued in parallel at each cy-
cle. As such, VLIW processors offer a potentially powerful solution to sustain increased
performance at low cost. In this chapter, we will provide a deep understanding of the
main functioning of a VLIW processor. We will first look at the hardware side, de-
scribing the peculiarities of commonly found VLIW architectures. Then, we will look
into the software aspects of VLIW architectures. In particular, we will be addressing
the issues of exploiting instruction parallelism at the compiler level. Finally, we will
provide a thorough analysis of the power consumption issues associated with such a
VLIW processor.

The rest of this chapter is structured as follows. In the next two sections, we intro-
duce the general framework of a VLIW processor, followed by the description of some
essential techniques used to uncover instructions parallelism at compile-time. These two
sections provide the fundamental background of VLIW processors. In Section 1.3, we
introduce some basic notions of power consumption of CMOS circuits. Power consump-
tion models and tools that will be subject to use throughout this dissertation are also
described in this section. In Section 1.4, we address the sources of power consumption
that we will look into throughout the rest of this thesis. Finally, Section 1.5 concludes
this chapter.

1.1 VLIW architecture

A VLIW processor operates at the granularity of several independent operations packed
into a very long instruction word, often called a bundle. The number of such indepen-
dent operations varies from one target to another, but can easily reach more than 28

VLIW architecture 35

41 bits

'

‘ branch
I_T

c

(=

bundle

'

Register File

y
E

Instr. Cache §
Decoder

mult

load
\
I_‘E

iy 1

Branch
Unit Data Cache

Figure 1.1: Logical view of a generic 4-issue width VLIW architecture.

operations as described in [67]. Each such independent operations within a bundle oc-
cupies a set of fields, called a slot. It is the compiler that is in charge of filling each
bundle with sufficiently enough independent operations to maintain the hardware busy,
i.e. reduce the number of empty slots. Figure 1.1 depicts the logical view of a generic
4-issue width VLIW processor.

A VLIW processor comprises a control unit that issues bundles, one at each exe-
cution cycle. As illustrated in the Figure 1.1, a VLIW processor is not equipped with
a mean of hardware that can dynamically track runtime data dependences among in-
structions operands. It returns to the compiler to guarantee that no such dependences
can occur at runtime. When such a bundle is issued, e.g. 4 operations as shown in the
figure, it usually initializes several independent operations simultaneously. Typically,
any such independent operation may be carried out on any available functional unit
that is dedicated to this purpose. It is possible to increase the number of such available
functional units to enhance the ILP degree. This comes however at the cost of additional
complexity which may also have an impact on the power consumption. The format of
a very long instruction word comprises a large number of bits that directly control the
actions of the multiple functional units. Assuming, for instance, that each operation
contained in the hypothetical bundle shown in Figure 1.1 is encoded with 41 bits, a
very long instruction word will require a total of 128 bits to be represented in memory.
Each very long instruction usually requires a small number of cycles to be carried out.
This number of cycle can be predicted at static time in a relative easy way. A VLIW
processor may also combine pipelining with parallelism to improve performance. To
do this, a VLIW processor may comprise several pipelined functional units to augment
instruction throughput. Generally, an instruction bundle on a VLIW processor appears
compressed in memory to save code size. This is because, in the absence of sufficient

36 Background

ldw r2 = 20 [r1]

add r2 = (b0 ?r3:r4), 10

stw 20 Irll =r2

Figure 1.2: Original scalar code.

ldw r2 = 20[rl] nop nop | nop

nop nop nop | nop

nop nop nop | nop

add r3=r2,r3 add r4 =r4,r2 | nop | nop

cmp b0 = 13,74 nop nop | nop

add r2 = (b0 ? r3 : r4),10 nop nop | nop
stw 20[rl] = r2 nop nop | nop

nop nop nop | nop

nop nop nop | nop

Table 1.1: VLIW schedule for the scalar code of Figure 1.2.

parallelism, the empty bundle slots are filled with NOP instructions in an uncompressed
encoding scheme. As these instructions may waste memory space, VLIW processor de-
signers have engineered several compressed encoding techniques [65, 64, 15| to reduce
this overhead, one of them being the use of stop bits.

1.2 VLIW compilation techniques

The role of the compiler in a VLIW processor is of a crucial importance since it en-
tirely returns to him to reveal the parallelism hidden in the code as well as to resolve
potential data and structural hazards that may occur. To do so, the compiler must
search in the sequential stream of instructions for independent operations that may
then be packed together into a very long instruction word. This process is known as
instruction scheduling. Instruction scheduling poses a fundamental challenge to VLIW
compilers. The challenge is to schedule as many independent operations as there are
available empty slots in a bundle; yet with the additional constraints of minimizing the
program execution time and using the hardware resources optimally.

Let us consider the sequential code shown in Figure 1.2. If we assume that all

VLIW compilation techniques 37

instructions take 1 cycle to execute, except those belonging to the class of load/store
instructions, which will require 3 cycles, we obtain the VLIW code presented in Table
1.1. It is assumed that for this example, the VLIW machine used is that shown in
Figure 1.1.

The code scheduled on the VLIW machine takes one cycle less to execute than that of
the scalar machine. However, as it can be observed in the figure, the slot occupancy rate
achieves only 17% of its potential, which is a relatively poor number. It is the compiler
responsibility to fill the empty slots with operations to improve both the slots occupancy
rate and the program execution time. This responsibility is very challenging since it
involves to reveal sufficiently enough candidate operations to be scheduled within each
single bundle as well as to guarantee the resolution of all data and structural hazards
between these operations, e.g. RAW and WAR hazards as illustrated in Figure 1.2 with
strong and dotted line, respectively. In the example shown in Table 1.1, to do so the
compiler will have to look for at least 30 candidate operations to fill empty VLIW slots.
If we assume an average basic block length of 5 instructions, the compiler will have to
monitor operations from at least 5 different basic blocks in order to obtain a satisfactory
slot occupancy rate. This severely complicates the scheduling task.

Fortunately, there have been several ILP enhancing techniques that have been en-
gineered to circumvent that problem. All of the proposed solutions involve a kind of
cross-block scheduling. These techniques essentially differ in the manner by which the
compiler combines the different basic blocks together to increase its scheduling scope.
In this section, we will only look at some of the major techniques that will be relevant
for the remainder of this thesis.

1.2.1 Trace scheduling

Typically, when a program executes, it goes through different sets of basic blocks across
the CFG. Fisher [36] has termed this a trace (see Figure 1.3) to denote a loop-free path
of likely executed basic blocks in the CFG, for a given input data. Since a trace can
include up to several basic blocks, it can therefore reveal much of the potential program
parallelism than a single basic block can do. In the case the exposed parallelism is
still not sufficient, the size of the trace can be enhanced with techniques such as loop
unrolling or inlining [75] to include even more instructions. Since, during a program
run, some basic blocks are been executed more often than the others, traces can also
be arranged according to their execution frequency. Consequently, to form a trace it
is therefore important to rely on profiling information to gather basic block execution
counts, as shown in Figure 1.3. In that figure, B1, B3 and B5 are the most executed
basic blocks. Since this constitutes a path in the CFG, they may be good candidates
for forming a trace.

The process of forming a trace involves to choose a seed basic block with the highest
execution frequency which has not yet been scheduled before. After that, the trace is
grown backward and forward from the seed in the following manner. In the forward

38 Background

trace #0 trace #1

B1 B2

exec count = 50 | 20
B3
70

trace #2

B4

20

Figure 1.3: Example of a trace.

direction, the block at the head of the most frequently executed edge of the last basic
block of the trace is added to the trace as long as this block has not been selected before.
The trace is grown in the backward direction in an analogous manner.

Once the traces have been formed, the scheduling is done relative to the execution
frequency of each trace, beginning with the trace with the highest execution frequency
to that with the less. The scheduling can be done with a relatively simple list scheduling
algorithm, such as that used when considering a single basic block.

However, a disadvantage with this approach comes from the fact that a trace can
span over several basic blocks; thus forcing the compiler to insert some form of compen-
sation codes to correct the inevitable effect of considering the entire trace as a single
basic block. These cases arise as soon as an instruction in the trace is scheduled ahead
or behind side exits (e.g. branch going out of the trace) or side entrances (e.g. branch
coming into the trace). As for example, if an instruction preceeding a side exit is moved
past this point, then a copy of this instruction must be inserted on the path leaving
that point. Conversely, an instruction that is moved ahead of a side entrance must also
be copied on the path coming into that point to correct this effect. We have illustrated
these two possible scenarios in Figure 1.4.

As pointed out earlier, a serious disadvantage of trace scheduling is due to the
amount of bookkeeping codes that is inserted in order to account for the effect of code
motion before/past side entrances/exits of a trace. This can eventually slow down pro-
gram execution. A typical scenario occurs when no dominant traces can be found in the
program or when the resulted basic blocks (after trace formation) execute with nearly
the same frequency. What happens is that some basic blocks may be slowed down due to
executing these additional instructions. Since these latter instructions may be transpar-
ent to program execution, this can be eventually translated into program overhead. We

VLIW compilation techniques

Before scheduling

entry 0 l

Bl
: entry n

mul
sub
add

branch)
exito

exitnl

B3

B2

After scheduling

emryol l
Bl B3
: entry n
sub
mul
branch o
= |
B2

exitnl

Figure 1.4: Example of insertion of compensation code.

Benchmarks IPC ICache miss rate (%)
Without traces | With traces | Without traces | With traces

adpcm coder 1.81 1.97 0.158 0.166

adpcm decoder 2.38 2.59 0.172 0.187

autcor 1.07 1.74 0.366 0.882

fir4 1.05 1.72 0.254 0.647

dct 1.47 1.80 0.962 1.773

Table 1.2: Effect of trace scheduling on the performance using a 4-issue width VLIW

machine.

40 Background

#0

B1 B1
exec count = 50 exec count = 50
B2 B3 B2 B3
block #1 80 20 30 20
B4 B4
5 5
B5 B5
50 50
I | I
superblgck #2 BS
L= 5
I S|
(a) (b)

Figure 1.5: Superblock example, (a) trace selection, (b) after tail duplication.

have illustrated in Table 1.2 the effect of applying trace scheduling on some multimedia
kernels, assuming a 4-issue width VLIW machine similar to that described in [35]. As
it can be seen from the table, it is obvious that applying trace scheduling improves the
performance since the IPC is increased for all benchmarks. However, when looking at
the impact of trace scheduling on the instruction cache, one can observe that the miss
ratio is degraded in almost all cases. This can be primarily attributed to the effect
of executing the additional compensation codes. We will see in the next chapter that
the impact of this compensation code can mitigate program performance when energy
consumption is of a concern.

1.2.2 Superblock scheduling

The superblock [49] is an improved version of a trace in which no side entrance is
allowed. A superblock is therefore akin to a trace, except that it can only be entered
from the top. The process of forming a superblock proceeds similarly to a trace. The
code is first profiled in order to gather basic blocks execution statistics to form a trace,
as described in Section 1.2.1. Yet, however, in order to avoid any side entrance effects,
a second step called tail duplication is applied [28]. The effect of tail duplication is to
remove side entrance edges such as that shown in Figure 1.5(a), i.e. edge B4-B5. In this
example, after applying tail duplication, basic block B4 points to the new duplicated
node B5’. Because a superblock does include no side entrance, the application of some
optimization such as constant propagation can be done more easily. Similarly with a
trace, however, the amount of compensation code due to tail duplication can be non-
negligible.

VLIW compilation techniques 41

B1 B1
exec count = 50 exe¢c count = 50
B2 B3 B2 B3
30 20 30 20
B4 B4
5 5
B5 B5
50 50
I I
BS
5
|
(a))

Figure 1.6: Hyperblock example, (a) after basic blocks selection, (b) after tail duplica-
tion.

1.2.3 Hyperblock scheduling

Hyperblock [68] is an alternative cross-block scheduling approach to trace and su-
perblock. It improves on these latter techniques by providing compilers with a large
scheduling scope that can span over multiple control flow paths. The formation process
involves to select a set of basic block candidates from which only one basic block is
designated as the entry block. Control flow may then reach the hyperblock region via
this point only. It may however leave it from several other locations in the hyperblock
region. The selected basic blocks are then fused into a large predicated basic block to
form a hyperblock. Following is a brief description of the main steps involved during
this process.

Basic block candidates for inclusion in a hyperblock are selected by means of profil-
ing. Priority is given to loop regions with heavily executed basic blocks. This is done
in order to exclude basic blocks along the less frequently executed paths so that they
do not penalize the execution of those belonging to the frequent path. In addition, only
basic blocks not exceeding a given size are choosing. The idea behind that is to reduce
the scarcity of processor resources upstream by avoiding the inclusion of too large basic
blocks in a hyperblock. This may prevent smaller basic blocks from being penalized
by the execution of larger basic blocks. A last criterion often considers the type of the
instructions contained in the basic block candidate. Priority is assigned to basic blocks
that do not contain hazardous instructions such as procedure calls, unresolvable memory
accesses, etc. Figure 1.6(a) shows the hyperblock selection process for a small number
of basic blocks. As shown in the figure, B1-3,B5 are the most executed basic blocks
in the loop. Hence, they are selected as candidates for inclusion in the hyperblock. In
contrast, B4 is excluded from the hyperblock because it belongs to an infrequent path

42 Background

B1
x = func()
if (x>y) x = func()
=x>y?1:
true false cond=x>y?1:0
cond,a+=c¢
B2 B3 cond, b +=2
atsc a-=c¢ lcond, a -=c¢
b+=2 -=
b-=2 !cond, b -=2
/ e=axb
B5 l
e=axb
(@) (b)

Figure 1.7: if-conversion example, (a) basic block candidates, (b) if-converted code.

in the CFG.

The formation of the hyperblock principally involves fixing problems related to side
entrance and then merging the selected basic blocks into a large predicated block. Side
entrance problems arise as soon as the hyperblock region can be entered without passing
through the entry block. In such a case, tail duplication 28] is applied to fix this. An
illustrative example is given in Figure 1.6(b), showing the duplication of basic block
B5 in order to avoid the side entrance effect caused by basic block B4. Note that a
drawback of this approach is the relative increase of the program code size.

The last important step involves creating the hyperblock by fusing the selected
basic blocks into a large predicated basic block. Predication refers to the process of
removing conditional branch instructions. A possible implementation framework for
predication is if-conversion [2|. if-conversion replaces conditional branch instructions
with equivalent instructions, e.g. compare instructions, that set some predicate registers.
These predicate registers then serve as guards for conditional instructions evaluation.
This requires that the ISA is augmented with instructions providing a guard register
like in the Itanium [96] or in the Trimedia [34] processor, for instance. Figure 1.7
exemplifies the if-conversion process for the hyperblock region shown in Figure 1.6(b).
The code after if-conversion is shown in Figure 1.7(b). Note that, the conditional branch
instruction, i.e. the if-test in the code, has been replaced with a select instruction that
sets a predicate register (register cond) according to the outcome of the if-test. The
evaluations of the subsequent instructions are then conditioned by the value of the
predicate register cond.

Because basic blocks belonging to different control flow paths can be merged together
to form a single large predicated basic block, the hyperblock scheme offers a larger

CMOS Power consumption basics 43

scheduling scope unit than that provided by either one of the trace or the superblock
approach. As a result, the hyperblock potential for exploiting instructions parallelism
is higher than any of these prior studied cross-block scheduling techniques.

1.3 CMOS Power consumption basics

Modern processors are implemented with CMOS (Complementary Metal-Oxide-Silicon)
technology. CMOS circuits have gained their popularity principally from their low price
and from their relative good power/performance tradeoff. However, with continuing
technology scaling, it is very uncertain whether this power/performance tradeoff will be
preserved. With the high integration density, more and more transistors are integrated
into a chip, making CMOS designs increasingly complicated. This has been brought to
such an extent that the power consumption of CMOS devices has raised significantly,
impacting on the overall system power consumption. This section explains the funda-
mentals of power consumption CMOS circuits. We first introduce the main sources of
power consumption in a CMOS device. Then, some metrics relative to power consump-
tion that we will be using throughout this thesis are discussed. Lastly, we introduce
some power consumption evaluation models currently available in the literature.

1.3.1 Sources of power consumption

There are three main contributors to the power consumption of a CMOS device: the
dynamic power consumption, the static power consumption and the power dissipated
due to the short-circuit effects. Because of the negligible impact of the power consump-
tion due to short-circuit effects, we will only limit us to study the power consumption
due to the first two components.

1.3.1.1 Dynamic power consumption

The dynamic power consumption is the primary contributor to the power consumption
of a CMOS gate. It is estimated to represent as much as 90% of the total power for
current process technology. Two events may lead a CMOS gate to dissipate dynamic
power. These events are associated with the charging and the discharging of the load
capacitance of a CMOS gate. Both of these events take place upon a transition operated
by the output node voltage of the CMOS gate.

During a charging operation, the input node voltage of the CMOS gate operates a 1
to 0 transition. As a result, the load capacitance of the output node is charged up with
a charging current I.jq,ging, as indicated in Figure 1.8. This operation draws an energy
from the power supply voltage that is proportional to the square of the power supply
voltage and the capacitative load of the gate output’s node, as indicated in Equation
(1.1).

44 Background

vdd
%TL —
| (charging)

11]

Vdd

v,

N Vout s

R

\{

| (discharging,

Figure 1.8: Charging operation. Figure 1.9: Discharging operation.

E=Cp*V} (1.1)

On the other hand, a 0 to 1 transition is operated upon a discharging operation
occuring at the input node voltage of the CMOS gate. This causes a discharging current,
Lgischarging, to dissipate the energy stored in the load capacitance of the output node, as
indicated in Figure 1.9. This operation does consequently incurs no energy drawn from
the power supply voltage. Therefore, given that a CMOS gate can transition up to a
times during a clock cycle, the average energy consumed per cycle can be expressed as
shown in Equation (1.2).

1
Eecyele = g xax Cr, * Vd2d (1.2)

The power dissipation of a CMOS gate is usually defined as the rate at which the
energy is transformed into heat. Hence, assuming that the CMOS gate operates with
a clock frequency f, the average power dissipated by such a node is given by Equation
(1.3).

denamic = Ecycle * f

= %*C’L*Vfd*a*f (1.3)

It follows immediately from Equation (1.3) that the dynamic power consumption of a
CMOS gate is independent of a transistor characteristics and sizes. What is determinant
for a power consuming transition to take place at the output node of a CMOS gate are
the values at the input node voltage and the rate at which these values are changing.
Hence, the dynamic power consumption is fundamentally dependent on a program input

CMOS Power consumption basics 45

. n—diffusion

. polysilicon D channel

Channel width (W)

current flow

Channel length (L)

Figure 1.10: n-MOS transistor layout.

data pattern, and can therefore be managed at the software level, as we will demonstrate
later in this thesis.

1.3.1.2 Static power consumption

CMOS transistor basics Let us first proceed to a description of the basic functioning
of a CMOS transistor before going more deeply into the root causes of static power
dissipation.

A CMOS gate, as that shown in Figure 1.8 or Figure 1.9, is composed of a com-
bination of n-channel (lower part) and/or p-channel (upper part) transistors. Figure
1.10 shows the layout of such an n-channel transistor. In general, either n-channel or
p-channel transistor is composed of three main terminals, as depicted in Figure 1.10.
These are the drain, the gate, and the source.

Conduction usually occurs between the drain and the source terminals via a channel.
This conduction is controlled by applying a base voltage at the gate terminal which then
causes some charge carriers to be attracted at the other terminal end, thereby enabling
current flow between the drain and the source terminal. This current flow is made
possible by isolating the gate terminal from the conducting channel by a thin layer of
gate oxide, as shown in the figure. Applying a voltage at the gate produces an electrical
field that then influences the current flow. Note that, depending on the electric field
that is applied on the gate, the direction of the current flow can be reversed, e.g. from
source to drain.

Generally, the voltage that is applied at any terminal is measured relative to the
source terminal. We call the threshold voltage, denoted by V;;,, the voltage applied at

46 Background

-V =3V
GS th
Iy
-V =2V
GS th
Linear ESaturation
region region Vbs

Figure 1.11: Ip as a function of Vg, Vi, and Vpg.

the gate-source terminal, denoted by Vg, at which current begins to flow between the
drain and the source. This current is called the drain current, denoted by Ip, and is
strongly dependent on the quantity Vigg — Vi, i.e. the amount by which the gate-source
voltage exceeds the threshold voltage, as shown in Figure 1.11. Since the gate terminal
is assumed to be isolated from the rest of the device, once the gate has been brought to
one of its polarities, i.e. charged or discharged, no current is supposed to flow between
the drain and the source terminal, meanwhile; hence, no power is consumed, ideally.

Effects of subthreshold leakage Subthreshold leakage effects arise for small values
of the drain current Ip, i.e. values induced by channel voltages which are below the
threshold voltage required for conduction. Under this voltage threshold, a current still
leaks through the transistor, between the drain and the source, although the transistor
is turned off. This leakage current draws a static power that is proportional to the
power supply voltage V4, as indicated in the Equation (1.4).

Pstatic = Vdd * Ileak (14)

The leakage current [..x is closely related to some transistor characteristics such
as its width, its length, the device operating temperature, and many other parameters.
However, the most important property of the leakage current is given by its relationship
to the threshold voltage Vi, as it is expressed in Equation (1.5). In this equation, W
and L are the transistor width and length, Is a constant current and V; the thermal
voltage [47].

W Vi
Deak ~ -~ * Is x e™'r (1.5)

CMOS Power consumption basics 47

6 Vi
5 [il
)
T4t
g - Via = Vi -
K
3.
1 L th - |
0 1] 1 1 | 1 |

14 10 08 06 .35 .25 .18
Technology Generation (um)

Figure 1.12: Trend in power supply and threshold voltage scaling.

It can be seen from Equation (1.5) that the leakage current grows exponentially with
decreasing threshold voltage. This has a drastic consequence on power consumption
since the static power increases linearly with [j..;, as shown in Equation (1.4). The
continuous reduction of the threshold voltage is to be put on the account of the process
scaling which is at the forefront of the Moore’s law. In fact, as the technology continues
to shrink, the power supply voltage must also be reduced in order to maintain the
dynamic power consumption within an acceptable level. It is this reduction of the
power supply voltage that motivated designers to lower the threshold voltage in order
to provide sufficient noise margins to ensure a reliable functioning of the CMOS device.
This effect can be clearly illustrated in Figure 1.12, where we plotted trends for the
power supply and the threshold voltage scaling!. In Figure 1.13, we also have indicated
current trend for the dynamic and the static power consumption as technology is scaled
down to 0.18 um. As shown in the figure, the trend for the static power consumption
is closely nearing that of the dynamic power as we move toward narrower process sizes.
It is even expected that below 0.07 pum, the leakage power consumption will represent
as much as 50% of the total chip power consumption [99].

1.3.2 Power metrics

Many metrics have been proposed in the literature [19] that serve as a measure of the
power-efficiency of a system. Choosing the right one that is best appropriated to a
particular purpose is of a crucial importance since each metric is usually associated
with a precise meaning regarding the energy, the power and/or the performance.

When deciding among two alternative optimizations, that which dissipates the less

!The values in Figure 1.12 and Figure 1.13 are adapted from [106]

48 Background

L dynamic power
10"

§ 10° - B

=~ 107 |

- 102 |

@

3 10° |

(o]

o WL '/./
10% [static power
104] 1 I L I

1.0 0.8 0.6 .35 .26 .18
Technology Generation (um)

Figure 1.13: Dynamic power and static power consumption trends.

energy, power is usually the best available metric. Power is defined in Watts, and
it measures the rate at which energy is dissipated. Power is often used in various
circumstances to describe different things. The peak power, for instance, is essential
when reliability or packaging cost is of concern. This is dictated by the fact that a high
peak power may reduce the lifetime of processor components and cause failures. The
average power, on the other hand, is a metric that is often used to measure the average
energy required to execute a task over a given time. It is useful for estimating battery
life, for example. These power metrics can be however very misleading if performance
has to be taken into account. The main reason is that power rises linearly with the
clock frequency. Slowing down the clock speed may then reduce power, but it might
also impair performance. In this sense, power is usually not effective for measuring the
energy-efficiency.

The energy per operation, %, is another metric of the power-efficiency. It defines the

energy required to execute an operation and it is measured in %. The term operation
may take various appellation, ranging from an instruction to a complete program run.
Relative to power, this metric can also be expressed in terms of C PI x W. Because of
this latter expression, this metric is also called the power-delay product. Since power
and performance are bound to one common expression, this metric is very effective to
measure power-efficiency. It has however some limitations. Namely, it cannot be used
as a measure of goodness of power-efficiency whenever voltage scaling is applied. This
is mainly because, since the clock frequency is approximately linear in Vg4, as indicated
in Equation (11), a reduction of the latter may slow down program as a consequence of
lowering the former. Hence, this metric is not adapted for designs that use a form of
voltage scaling. On the other hand, however, this metric is very appropriate for cases
where frequency or activity variations are considered as levers of power reduction.

CMOS Power consumption basics 49

best tradeoff point
according to a maximum
performance degradation

power /performance curve

e —

Figure 1.14: Power/performance tradeoff.

Another approach to consider power and performance simultaneously is to have these
values plotted into one curve in a plan. Potentially, there are many ways of realizing
this. One such alternative is to simply consider a given performance threshold, and
then selecting a corresponding point in the plan with power estimates that best meet
the performance constraints. We have illustrated this in Figure 1.14. Among the various
points of the power/performance curve which represent each one an alternative design
choice, that which is highlighted in the curve corresponds to the best tradeoff point that
meets a given performance constraint. Another alternative consists of considering the
product of the energy and the performance [40], as it is shown in Figure 1.14 under the
name energy-delay. This last metric is practical for designs that consider varying power
supply voltages since the effect of scaling the voltage on the performance can be easily
monitored by the product of the energy savings and the obtained performance gain.

Depending on which parameter is subject to change, e.g. activity variation, fre-
quency or voltage scaling, we will always consider one of the last three metrics as a
measure of the power-efficiency throughout this thesis.

1.3.3 Power modeling and evaluation

Power can be addressed at various abstraction levels of the design hierarchy, including
the circuit level, the transistor level, the architecture level and the system level, as
indicated in Figure 1.15. At each abstraction level, there have been numerous works
that have tackled the problem of estimating the power consumption of a system. In
general, the lower is the level at which the power analysis is performed, more accurate
are the obtained results. In contrast, a higher energy saving is expected to be gained
from a top down analysis approach. In this section, we only consider analyzing power

50 Background

Accuracy
A System
Architecture
Gate
Circuit V
Savings

Figure 1.15: Power analysis levels.

consumption at the upper two levels of the design hierarchy shown in Figure 1.15. We
do not particularly take care about the energy results accuracy that one can have at
these levels. What matters, according to us, is that power-efficient decisions can be
easily taken when choosing among alternative implementations.

1.3.3.1 System-level

In order to estimate power at the system-level, a model for the power consumption of
a program must be provided. One such model is given by an instruction-based power
modeling approach [108, 93, 14, 63]. Basically, instruction-level power models rely on
the fact that the power consumption of a program can be computed as the sum of the
energy dissipated by each instruction of the program as it proceeds through execution.
To do so, a processor power model associates to each ISA instruction an empirical
energy cost. This cost can be determined in one of several ways, among which are
direct current measurements, HDL simulation at the granularity of functional blocks, or
gate level simulation. When attributing a per-instruction energy cost, some important
considerations must be taken into account. First, there is usually a per-instruction
energy cost which is independent of an instruction execution context. This energy
base cost accounts for the processor overhead and therefore excludes any energy cost
associated to a stall in the pipeline or a data or instruction cache miss. Last, a per-
instruction energy cost can also strongly depend on a prior processor state which has
resulted from a prior instruction execution context. This inter-instruction effect, also
called circuit state effect following the terminology adopted by Tiwari et al. [108], can
model various things such as the switching activities on the bus and on the control lines
for example. Some instruction-based power models also extend their scope to provide

CMOS Power consumption basics 51

power estimations of the whole system by including base energy cost for accessing off-
chip components such as caches. This is for instance the case of the instruction-based
power model proposed in [14].

1.3.3.2 Architecture-level

The impact of applying a given optimization on the energy can also be evaluated at
the compiler level by means of relying on detailed architectural power models. This
may help providing in-depth understanding of the impact of a given optimization on
the various components of a processor system.

Processor core Micro-architectural power models are largely dependent on processor
architectural simulators since they rely on these latter to provide overall power consump-
tion estimates. Basically, an architectural processor simulator provides detailed analysis
of the different processor components that are accessed during a cycle. This information
can then be incorporated into a power model to provide a per-cycle power estimates of
the system. The precision of the power estimates depend on the analysis details of the
processor simulator as well as on the power model used to describe the different pro-
cessor structures. As for example, estimating the dynamic power cost associated with
a given processor unit accessed during a cycle is usually found with Equation (1.3).
Whereas Vj; and f can be determined relatively easily assuming a given technology
parameter, estimating the values of C for each of the different processor components is
very complicated since this may depend on various parameters such as circuit complex-
ity, transistor sizings, etc. This makes the power evaluation very dependent on the level
of analysis used to describe each processor constituent. Examples of micro-architectural
power simulators that use this approach are Wattch [20] and SimplePower [112]. These
two simulators are based on SimpleScalar [22], which is an architectural processor sim-
ulator that keeps track of the different units that are accessed during each execution
cycle.

Memory components Memory components (e.g. DRAM, caches, registers, or buffers)
represent a significant fraction of the power consumption of a processor system. For
this reason, many studies have devoted them much attention in the past decade. The
approach for modeling power on these components proceeds similarly to that used for a
common processor structure. Based on a given memory configuration, an architectural
simulator provides detailed timing analysis for the different memory constituents (e.g.
SRAM cells, wordlines, bitlines, comparators, sense amplifiers, decoders, etc) that are
exercised as an access is made to the component. A power model can then be associ-
ated with each of the different memory constituents to evaluate the power consumption
of the accessed memory component. As previously stated, the accuracy of the power
results depends on the analysis details used to model the different values of the capaci-
tative load C, as illustrated in Equation (1.3). The CACTI tool [98] implements such

52 Background

an approach and provides detailed timing, power and area estimates for parameteriz-
able cache memory structures. It can also be modified to model register files as well as
buffers or queues.

So far, we have only considered modeling the dynamic power consumption of pro-
cessor or memory structures. This is warranted since dynamic power consumption
contributes for the largest fraction of the total power consumption, at least for current
technology generation. However, this is not guaranteed to hold for future technology
generations, where the gap between the dynamic and the static energy is becoming nar-
rower, as we have already noted it in Section 1.3.1.2. Therefore, modeling the impact
of the static power consumption has since evolved as a hot topic of research. In this
sense, a recent proposal by Butts et al. [23] evaluates the static energy at the architec-
tural level by capturing the effects of technology and design parameters into a relatively
simple formula as shown in Equation (1.6).

Pstatic = Vdd * N * kdesign * Ileak: (16)

In this equation, N denotes the number of transistors in the modeled circuits,
whereas Kgesign is a circuit dependent parameter that captures effects such as tran-
sistor sizings, number of switched off transistors, etc. Recently, [118] has proposed
an evaluation tool, called Hotleakage, that built on an improved version of the static
power model of [23]. This evaluation tool is interfaced with SimpleScalar to provide
static power estimates for various processor components. It also integrates CACTI to
provide static power estimates for the various cache constituents. As such, it can be
easily extended to feature register files as well as other memory components.

1.4 Power-efficient compilation opportunities

We are now better armed for comprehending in more precise terms the thorny problem
of power reduction of modern processors. From what has preceded in Section 1.3, the
power consumption of a processor is amenable to two principal components. Namely,
the dynamic and the static power consumption, respectively modeled by Equation (1.3)
and Equation (1.4). Let us combine these two equations into a single one to provide a
general expression for the power consumption, as shown in Equation (1.7).

1
Piotal = 5 * Cp+ Vi xax f+ Vig* Dear (1.7)

The activity factor a and the frequency f can be combined together to provide
an effective activity factor @« = a % f. In this case, a models the effective switching
frequency, i.e. up to a number of switching transitions occur at a data rate of f. This
is the effective rate at which dynamic power is dissipated. A new expression for Pi,q;
can then be given by Equation (1.8).

Power-efficient compilation opportunities 53

1
Piotar = 3 * Or % V& * a+ Vag * Diear (1.8)

We have stated that the effective activity factor « dictates the rate at which dynamic
power is dissipated. Recall again from Section 1.3.1.1 that dynamic power is consumed
principally as a result of a charging/discharging operation that takes place at the output
node capacitance Cr. Hence, in absence of a charging/discharging of the capacitative
load, no dynamic power is supposed to be dissipated. Therefore, we can define the
effective capacitance C.rs as the average capacitative load that is charged/discharged
during each data rate f, yielding

1
Cepf = §*C’L*a (1.9)

The new expression for P, can then be rewritten as

Ptotal = C’eff * Vd2d + Vdd * Ileak (110)

Viewed from a compiler standpoint, it follows from Equation (1.10) that the different
power levers on which one can act in order to obtain an energy savings reduce to Ceyy
and Vzg. This means that either one of the voltage or the effective capacitance scaling
techniques will be effective in achieving some energy savings.

Voltage scaling goes against the performance objectives followed in this thesis as far
as dynamic power consumption is concerned. Since we are looking for power-efficient
solutions that tend to preserve performance, we will then favor effective capacitance
scaling techniques to attack the problem of reducing dynamic power. This leads us at
least to one practical evidence. Namely that activity reduction techniques have a signif-
icant potential for effectively reducing dynamic power consumption. The primary goal
of this thesis is therefore to focus on compiler-controlled mechanisms that can achieve
a high level of activity reduction, e.g. compiler-controlled processor reconfiguration or
adaptation. Since this activity reduction directly turns out into dynamic power reduc-
tion, we expect to gain some energy savings while still providing acceptable performance
levels. The range of techniques addressing this reduction of activity is very large. We
will thus tackle only a small subset of them throughout this thesis. In particular, we
will lay emphasis on the processor core (Chapter 2), the cache subsystem (Chapter 4),
and the processor datapath (Chapter 5).

On the other hand, voltage scaling accommodates well to the objectives of static
power reduction when regarding performance. In fact, since static power is dissipated
even when no activity is observed, we can apply any of the voltage scaling techniques on
the unused portions of the chip to reduce static power; thereby preserving performance.
Therefore, keeping in mind this fact, we will selectively conjugate activity reduction
techniques with voltage scaling techniques to achieve reduction of both the dynamic
and the static power. This is addressed in the Chapter 4 and the Chapter 5, when
looking at the cache subsystem and the processor datapath, respectively.

54 Background

1.5 Summary

This chapter has introduced some fundamentals of VLIW machines. We have described
the architecture of VLIW machines and explored techniques usually deployed to exploit
instructions parallelism at compilation time. A deep understanding of power consump-
tion has also been provided to acknowledge the problem related to the power dissipation
in VLIW processors. We have motivated the objectives of this thesis, which are located
around the power-efficiency problematic, and provided some research directions that we
will look into in the remainder of this thesis. Notably, we have highlighted two main
directions associated with the reduction of switching activity and voltage scaling. The
next chapters will then address each of these issues in a more precise manner.

Chapter 2

Low-power ILP compilation issues

Modern processors rely heavily on instruction level parallelism (ILP) techniques to
achieve high performance. With statically scheduled VLIW processors, this is capi-
talized by the duplication of functional units that provide support for the concurrent
execution of multiple instructions. On these machines however, the main challenge
essentially lies on the compiler which is in charge of finding enough instructions to
fully utilize the underlying hardware parallelism. For this purpose, many optimizing
VLIW compilers are built with sophisticated ILP transformation techniques such as
superblocks [49], trace scheduling [36], and hyperblocks [68].

These techniques are based on the principle that a larger scheduling scope unit is
formed as the result of merging several basic blocks into a single one. While these tech-
niques undoubtedly improve ILP, their impact on the energy consumption is mitigated
by the increase in the total instruction count they usually cause. On embedded systems
where a large portion of the dissipated energy emanates from unning programs [107], an
increase in the energy consumption can have a dramatic impact on the system energy
efficiency.

Common approaches used to tackle these issues at the software level rely heavily
on performance optimization, following an unstated rule that energy consumption is
roughly proportional to the total execution time. This however neglects the effects of
computational and architectural overhead, which mainly result from wasted computa-
tion and the diminishing performance returns of incrementally applying some optimiza-
tions.

This chapter explores the energy-delay tradeoff of applying ILP optimization tech-
niques on a statically scheduled VLIW processor. Our goal is to develop a theoretical
understanding of the main energy issues involved in ILP transformation techniques. To
this aim, we developed an analytical energy-efficiency model to investigate the issues
between energy and performance. The model capitalizes on the fact that monitoring the
variations in program performance can be achieved on many modern processors through
some form of prediction mechanism or profiling at the software level. We exploit this

55

56 Low-power ILP compilation issues

approach to show that there exists a threshold above which optimizing for ILP may turn
into diminishing energy reduction returns. We translated these results into heuristics to
measure the energy-efficiency of ILP transformations on a set of embedded applications.

The remainder of this chapter is organized as follows. In Section 2, we define the
metric we used throughout this study. In Section 3, the energy model of a VLIW-core
processor is introduced, followed by the analytical model for the energy-efficiency. In
Section 4, an hyperblock formation case study is presented and evaluated. Section 5
discusses previous work and Section 6 concludes.

2.1 Power/Performance evaluation metric

We consider the energy-delay product [40] to define another equivalent metric; the ratio
performance-to-energy (PTE) that we use to compare two different instances of an
application at the software level. In comparing instances of the same application, the
PTE ratio attempts to measure the need of increase performance against low energy.
The PTE ratio is expressed as the inverse of the energy-delay product as shown in (1).

1
PTE — _ Per formance

= 2.1
Eop x Cyclegy Energy (21)

The advantage of the PTE ratio expressed above is that, given an energy budget, one
can look at different performance values that potentially improve the PTE ratio without
worsening the energy. In this way, we can focus on the range of values that optimize
the energy-delay product with a given target. This approach can serve compilers since
it does not rely on special hardware support. We only need to track the changes in
processor performance. This however can be mastered in a relatively easy manner at
the software level.

2.2 Energy-efficiency analysis

This section first introduces the VLIW-core energy model that serves us as a foundation
for the energy-delay tradeoff exploration. Then, at the end of this section, we discuss
the theoretical model developed to allow compile-time energy-delay evaluation of the
applied ILP transformation.

2.2.1 Energy model

We use a VLIW-core energy model [14] that features an embedded VLIW processor
capable of issuing up to N parallel operations in a very long instruction called a bundle.
In this model, the energy, EPB, dissipated by the execution of a bundle w,, is modeled
as follows:

Energy-efficiency analysis 57

EPB,, =E.+IPCy, Eop+m-p-Es+1-q- Epss (2.2)

In (2.2), E. refers to a constant average energy base cost, IPC), is the number of
operations different from NOP in the bundle, and E,,, is the average energy consumption
associated with the execution of an operation. Note that, in contrast to superscalar
processors, a VLIW processor does not provide aggressive architectural features [80]
such as rename and wakeup logic, which otherwise should have largely contributed to
increase the energy consumption per operation. In such a case, we could expect the
average energy consumed per operation (E,,) in a VLIW processor to be roughly the
same for almost all operations, not counting operations involving a memory access.
This is however not exactly true, since the circuit state effect [107] due to the switching
activity on the bus may make the energy base cost of one instruction higher than
expected.

The third expression in (2.2) refers to the additive energy consumption due to a
miss event on the D-cache, where m is the average number of additional stall cycles per
bundle due to a D-cache miss, p the probability that a D-cache miss occurs, and F; the
core energy consumption during a pipeline stall. The fourth expression is related to the
I-cache misses, where [is the average number of additional NOP operations per bundle
introduced during a I-cache miss, ¢ the probability per bundle that this event occurs,
and E,,;ss the energy consumption of the core during an I-cache miss.

Some dynamic program behaviors can not be easily captured at compile time. This
includes for instance the data or instruction cache miss count. In order to simplify the
above model without loosing to much accuracy, we restricted the study on computation-
intensive program regions, e.g loops. The above model can therefore be simplified,
namely by neglecting the impact due to the I-cache misses. This consideration is indeed
true as long as the undertaken ILP transformations do not increase the size of the loop
region in such a way that it overwhelms the I-cache. The energy model described in
(2.2) can then be rewritten as follows:

EPB,, = E.+IPC,, - Egy+m-p- By (2.3)

We also assume for this study that the presumed machine model does no prefetching.
This is necessary to exclude the unpredictable effects of prefetching on the data cache
which can impact performance and energy, thereby biasing the analysis. On some
machine, a compiler option is sometimes provided to disable prefetching. We assume
this is the case for the rest of this study.

2.2.2 Cost model

In order to estimate the energy consumption impact for an ILP transformation at the
compilation level, we express the PTE ratio as a function of both the energy and the

58 Low-power ILP compilation issues

performance. For the rest of this study, we consider the smallest scheduling scope
granularity to be the basic block. We then obtain an expression for PTE as shown in

(4).

1 I1PC

PTE = =
EBB X C’ycleBB N x EBB

(2.4)

N and IPC represent the number of operations contained in the basic block and
the average number of operations executed in each bundle respectively. The basic block
energy term Epp in (4) can be decomposed as the sum of the energy required to
execute an instruction stream of n consecutive bundles. This can formally be expressed
as follows:

n
Epp=f-Y EPB;
=1
=f-n-(Ec+ Eyp - IPC)+5- E; (2.5)

In (5), 5 is the average number of stall cycles due to data cache miss in the basic
block, whereas f represents the basic block execution frequency. If we consider a coarser
granularity, the energy consumption of a region R composed of m basic blocks can be
modeled in a similar manner, as shown in (6).

m
Er = Z Eps,
i=1

=m- fp MR (Ee+ Eop - IPCR) + 35 - Es (2.6)

In (6), fr and Ty are the average execution frequency and the average number of
bundles of the region R respectively.

Recall that the rationale behind the PTE ratio is to lay emphasis on the range of
performance values that improve the energy efficiency. This is necessary to compare
program instances corresponding to the states before and after an ILP transformation.
Therefore, the I PC' term of the PTE ratio can be viewed as a kind of gear mechanism
for energy regulation purpose. In this way, we can keep track of the IPC values that
improve the energy efficiency and then only select those candidate regions that lead to
this I PC' improvement. Then, given a candidate region R composed of m basic blocks,
we call a particular ILP transformation function, Fj;,, energy efficient if the PTE ratio
of the resulting ILP block H is such that PI'Ey > PTEpg. The inequality can be solved
at IPCy to yield a new inequality shown in (7).

IPCy > Filp(IPCR) (2.7)

Energy-efficiency analysis 59

The expression for Fj;, is equivalent to

A-TPCh

Fuy(IPCr) = 55 Tpes

with

A= fug-Ng-nyg-E.+ Ny -57 - Es
{Bm.NR~f_R~ﬁ~EC+NR~§.ES (2.9)
C=(m-Ng-fr-Tg— fu-Nug-ng)- Eop
The process of evaluating the above transformation function requires to characterize
the candidate region R as well as the target ILP block H as indicated by the substitution
variables B and A of the function Fj,,. This latter variable is however not obvious to
determine, since it requires that we know in advance what the target ILP block H will
look like. This is mainly due to the fact that several transformations may be applied
on the resulting ILP block as a side-effect of some ILP-based optimizations, causing
the number of bundles and executed operations to vary. At this stage, we therefore
anticipated the formation of the ILP block by integrating a region ahead scheduling
pass to predict the characteristics of the target ILP block, yielding a rough indication
of the ILP block parameters.

2.2.3 Tradeoff analysis

We have studied the energy-delay tradeoff in terms of the amount of ILP needed to
compensate for an increase in the energy dissipation. The increase in energy is measured
as the additional overhead and/or wasted energy. By wasted energy we mean essentially
the energy dissipated due to the execution of needless operations. Such operations result
from if-converting basic blocks along the taken and the not-taken paths of a branch
instruction. These operations consume extra resources since the processor still have to
fetch, decode and execute them, although no machine state change is guaranteed to
occur. In the ILP transformation function Fj;,, the wasted energy can be termed by the
variable C'. As one can observe, the wasted energy is proportional to the product of the
average energy per operation and the dynamic operation count difference between the
candidate region and the target ILP block. This operation count difference constitutes
the extra operations executed by the processor. We can analyze the effect due to the
execution of these extra-instructions under 3 different aspects.

Case C' > 0. In this case, we can expect the amount of wasted energy to be neg-
ligible, because the executed extra work is marginal. Obviously, this case corresponds
to the optimal execution scenario. Typically, the condition C > 0 is true when the
value of the ILP block term is quantitatively less than that of its corresponding original
schedule. This may be primarily a consequence of the fact that applying some types
of optimization on the resulted ILP block may produce more impact in terms of re-
duction of the number of operations Ny and static scheduled length ny compared to

60 Low-power ILP compilation issues

case2

casel

IPC R

Figure 2.1: Shape of the curves corresponding to the cases C' < 0, C' =0, and C' > 0 of
the inequality (7) for various values of IPCy and IPCR.

its original schedule. Examples of such optimization may include instruction merging
and instruction renaming which respectively reduces the number of operations Ny and
diminishes the impact of dependence height by allowing instructions to be scheduled
earlier, thereby reducing the static scheduled length ny. The class of energy-efficient
solutions for which the transformed block yields the best energy-delay tradeoff lies above
the curve labeled casel in Figure 2.1. In this figure, it can be seen that the curve has a
logarithmic shape. This indicates that the probability to get some values of I PC'r that
will feet well to the inequality (7), providing lower values for Ny and ng, is high.

Case C' = 0. In some extent, this case can be assumed to be similar to the previous
one because there is no additional extra computation than what is required for the nor-
mal computation. However, at equal schedule length and/or operation count, deciding
on the energy-efficiency of the transformation is not as straightforward as it seems to be.
Some energy side effects may render the ILP block less energy-efficient than its original
schedule. A typical situation is when the circuit effect in the transformed ILP block is
no longer negligible. This may be principally due to the inter-instruction effects in the
new resulting schedule. If the compiler can evaluate this impact, the decision can be
made simpler. If we consider this circuit effect to represent a given fraction of the ILP
block energy, we can then expect the set of solutions for which the ILP transformation
function yields a good energy-delay tradeoff to be at a corresponding distance above
the curve labeled case 8 shown in Figure 2.1.

Case C' < 0. In this case, the amount of wasted energy is no longer negligible
because the extra computation cost start to be the dominant factor. In the variable
C, this is reflected by the fact that the value of the ILP block term is quantitatively
higher than that of its corresponding original schedule. In another words, it means
that the values of Ny and ny increase non-linearly with respect to their corresponding
values in the original schedule. There are many scenarios which can potentially lead
to degrade the values of Ny and/or ny. Consider the case of a dependence height
mismatch. The static scheduled length ny may increase as a result of lengthening the

Case study on hyperblocks 61

execution time of the taken path, thereby offsetting the ILP benefit by degrading the
average energy consumption of that path. In a intensively executed loop region, this
may not be negligible at all. Consider again a machine with scarce resources, e.g one
memory port as in our machine model. The resulting schedule length ng may also
increase if resource contention becomes an important issue when paths are overlapped.
On the other hand, the increase of the instruction count Ny is more concerned with
the amount of compensation code that is introduced in order to repair the effect of
the elimination of branch instructions. These effects, combined with the fact that
applications usually show not enough available parallelism [79], can rather turn the ILP
benefit into additive computation cost and therefore increase energy consumption. This
scenario is illustrated in Figure 2.1, in the curve labeled case 2. The exponential shape
of the curve demonstrates that the range of energy-efficient solutions which satisfies
the inequality (7) is quite small because IPCy grows exponentially with increasing
IPCFg. This means that, for an ILP transformation to be energy-efficient given a value
of I PCR, the transformation function should yield a value for I PC'yy which is above the
aforementioned curve.

The energy overhead is principally due to the processor core activity, independently
of the execution context of a bundle. It is therefore directly related to the architec-
tural implementation cost of the processor. Because of its tight relation with the pro-
cessor implementation, the energy overhead is difficult to evaluate without a detailed
architectural-level simulator. We can however have a theoretic rough estimate of its
impact if we again consider the transformation function Fj;,. Under optimal data cache
conditions, the curve of the ILP transformation function has an asymptote which is

proportional to the ratio go;, as shown in (10).

__lim (LPCL) _p e (2.10)
TPCr—o00 B+ C -IPCg Eop

If this ratio is made too large (higher E. values), then the function quickly converges
near the asymptote as I PC increases. Therefore, the range of energy-efficient solutions
that satisfies the inequality (7) (values above the curve) is also expected to narrow
as we gradually move towards larger I PC' values. Smaller values for the ratio are
therefore preferable in order to keep the range of feasible energy-efficient solutions within
reasonable I PC' values.

2.3 Case study on hyperblocks

This section analyzes the energy issues involved by constructing hyperblocks. We first
introduce the hyperblock framework model used throughout this chapter. Then, based
on the previously discussed energy model, a set of heuristics is proposed to drive the for-
mation of energy efficient hyperblocks. Finally, an evaluation of the proposed heuristics
is provided at the end of this section.

62 Low-power ILP compilation issues

Idw r14 = 20[r12) Idw r14.1 = 20[r12.0]
cmplt b0 =r14, 50 cmplt b0.1 =r14.1, 50
ldw r15 =16 [r12] ldw r15.1 = 16 [r12.0]
brf b0, L1 brf b0.1, L1
add r15=r15, 2 addr15=r15,1 addr152=r15.1, 2 addr155=r151,1
sh2add r14 = r14, tab0 sh2add r14 = r14, tabl sh2add r14.2 = r14.1, tab0 | | sh2add r14.4=r14.1, tabl
Idw r14 = 0[r14] ldw r14=0{[r14] ldw r14.3=0[r14.2] ldw r14.5=0{r14.4]
add r15=r15, r14 addr15=r15,r14 addr153=r152, 1143 add r15.6=r155,r14.5
gotoL2 gotoL2
Figure 2.2: Original CFG. Figure 2.3: CFG in SSA.

|

Idw r14.1 = 20[r12.0]
cmplt bO.1 =r14.1, 50
Idw r15.1 = 16 [r12.0]

add r15.2 =r15.1, 2
sh2add r14.2 = r14.1, tabO
ldw r14.3 =0 [r14.2]

add r15.3=r15.2,r14.3

add r15.5=r15.1, 1
sh2add r14.4 = r14.1, tabl
Idw r14.5 = O [r14.4]

add r15.6 =r15.5,r14.5
slctf r15.7 = b0.1, r 15.6, r15.3

l

Figure 2.4: if-converted CFG.

2.3.1 Hyperblock framework model

We assume a guarded instruction model that relies on the use of a select instruction.
The format of the select instruction is as shown below:

sletf dest = cond, srcl, src2

The slctf instruction writes the value of srcl into dest if cond is 0, otherwise src2
is written into dest if cond takes the value 1. In this model, the predication process
goes through 2 steps. In the first step, the candidate basic blocks are selected for if-
conversion. In the second step, the if-converted region is formed by eliminating the
branch instructions and then inserting the appropriate select instructions into the code
whenever there are more than one definition of the same register that flow into the
resulted if-converted region. This last step puts a strong emphasis on the register
names, requiring that each register be uniquely named throughout the program. Prior

Case study on hyperblocks 63

to if-conversion, the original CFG is therefore transformed into a SSA [30] form to
guarantee the uniqueness of each register name. This is illustrated in Figure 2.2-2.4.

The limited predication scheme presented above differs from the one presented in
Section 1.2.3 of Chapter 1 in that we do not allow an hyperblock to contain multiple exit
points or branches. Therefore, the regions to be considered for inclusion in a hyperblock
consist solely of set of consecutive basic blocks or hammocks. An hyperblock in this
framework is thus akin a large basic block of predicated instructions with single entry
and exit points.

2.3.2 TUnderstanding the energy issues

We consider the inequality (7) as the main heuristic for deciding whether or not to
transform a set of candidate blocks into a hyperblock. In order to address the cost-
effectiveness of applying such a transformation, we also consider a profit heuristic. We
define the profit of performing a transformation as follows:

PTEtransformed - PTEoriginal

Profit =
f PTEoriginal

(2.11)

The profit is used to weight the gain of the transformation. To this end, the profit is
compared against an arbitrary threshold value which puts a minimal bound on the po-
tential gain required to effectively complete the transformation. The hyperblock trans-
formation process traverses the nodes of the loop tree in postorder to insure that inner-
most loops are processed first. Then, for each loop, candidate regions for if-conversion
are selected and sorted from the innermost to the outermost to guarantee that no region
is transformed that contains a nested non-if-converted region. Thereon, each region is
checked against the if-conversion test, i.e the inequality (7) in the model. This step is
preceded by the region ahead scheduling pass from which the target hyperblock char-
acteristics are extracted. The profit of the transformation is then evaluated against
the threshold value if the if-conversion test succeeds. In order to capture the global
effect of the transformation on the program, the profit is also evaluated at the CFG
level. Each region is then annotated with its potential gain. The region that exhibits
the highest gain is selected for if-conversion. The CFG is then immediately updated to
reflect this new change and the profit for each region is anew computed until no more
change occurs. This guarantees that the performance and the energy are globally well
balanced.

2.3.3 Application on the Lx VLIW processor

In the following subsections, we present an evaluation of the hyperblock formation
heuristics described above. We first introduce the evaluation platform and the simula-
tion methodology used. Then, at the end of this section, we present and discuss our
experimental results.

64 Low-power ILP compilation issues

2.3.3.1 Platform and simulation methodology
Simulation platform

Our simulations were carried out on the Lx platform [35]. The Lx platform belongs to
a family of customizable multi-cluster VLIW architectures. The implementation used
in this study features a 4-issue width processor in which each cluster is composed of 4
ALUs, 2 multipliers, 1 Load/Store and 1 Branch unit. The register bank in each cluster
includes a set of 64 32-bit general purpose registers and 8 1-bit branch registers to store
the branch condition, the predicates and the carrys.

Simulation methodology

The Lx platform is provided with a complete software tool-chain, where no visible
changes are exposed to the programmer. The tool-chain includes, among other things,
an aggressive ILP compiler, called the Lx compiler. We used this Lx compiler to gener-
ate an input assembly prior that any aggressive ILP transformations are been performed
onto the code and to run a Lx binary executable. This optimization level actually cor-
responds to the stage where all traditional scalar optimizations have been undertaken.

The extracted assembly code is then processed by SALTO [16] and ABSCISS [3].
SALTO is a general, compiler-independent tool that makes the manipulation of the
assembly code at the CFG level easier. SALTO is also machine independent and can
be parameterized to feature a specific target by providing it with a machine description
file. We use SALTO essentially to modify the input assembly code by adding new
compilation passes. In particular, we added two new passes: a hyperblock formation and
optimization pass and a list-based scheduling pass that produces the final assembly code.
Currently, the hyperblock optimization pass comprises instruction renaming, instruction
merging and instruction promotion. Prior to SALTO, the input assembly code is first
processed by ABSCISS, which is a SALTO-based compiled simulator. ABSCISS is
mainly used to profile the assembly code at the basic block level and annotate it with
runtime informations including the data miss count and the execution frequency.

The machine specific simulation parameters E., E,,, and E; were obtained directly
from [14], where the authors also provided a validation of the energy model used in this
chapter for a simulation platform that is similar to ours. According to the authors [14],
one must count with an error range that approaches an average of 5.2% compared to
the real RTL power estimates.

2.3.3.2 Results

We realized our experiments on a subset of the Powerstone benchmarks [95]. The
selected benchmarks were chosen according to the amount of hyperblock formation
opportunity found in them. The characteristics of the selected benchmarks are shown

Case study on hyperblocks 65

Benchmarks Description region representativeness
adpcm coder voice encoding 45%
adpcm decoder voice decoding 43%
bffo implementation of find first zero 59%
des data encryption 38%
g3fax fax decoding 33%

Table 2.1: Benchmarks description.

in Table 2.1. The last column in the table gives the percentage of basic blocks contained
in the candidate regions compared to the total number of basic blocks in the CFG.

The energy-delay values are presented in Figure 2.5 (top left). Each bar in the figure
corresponds to the original CFG, the CFG with the hyperblock formation heuristics
and the CFG in normal hyperblock form, respectively. We can observe from the figure
that, in almost all cases at the exception of the last one, the energy-delay product
has a better energy-efficiency when the energy heuristics are integrated as part of the
hyperblock formation process. On average, we observe an improvement of the system
energy-efficiency of more than 17%, which, given the same power consumption budget,
practically signifies that the autonomy period of a battery-powered system is lengthened.

These energy-delay values can be better understood by looking at the other results
presented in the same figure. In this figure, we plotted the values corresponding to the
static schedule length, i.e the number of cycles not counting the stall cycles due to the
Dcache and Icache misses, the total operation count and the resulted IPC. The static
schedule length and the total operation count aim at estimating the performance cost
of transforming a region into a hyperblock. We can indeed observe from the figure that
the energy-delay value of the hyperblock scheme is closely correlated with the increase
of the static schedule length and the number of executed operations. When the static
schedule length and the operation count of the hyperblock scheme are higher than their
values in the scheme with the integrated energy heuristics, the corresponding energy-
delay product is also not better. This is especially the case when the corresponding
increase in the IPC is not large enough to compensate for this, as shown in Figure 2.5
(bottom right figure). We observe this phenomenon by the adpcm coder, the adpem
decoder, the bffo and the des benchmarks where the IPC improvement only averages
9% for a total of 15% degradation of the static schedule length and less than 6% increase
of the total operation count. The main reasons why the static schedule length and the
total operation count increase are due to the effect of the dependence height mismatch
and resource contention on the one side, and the insertion of the select instructions on
the other side.

When the ILP transformation does not considerably degrade the static schedule
length and the total operation count, the energy heuristics act transparently to the

66 Low-power ILP compilation issues

Energy-Delay Static scheduled length
CFG CFG
10 F+ A A A tradeoff 10 A A A A tradeoff
hyperblock c hyperblock
)
g
E« 08 |- 5 08 |-
[0} o}
3 E
> T
5 06 |- 2 0.6 |-
g o s o
o o
4 =1
2 g
8 - o -
3 0.4 0 0.4
g
[
02 |- 02 |-
0.0 == —-— — — 00 M — —
3 & 3 8
: £ g2 8§ & e £ £ § &
g 5] 2 o % 3} o a o g
2 Qo o o
T T T
© 4 @ 5
Operation count IPC
12 CFG CFG
tradeoff 25 tradeoff
_ _ _ _ hyperblock ’ hyperblock
10 - 1
€
3 20 |
o 08 -
=4
9
g 0
= 15 -
S 06| =
o
g
E | 10 |
° 0.4
02 | 05 |
00 -——-—- — — 0.0 - - —
o 0 (] o 0
§ § 5 ¢ & E § 5 & 7
Q a = a a o
T T T T
4 4 @ @

Figure 2.5: Energy-delay (top left), static scheduled length (top right), operation count
(bottom left) and IPC (bottom right).

Related work 67

normal hyperblock formation process. This explains why the energy-delay values of the
last benchmark are nearly the same in both scenarios. Definitively, an integrated energy
heuristic can be used concurrently to the ILP formation process to prevent the compiler
from doing optimization when the application has reached a given IPC threshold. This
offers the opportunity to discriminate among optimizations that stress the ILP from
those that do the same, but in a less efficient manner.

2.4 Related work

There have been many works that have addressed the issues of reducing the energy /power
consumption on general purpose or embedded systems. Most of these works have how-
ever principally benefit the computer designer community. Until recently, many re-
searches have started focusing on software optimization techniques to provide an alter-
native solution to that problem. In [81], the authors present a study of the impact of
instruction scheduling on energy and performance. In this study, the authors highlight
the existing tradeoff between performance and energy by experiencing several list-based
scheduling algorithms. They arrive at the conclusion that most scheduling heuristics are
not energy-efficient and need therefore to be revisited. The methodology used consisted
in scheduling instructions in a DAG based on a energy cost table similar to the model
proposed in [108]. Similar work on instruction scheduling include the study by Lee et
al. [61] which reduces the total power dissipated by minimizing the switching activity
on the bus.

Other works which are closely related to ours include the study by [73] and [111].
In [73] for instance, the author proposes to rely on code profiling to annotate program
instructions that can be executed concurrently, hoping in this way to reduce the activity
on the fetch issue unit. The approach in [111] follows the same goal, but proposes instead
to rely on compiler-based IPC prediction to reduce the activity on the fetch unit. In both
cases, the energy consumption can be reduced if the activity on the fetch issue unit can
be decreased, because few functional units will be exercised in this way. Our approach
is to some extent similar to these two works because we also indirectly seek at reducing
the activity on the fetch unit by trading the IPC for energy reduction. However, this can
be seen as a “bonus”’ to our approach since our primarily intention is to enable/disable
the application of aggressive ILP optimization techniques whenever this can result to a
better energy-delay product. These approaches are therefore complementary each one
to each other.

2.5 Summary

A theoretical framework for the energy-delay analysis of ILP transformation techniques
on a VLIW-based embedded system has been proposed and experimented. The main
purpose of this study was to point out that it is rather questionable if applying aggres-

68 Low-power ILP compilation issues

sive ILP optimization techniques results into an improved energy-efficient system. In
particular, we have made clear that aggressive ILP optimization techniques, in addi-
tion to improving the ILP, may also emphasize the execution of needless operations,
making the benefit obtained by the first to be cancelled as a result of the increasing
wasted energy consumption due to the second. Our results have shown that up to 17%
energy-delay improvement can be achieved by a compiler that is aware of this. This
comfirmed our hypothesis that exposing architecture-based energy features to the com-
piler may help improving the overall energy efficiency, especially for embedded systems.
First, however, we will look at possibilities for improving the compiler efficacy by scru-
tinizing a program dynamic behavior in order to highlight portions of code that can
better benefit from certain optimizations. This is the subject of the next chapter. In
the subsequent chapters, e.g. Chapter 4 and Chapter 5, we will concentrate on archi-
tecture mechanisms that can be exposed to the compiler to make it achieve a better
power /performance tradeoff.

Chapter 3

Program paths analysis

The increasing processor complexity makes the optimization process a compelling task
for software developers. These latter usually face the difficult problem of predicting the
impact of a static optimization at runtime. One approach used to meet this challenge
is to rely on path profiling to collect statistics about dynamic program control flow
behavior. While this has proven to be very effective to assist program optimization
[53, 116], the way this information is recorded fails to reveal much insight about a
dynamic program behavior. One main concern with current path profiling techniques
is that they are often restricted to record intra-procedural paths only [10].

More recently, Larus [60] has proposed an efficient technique for collecting path
profiles that cross procedure boundaries. In his proposed approach, an input stream of
basic blocks is compacted into a context-free grammar using SEQUITUR |78 to produce
a DAG representation of a complete program. SEQUITUR, however, is a compression
algorithm that proceeds online; hence, the grammar production rules are far from being
minimal such that in practice, the achieved compression ratio is likely to incur a high
runtime overhead. In addition, as each grammar rule is processed into a DAG, the
information pertaining to a particular dynamic path is lost since all dynamic instances
of a given path are fused into a unique DAG node.

Proposed approach In this chapter, we propose to collect and analyze whole-program
paths offline. In this way, we make it possible to manage reasonable trace sizes, while
shifting the cost of online processing off-line. Since, however, the relatively large sizes
of the trace may render the paths analysis cumbersome, an approximation of the trace
is needed which also can enable efficient path analysis techniques. We introduce a novel
program trace representation to deal with path analysis in an efficient way. In particu-
lar, our approach stems from the fact that the data retrieval nature of the path analysis
problem makes it very tempting to consider pattern-matching algorithms as a basis for
paths identification. One such approach is given by suffiz-arrays [71], which have al-
ready proven to be a very efficient data structure for analyzing biological data or text.
Conceptually, looking for DNA sequences in biological data, or patterns in a text, is an

69

70 Program paths analysis

analogous problem to searching for hot paths in a trace; thus making suffiz-array-based
searching techniques appropriate for path analysis. In addition, in contrast to a DAG
representation, a suffiz-array provides the advantage of treating each dynamic sub-path
differently from one other.

Chapter contribution This chapter makes two contributions. The first and the
foremost contribution of this chapter is to demonstrate the efficacy of using suffiz-
array-based techniques for analyzing hot program paths. More specifically, we show
the appropriateness of suffix arrays to represent program paths, and to identify and
characterize the exact occurrences of hot sub-paths in a trace. One particular strength of
suffix arrays which make them very attractive for this purpose is their low computational
complexity, which usually requires O(In(N)) time, N being the length of the input
trace. The second contribution of this chapter is to indeed illustrate the efficacy of
the proposed path analysis technique to guide power-related compiler optimizations.
For this purpose, an adaptive cache resizing strategy is used and its potential benefits
evaluated at the hot program paths frontiers.

Chapter organization The remainder of this chapter is organized as follows. Section
3.1 introduces the background on suffix arrays. The profiling scheme used to collect
paths is described in Section 3.2. In Section 3.3, we introduce the offline algorithm used
to identify the sequence of basic blocks that appears repeated in the trace, while in
Section 3.4 we show how these sequences can be qualified as hot paths. In Section 3.5,
we present our experimental results and discuss a practical application of our scheme to
reducing power consumption. Related work is presented in Section 3.6, while Section
3.7 concludes this chapter.

3.1 Suffix arrays background

Suffix arrays have been intensively used in several research areas such as genome analysis
or text editing to look for DNA or text patterns. However, despite their widespread
use in these domains, we are not aware of any attempt to use this technique in the
context of program path analysis. In this section, we briefly introduce the background
of suffix arrays and discuss why they may be an efficient data structure for analyzing a
whole-program trace.

Given an N-length character string S, the suffix array of S, denoted by Pos in
the remainder of this chapter, is defined as the sorted array of the integer indices
corresponding to all the N suffices of S. Hence, Pos|i] denotes the string starting at
position ¢ in .S which extends until the end of the string. Figure 3.1 illustrates a simple
example representing a program execution trace 1" which is first processed into an initial
suffix array data structure and then sorted according to a lexicographical ordering.

One key characteristic of suffix arrays is that they can enable computation of search

Suffix arrays background 71

e 2

22,2, =

SEN =

Input Trace(T) : Jéézjbcaef ad egageabg

Index: 01 23 4567 891011 12131415 1617
Initial suffix Sorted suffix
array (Pos) : substring described by Podi]: array (Pos) :
Pog[0] F%geabcaefadegageabc T5 Pog[0]
Posl] [1|— = eabcaefadegageabc 2] Pog1]
Pog[2] 7*> abcaefadegageabc ? Pog[2]
Pog[3] ?*) bcaefadegageabc ? Pog[3]
Pos[4] |4|——— caefadegageabc EQ Pos{4]
Pos[5] |5|———~ aefadegageabc iﬁ Pos[5]

Poils (13—~ geabc b
Pos14] [14] —— eabc '[7] Pos[14]
Pog[15] [15 — > abc '[11] Pog[15]
Pog16] |16| —— bc |113] Pog[16]
Pog17] (17—~ c [0] Pos[17]

Figure 3.1: Example of processing of an input trace T into an initial suffix array repre-
sentation Pos.

queries in time complexity O(p + In(V)), where p is the length of the searched pattern
and N the length of the string; making it very convenient to implement very fast
searching algorithms. The query computation principally undergoes a binary search
phase on the sorted suffix array, taking advantage of the fact that every substring is
the prefix of some suffix. In addition to matching the searched query, suffix arrays also
permit to compute the frequency of the queried pattern along with the exact positions
of all of its occurrences in the string. As for instance, in the given example shown in
Figure 3.1, the basic block sequence geabc appears 2 times in the trace, respectively at
position ¢ = 16 and ¢ = 17 in the sorted suffix array Pos. By generalizing this concept
on variable length substrings, several interesting items of information pertaining to
dynamic program behavior can be efficiently retrieved. These include, for instance:

—_

. finding the longest repeated sequence of basic blocks in a trace, Imaz;
2. finding all n-length repeated sequences of basic blocks in a trace, n < lmax;

3. determining the distribution frequency of each specific n-length basic blocks se-
quence in a trace

4. identifying the positions of each different n-length basic blocks sequence in a trace;

Many of the above items may be of interest for several program optimizations. For
instance, item 4 can be used for grouping hot sub-paths together to drive the formation
of ILP regions. In addition, if two neighbor hot paths have associated distinct dynamic
profiles, this information can be used to decide if their respective profile can be merged
or not. This may be helpful for inferring a common configuration to adjacent hot paths
in case of an adaptive compilation strategy scheme.

72 Program paths analysis

Although suffix arrays present very interesting properties regarding program path
analysis, they still have some drawbacks. The most noticeable of them is the memory
space required to construct the suffix array, which is linear with the size of the pro-
cessed trace. This latter issue has since been the subject of intensive studies and some
compression algorithms have already emerged that significantly reduce the amount of
memory space required [41]. While this work can also be accommodated with such a
compression scheme, this is not our main concern in this study.

3.2 Profiling scheme

In this section, we describe our general profiling scheme. In particular, we describe how
the whole-program path trace is collected, and what kind of dynamic information can
be appended to the trace.

3.2.1 Collecting the trace

Profiling can be used in a straightforward manner to collect a whole-program trace
by instrumenting each basic block of the CFG. This approach is however very costly
in terms of memory space. A more efficient approach will require to instrument only
a subset of the executed basic blocks to capture nearly the same amount of control
flow information. Therefore, instead of instrumenting individual basic blocks, we can
instrument only a small subset of them, each one representing an individual acyclic
basic block region, denoted by bb-region. When not specified, a region will refer to
either a bb-region or a basic block.

We derive the definition of a bb-region from the definition of a strong region intro-
duced in [11], and from that of the control dependence relationship obtained from the
control dependence graph described in [31]. Let CFG(V, E) denotes the directed flow
graph with nodes set V' and edgesset E CV x V.

Definition 1 Nodes v,w € V belong the same strong region iff v and w appear the
same number of times in any control flow path occurring from entry point to exit point

of the CFG.

Definition 2 Node v € V 1is said to be control dependent on node w € V' iff:

1. there is a non-empty path from v to w in CFG such that w post-dominates each
block on the path except v;

2. w is either the same as v, or w does not post-dominates v

Based on Definition 1 and Definition 2, we can define a bb-region as given in
Definition 3.

Profiling scheme 73

Figure 3.2: CFG.

ENENENEN

Figure 3.4: CDG with instrumented
nodes.

Definition 3 Node v € V' belongs to a bb-region iff:

1. v belongs to a strong region in CFG,

2. or, v is the control dependent predecessor of some node u in the control dependence
graph CDG, and v does not belongs to any strong region in the CFG.

The first property in the definition of the bb-region given above allows us to identify
regions in the CF'G in which all basic blocks execute with nearly the same dynamic
frequency, whatever the taken control flow path is. In this respect, any node belonging
to such a bb-region can be used to capture the dynamic control flow path induced by
other nodes of the same region. This drastically reduces the number of instrumented
basic blocks, as shown in Figure 3.3.

74 Program paths analysis

For the other basic blocks that do not fit in any strong region, we proceed as follows.
We traverse the C' DG upwards, selecting each time the control dependent predecessor
block that was not previously selected during strong region identification. The idea is
to instrument only at each control condition block. This is illustrated in Figure 3.4. As
shown in the example, the number of instrumented nodes reduces from 22 to 5 overall,
providing up to 80% reduction of the number of instrumented basic blocks.

We applied another compression technique to further reduce the size of the trace. Th
is technique principally targets cyclic regions such as loops in which basic blocks execute
repeatedly. In such a case, it is not necessary to record all the back-to-back dynamic
occurrences of the same region. Instead of that, we can choose to record in the trace
the last such dynamic occurrence with all attached information updated accordingly.
Combined with our profiling scheme, this shows a real improvement in the compression
ratio, typically up to 47%, on average, for our benchmark sets.

3.2.2 Control-flow information accuracy

R0={5,6,7}
R1={11,12,13}
R2=(8,9,10}

P=..51151151185...

Figure 3.5: Example of sub-path.

With the node abstraction introduced with the profiling scheme described in the
previous section, it is not always easy to reconstruct a copy of the original control flow
path. This is however of less a concern since we are more interested to know which
bb-regions are executed more often than of knowing precisely which of the nodes occur
in the trace. Such a hierarchical path profiling approach is at the advantage of the
program optimizer since it may permit to focus the analysis only on the predominant
paths in the trace. In an another phase, however, the bb-region can be investigated
more closely to identify individual hot basic blocks.

Consider for instance the example shown in Figure 3.5. Three bb-regions are iden-
tified, labeled from RO to R2. Only the first node of each bb-region is instrumented.
The corresponding dynamic execution trace is shown with set name P in the figure.
This simple example indicates that sub-path 5,11 is predominant. In the figure, we
also show the cumulated execution count of each node. It is then straightforward to

Identifying BBWS 75

derive from the sub-path 5,11 the exact set of the most representative basic blocks by
excluding those which execute less frequently, i.e. node 13. In our abstraction, nodes
6,7,12,13,9, 10 appear subsumed by the control dependence relation. While this effec-
tively reduces the space, it also emphasizes the rapid identification of the main sub-path
5,11. This is central to our program sub-path detection technique.

3.2.3 BBWS signature

When a sequence of basic blocks appears repeated in the trace, we denote by basic block
working set (BBWS) the set of static basic blocks that constitutes this sequence. The
annotation attached to each such sequence is called a basic block working set signature.
This annotation can be used to describe such a sequence in a unique manner, depending
on the kind of dynamic information that is appended to it. For our experiments, we
have considered the region id, reg-id, which identifies each instrumented bb-region or
basic block, the performance parameters cyc, dyn, dmiss, imiss which represent the
number of elapsed cycles, the dynamic instructions count, the number of data and
instruction cache misses attached to each region, respectively. This information will
become more apparent during the formation of the hot program sub-paths, to determine
the pertinence of a candidate hot region.

3.3 Identifying BBWS

The key idea to search for BBWS is to rely on the suffix array data structure to imple-
ment an efficient suffix sorting algorithm. We employ an adapted version of the KMR
[54] algorithm used in genetic and text querying systems to achieve this.

3.3.1 KMR algorithm

The KMR (for Karp, Miller and Rosenberg) algorithm is a well known algorithm for
computing the occurrence of repeated patterns in a string. The idea is dictated by the
observation that each suffix in P can be defined as the k-length suffix of another suffix
starting at position 4. This implies that, at the j-th stage of the sorting algorithm,
§ > 1, the suffix array indices i + 2/~! computed at stage j — 1 are used to initially
sort each suffix ¢ obtained at stage j. This technique allows to double the suffix length
at each stage, requiring only O(log(/N)) processing time. The ordering relation used in
the KMR sorting algorithm is based on the definition of an equivalence relation over
the suffix positions of the path P. Given a path P = pipips...pn, two suffices starting
at positions ¢ and j in P are said to be k-equivalent, k < n, denoted by ¢ E} 7, if and
only if the path of length k starting at these positions are the same.

76 Program paths analysis

indices —= 0 12 34 5678 9 10111213
P=en01211821211821ex

indices

(0) 0123 4567 89101112 13/

(0): Pos = [o[1[2[3[4[5[3[2[3[4[5[3[213 Card(E)=7
k=1 k=1
6N 01234567 8 910111213

(1): Pos = [*[*[2]3[4[1]0[2]3[4[1]0]*]* Card(E):5
k=2 k=2
%) 01234567 8 910111213

(2) Pos = [*[*[2[1[0[*]*[2[1]0[* [* [*[* Card(Ek_A):3
k=4 B

Figure 3.6: Example of BBWS identification

3.3.2 Sorting algorithm description

We can easily make an analogy between the suffix array Pos](j) obtained at the j-th
stage of the sorting algorithm described in the previous section and a partition of all
E}, equivalent integer indices obtained from Pos,(g), k being the length of the expanded
suffix at that stage. Interestingly, the number of elements in the partition gives the
actual number of BBWS of length k, whereas their integer indices in the suffix array
Posgj) gives their position in the trace P. Hence, it becomes straightforward to identify
a BBWS according to its size (i.e length k), its dynamic frequency of occurrence (i.e
cardinal of the partition F}) as well as its dynamic coverage time (i.e start position in

the trace until the position where a new BBWS is encountered).

The algorithm used to sort the suffix array Pos is shown in Algorithm 4. The
alphabet is composed of the set of bb-regions and basic blocks encountered in each CFG.
The input search space P represents the execution trace. In line 6 of the algorithm, we
first build the partition FE,, corresponding to the set of BBWS with maximal repeated
occurrence of length n. As each element of the partition is identified, it is hashed into
a table of BBWS partitions with the hash key being the length of the BBWS. This is
done for F,, as well as for the other partition elements used to iteratively compute it
(see Algorithm 3). As shown in lines 8-10 of the algorithm, the program terminates as
soon as the set of BBWS identified so far is representative enough of the whole trace P.
We address this issue in the next section. In the other case, the algorithm undergoes
a binary search to look for other BBWS as shown in lines 11-19. At the end of the
algorithm, the partition table T' contains, for each valid entry k, the set of all k-length
BBWS that appear repeated in the trace. The processing time for this algorithm is quite
feasible. For instance, a 40MB trace size requires less than a few minutes to process,
whereas for trace sizes ranging from several hundreds of MB to a GB, the processing
time is within the order of hours.

Identifying BBWS 7

Algorithm 1 Initialization

Require: P : control flow path defined over ¥X™

1: Construct the suffix array Pos,(g1

2: Add class elements E; to T[1]

Algorithm 2 Construct suffix array Pos,(cj) from Pos,(j_t)

1: repeat

2: Use Pos,(f,_t) to construct Posg;tlﬂ)
3: Add class elements Ey 1 to T[k' + 1]
4: K=k 4+1

5. until k' < k

(N)

k=max

Algorithm 3 Construct suffix array Pos and E,,qz, N number of processing steps

: Use Algorithm 1 to initialize the suffix array Pos,(CO:)1

1
2: repeat

3 r=r'+271 ,

4: Construct Posgz)r from Pos,(ngl,)
5

6

7

Add class elements E, to T'[r]
: until Posgz)r is unchanged
: return r

Algorithm 4 Basic block working set partitioning

n, k : Integer := 0

T : BBWS partition table

Y := {Set of reg-id}, |X| =m
P:pip2p3 ... pm € X™

Use Algorithm 3 to suffix sort the array Pos, obtaining n, the longest repeated
BBWS

P

. if all BBWS are representative of P then

: stop here

10: end if

11: for k=n—1to 2 do

12: if T[k] is empty then

13: Find T'[d] such that d < k, d is a power of 2 and T'[d] # ()

14: Use Algorithm 2 to iteratively construct Ej from Ejy
15: end if

16: if all BBWS are representative of P then

17: stop here

18: end if

19: end for

78 Program paths analysis

3.3.3 Sorting example

Let us consider the example shown in Figure 3.6. We illustrate next the different

processing steps involved when searching for the longest repeated BBWS. Step 0 shows

the suffix array Pos,(g1 that corresponds to the initial sorting stage with suffix length

k = 1. The partition elements of the equivalent class Fr—; are deduced directly from

Posgﬁl. The cardinal of the partition gives the number of BBWS of length £ = 1. At
(1)

the next iteration step, the array Pos,’, is computed from the array Posgﬁl in the
following way. The suffix positions of P that correspond to the integer indices in Posg):)1
are sorted into buckets of same equivalent class. For instance, suffix positions 2,7,12
in P will belong the same bucket since their integer indices in Pos,(g1 are identical
(i.e. 2). Note that, at this stage, the number of elements in each bucket yields the
dynamic execution frequency of the considered BBWS in P. From here, each bucket
is sorted according to the b-equivalent relation, where b = k) — kU~ je. b =1 at
stage 1. The result of this sorting is a new set of buckets where two suffix positions
belong the same bucket iff they are Ej, equivalent with regard to their integer indices

in Poséoz)l. For instance, suffix positions 2,7 belong the same bucket because they are

E; equivalent with respect to Posgo). The array Pos,(gj) is obtained by renumbering the
integer indices of the suffix positions contained in a bucket list with a same equivalent
class number if they satisfy to the b-equivalent relation. Note that BBWS that appear
only once are systematically discarded from the suffix array since we are only interested
in identifying those that appear at least twice in the trace. This explains the stars in

the arrays Pos,(::)2 and Pos,(€22)4.

3.4 Qualified BBWS for hot sub-paths

Not all BBWS that are identified with the algorithm described in the previous section
are of interest. Of course, there are some BBWS that effectively appear repeated in the
trace but which inherently bring no value for the optimization. To distinguish among
the BBWS those who are the most representative, we apply three selection criteria, as
illustrated in Figure 3.7.

The first criterion is the local coverage. This metric is an indication of the number of
elapsed cycles in the region, or the dynamic instructions count of that region, before a
transition to another region occurs. Either one of the number of cycles or the dynamic
instructions count can be directly obtained from the trace, as indicated in Section 3.2.3.

The second criterion is the global coverage. This metric is related to the local coverage
by the dynamic execution frequency of a BBWS, global coverage = frequency x
local _coverage. With respect to the overall program execution, this metric assigns to
each potential hot path a global cycle weight or a dynamic instructions count weight.

The last criterion is the distance reuse, measured in number of dynamic basic blocks.
The distance reuse is an approximation of the temperature of a BBWS. As the distance

Experimental evaluation 79

distance
of reuse width
hot path W hot path W hot path
OSi pOSi+k p05i+k|

local coverage

T — position
+

global coverage

Figure 3.7: Hot path characteristics.

reuse gets larger, the probability that the underlying BBWS is a hot path lowers. This
can be mainly attributed to the fact that, although the BBWS appears repeated in
the trace, it is not too often executed to infer a hot temperature. In contrast, tighter
distance reuses indicate a high probability that the considered BBWS is a hot path. A
consequence of this is that cold blocks in the vicinity of a hot path may also be inferred
a hot temperature since the heat may propagate to them indirectly. In Figure 3.7 for
instance, if the distance reuse of the highlighted hot path is below a given threshold,
block A can be included in the BBWS induced by the nodes of the hot path to form a
coarser region. Assuming Position designates the set of all consecutive, non-overlapping
positions of a BBWS in the trace, the average distance reuse D is computed as shown
in Equation (3.1), where width refers to the size of the BBWS (number of basic blocks)
and % represents the modulo function.

> (pos;_1 + width) % pos;
| Position|

D= (3.1)

Note that, as the basic block representing a bb-region is included in the computation
of D, it must be expanded to the number of basic blocks that is contained in the region.
Hence, the expression of D provides only an approximation of the distance reuse value.
A hot path candidate is then formed by selecting BBWS with a relatively high local
coverage and low distance reuse. The global coverage serves as an indication of the hot
paths weight in the program.

3.5 Experimental evaluation

This section presents an evaluation of the proposed approach. We first introduce the
simulation platform and the benchmarks used in Section 3.5.1. Then, in Section 3.5.2,
we evaluate and discuss our results.

80 Program paths analysis

777777777777777777777777777777777

| instrumented |
sour% fil Smplesclar 3 output
PISA compiler ! !
N |8
PISA machine %
description hot paths g
|
Figure 3.8: Simulation framework.
Bench. | description trace size (MB) | compr. ratio
dijkstra | shortest path 110 65%
adpcm | code modulation 148 67%
bf symmetric block cypher | 55 74%
fft fast fourier transform 6 85%
sha secure hash algorithm 11 7%
bmath | math. calculation 6 78%
patricia | IP traffic 21 7%

Table 3.1: Benchmarks

3.5.1 Experimental methodology

We conducted our experiments using applications collected from MiBench [42] as illus-
trated in Table 3.1. The applications are first compiled with the PISA compiler from
the SimpleScalar [22] tool suite, with optimization level 3, to obtain an input assembly
file. Each assembly file is then processed by SALTO [16], which is a general, compiler-
independent tool that makes the manipulation of the assembly code at the CFG level
easier. SALTO is used essentially to instrument the code, using the SimpleScalar anno-
tation feature, and to add new compiler optimization passes. The produced executable
is processed by SimpleScalar to extract the compressed trace which is then fed to the
offline analyzer. After the hot paths have been identified, this information can be re-
injected into SALTO to drive the various compiler-dependent optimization passes. An
overview of the different processing stages is shown in Figure 3.8.

Our measurements were performed with SimpleScalar, which we use to model a 5-
stage in-order issue processor such as those encountered in the embedded computing
domain, e.g. the Lx processor [35]. Details on the processor configuration parameters
used in this study are shown in Table 3.2.

Experimental evaluation

81

Issue in-order 4-issue
Integer ALU 4
Multiplication units 2

Load/Store unit 1

Branch unit 1

instr. cache 32K 1-way
data cache 32K 4-way
cache access latency 1 cycle

data cache replacement policy | LRU

memory access latency 100 cycles

Table 3.2: Baseline microarchitecture parameters.

dijkstra —— R
N adpcm = g k
. bf
= S &£ it - ~
S a ? S
=) § sha - = 01k
° 5o Y bpath e =)
5 pgtr|0|a b
= : c
o P
= 0.1 g 0.01 |
) o H
g ° 3 ¢ dijkstra
c — adpcm
3 3 : {bf e
& o 0001y T
a E . : E) ; sha -—-a--
9 ‘ &0 i jpatricia --o--
I bmath --e--
0.01 : : : 0.0001 bt T
10 100 1000 10000 100000 10 100 1000 10000

dynamic instructions count dynamic instructions count

Figure 3.9: Local coverage. Figure 3.10: Global coverage.

3.5.2 Evaluation

This section presents the evaluation results of using our scheme on the set of benchmarks
described in the previous section. The evaluation consisted to measuring the relative
compression ratio achieved by our approach and to analyzing the quality of the detected
hot paths with respect to the criteria introduced in Section 3.4.

3.5.2.1 Trace size

The last column of Table 3.1 gives an estimate of the compression ratio achieved with
our approach. Note that the size of the trace depends strongly on the information
encoded with each trace line. For this experiment, we used 20 bytes for each trace
line, one byte each for recording the region id, the number of cycles, the number of
dynamic instructions, the number of data and instruction cache misses associated with

100000

82 Program paths analysis

each region respectively. More elaborate trace line representations can be imagined to
reduce further the trace size; however, this is not the scope of this chapter. The column
labeled trace size shows the original size of the trace. As it can be seen from the table,
the trace size can be reduced by up to 74% on average. This compression ratio includes
the compaction of back-to-back occurrences of loop paths (see Section 3.2.1), which
accounts for about 47% of the trace reduction.

3.5.2.2 Local coverage

This metric measures the time spent in a BBWS, or the number of dynamic instructions
executed within that BBWS. Figure 3.9 shows the distribution of the local coverage for
some representative BBWS when considering the dynamic instructions count. As it can
be observed from the figure, some applications have their BBWS which extend from a
few tens of instructions to a few hundreds or more, e.g. adpcm, fft, bf, dijkstra, patricia,
bmath. These applications are therefore best candidates for local optimizations such as
instructions coalescence that reduces a region’s critical path, or local strength reduction
which replaces expensive operations with cheaper ones. In the figure, some BBWS
whose sizes extend beyond a few thousand of instructions are also distinguishable, e.g.
bmath, dijkstra, patricia, sha. As these applications tend to spend a large amount of
their execution time within a single region, they may best benefit from memory re-
layout techniques such as cache-conscious placements or resizing. The local coverage is
however not sufficient enough for deciding on the pertinence of a BBWS.

3.5.2.3 Global coverage

The local coverage must be interpreted in the light of global coverage to yield a fair
understanding of the pertinence of a BBWS. Such a comprehensive reading can be
provided with help of Figure 3.10. For this experiment, we have fixed an arbitrary
threshold at 5% of the total instructions count as indicated in the figure with the
threshold line. With regard to the local coverage of each BBWS, the points above the
threshold line are therefore these that are likely to provide substantial performance
benefits across the whole program run. Of most concern are all the applications at the
exception of fft, which has a global coverage value slightly below the threshold. Some
applications such as sha and patricia exhibit BBWS whose sizes extend from a few
hundreds to a few thousands of instructions, with a fairly good distribution among the
two. This is an indication that these BBWS are good candidates for both local and
global optimizations.

3.5.2.4 Distance reuse

The last criterion that qualifies a BBWS as a hot path is the distance reuse. This
metric measures the heat of a BBWS by estimating the average number of accesses to
different basic blocks between non-overlapping occurrences of this BBWS. Clearly, the

Experimental evaluation 83

Bench. | qualified BBWS (%) | local cov. (%) | global cov. (%) | dist. reuse (avg)
dijkstra 2.81 0.09 47 1.74
adpcm 5.88 < 0.005 90 0.00

bf 27.01 0.06 24 85.00

fft 11.7 < 0.005 7 4.21

sha 20.0 0.06 72 0.75
bmath 15.22 0.05 37 19.21
patricia 5.85 0.15 65 24.84

Table 3.3: Qualified BBWS as hot paths.

larger is the distance reuse, less is the probability that it is a hot path. This trend can
be well observed in Figure 3.11 where we show the distribution of the distance reuse
for our benchmarks set. Applications with BBWS whose sizes extend to a few tens
of instructions tend to have distance reuse values distributed among a few tens (e.g.
bmath, fft, bf) to a few hundreds (e.g. dijkstra, bmath, fft, sha, adpcm) and thousands
(e.g. patricia, dijkstra, adpcm) of basic blocks. Medium sized BBWS which extend
from a few hundreds to a few thousands of instructions constitute the other category
with distance reuse values less than a thousand, at the exception of patricia, dijkstra
and bmath. Finally, as it is to be expected, very large BBWS tend to have also poor
distance reuse values as evidenced with patricia and dijkstra. Tough, an exception with
digkstra is to be noted as a few number of these BBWS exhibit very good distance reuse
value with D ~ 1.

We summarize our experimental results in Table 3.3. The values were computed
with a global threshold at 5%. This table presents results obtained by combining all
the selection criteria together in order to qualify a BBWS as a hot path. As illustrated
in the table, from 7% to 90% of the program dynamic instructions can be covered using
our approach, with only as much as 0.15% of the dynamic instructions being executed
within a single region.

3.5.3 Application example: adaptive cache reconfiguration

The cache hierarchy is the typical example where the power /performance tradeoff plays
a central role. While a large cache permits significant improvements in performance,
only a small fraction of it is usually accessed during a program run. Henceforth, to
address this source of inefficiency, much recent work has focused on the design of con-
figurable caches [7, 117]. A key point with such work is deciding when to perform
such a reconfiguration. With general purpose processors, this can be done dynamically
with some mean of hardware, or at software following procedure boundaries [7]. With
embedded systems, this is often done once on a per-application basis [117].

In this section, we examine the possibility of reconfigurating a cache at the hot path
boundaries. To do so, we assume a scheme similar to that presented in [117] in which the

84 Program paths analysis

1le+06 T le+06
dijkstra ——
32KAW ——
100000 - ggﬁw e °
16K2W o °
F 16KIW - -o - ey
10000 . @ 100000 | 8KIW ---o-- R L
[@2 - -
3 g - p
@ 1000 \-°)
=y
[+ Q
2 g -
8 100 © - ¢ b%ﬂ conf;]
g] P
3 S 10000 p or hot pathl |
10 i e .
. S S— ;::’v"'/ best confi
s § ; v C for hot pathO
01 ; 1000
10 100 1000 10000 100000 01 1
dynamic instructions count global coverage of hot path (%)
Figure 3_11: Distance reuse. Figure 312' Dcache miss distribution (dekSt’r‘a)

cache configuration | energy per access
32K4W 1.00
32K2W 0.58
32K1W 0.37
16K2W 0.55
16K1W 0.35
8K1W 0.35

Table 3.4: Relative energy ratio.

associativity of a cache can be modified while still preserving the whole cache capacity.
Furthermore, we also assume an extension of this scheme, proposed in [85], in which the
associativity as well as the size of a cache can be adapted at runtime with the help of
a reconfiguration instruction. We illustrate how a cache reconfiguration can be guided
with dijkstra, since it has the best BBWS profiles with larger local and global coverage
and low distance reuse.

Figure 3.12 shows the cumulative distribution of the number of data cache misses,
using varying cache configurations, for the two most representative hot paths of dijkstra
with global coverage at 10% and 83%, respectively. As indicated in the figure, each
hot path has a set of cache configuration candidates which vary according to either
of the selection criteria introduced in Section 3.4. The first hot path, for instance,
has a distance reuse of ~ 0 and a local coverage of 0.09%, whereas the second occurs
practically each 4 blocks with a relative low local coverage (~ 0.004%). The first hot
path is therefore more regular than the second, which could explain the larger choice
for the former. Table 3.4 shows the relative energy per access obtained by means
of CACTI [98] for each cache configuration. Each zKyW stays for a cache of size z
and associativity y. The best configuration for hot path0 is given by 32K1W which

Related work 85

is from far more energy-efficient than the 32K4W case. On the other hand, for hot
pathl, 32K2W yields the best energy-performance ratio. However, although both hot
paths yield substantial energy savings, only the first one may be of interest because
it has a near 0 distance reuse value, which infers that reconfiguration will take place
very infrequently. This is crucial for performance as each reconfiguration instruction
consumes extra cycles and energy. The energy savings obtained in this way is in the
order of 12% with almost no performance slowdown (less than 1%).

3.6 Related work

Many work have been proposed to collect profiling information. In [9], Ball and Larus
propose to collect profile information via edges profiling. They extended their work in
[10] to include path profiling information that are restricted to intra-procedural paths.
Bala [6] then augmented the intra-procedural path profiling scheme to capture inter-
procedural paths as well. A similar work has been proposed by Larus [60] which relies
on a online compression scheme, SEQUITUR [78], to produce a compact representa-
tion of a whole-program paths. Our scheme is to some extent similar to [60] in that
we also provide a representation of a whole-program paths. However, unlike the DAG
representation used in [60], we rely on a suffix array representation that permits the im-
plementation of very fast searching algorithms, allowing quick offline processing; thereby
offsetting the high runtime overhead of Larus’s scheme. In addition, this also permits
us to treating each dynamic path distinctly from one other and consider large trace
sizes. The performance of the proposed scheme can be rather significantly improved,
namely by using other compression techniques which are complementary to that pro-
posed in this chapter. For instance, a direct improvement can be obtained by encoding
the suffix array compression scheme described in [41]. Compression techniques such as
that describe in [83] can also be used to further reduce the size of the trace to less than
a fraction of a bit per reference.

3.7 Summary

While suffix arrays have been widely used in biological data analysis or text editing,
we are not aware of any prior published work that shows its application to compiler
optimization. In this chapter, we presented a first attempt to apply suffix array to the
compiler domain. In particular, we showed how a suffix arrays can be used to represent
a whole-program paths and to accurately identify hot program paths. Our evaluation
results revealed that up to 48% of a program code can be covered by hot paths, with
each hot path representing about 0.15% of the total instructions. Practical application
of our approach has confirmed its efficacy to reduce power consumption. We showed
that up to 12% energy savings can be obtained with a hot-path-directed adaptive cache
resizing strategy that used our technique. Because of its power to precisely model
program paths (distance reuse, local and global coverage), we believe that suffix arrays

86 Program paths analysis

can be of a crucial aid to assist a programmer during the optimization process.

Chapter 4

Power-eflicient reconfigurable cache

When compiling for low-power, the cache hierarchy is the typical example where the
power /performance tradeoff takes a great significance. On one hand, a large cache allows
to maintain an important fraction of the embedded code and the data workload on-chip;
thus reducing the amount of memory traffic and thereby improving the performance and
the power consumption. On the other hand, however, typical cache memory accounts
for up to 80% of the total transistor count and it is usual to devote about 50% of
the total chip area [45] to host a cache. This makes the cache memory subsystem an
important source of power dissipation.

Problem summary Recent researches in this area have focused on the design of
configurable caches [44, 70, 1, 117, 7, 115] to effectively tackle the problem of power
dissipation. The main motivation behind a configurable cache is to allow one to adapt
the cache size requirement of a running program to a desired power /performance trade-
off. Energy is saved because fewer switching transitions take place in the cache as it
is resized to smaller sizes. However, former configurable cache proposals for embedded
systems [44, 70, 117] have only considered configuration on a per-application basis. A
drawback with this approach is that an optimal cache size, viewed from a performance
standpoint, has not yet been shown to exist, whereas each application simply exhibits
varying dynamic cache behaviors [97, 101]. Moreover, in the context of embedded sys-
tems, compilers play a central réle in obtaining good performance; it is thus important
to consider configuration schemes that improve compiler’s effectiveness as well.

Chapter contribution This chapter explores new solutions to the problems ex-
plained above. First, a model of a hybrid configurable cache design is proposed as
a alternative to two current proposals. With this model, we allow a cache to be re-
configured on a per-phase basis rather than at the application level, with only minor
hardware modifications, keeping the design complexity simple. Second, based on the
proposed model, the potential benefits of a fine-grain cache size adaptation scheme is
explored that can be used at the compiler level for automatically characterizing the

87

88 Power-efficient reconfigurable cache

different cache size requirements of a program phase. The proposed model considers
a great degree of flexibility, providing the compiler with the opportunity of resizing a
cache along its size and/or degree of associativity.

Chapter organization The remainder of this chapter is organized as follows. Section
4.1 provides a review of configurable cache designs. In Section 4.3, we detail our model
of a hybrid reconfigurable cache architecture. The compilation support to our hybrid
cache model is presented in Section 4.4. Experimental results are presented in Section
4.5. Section 4.9 discusses related work and Section 4.10 concludes.

4.1 Design space exploration of configurable caches

Prior to reconfigurable caches, researchers have sought to reduce the amount of switching
activity on a cache access. Several proposals were made to accomplish this. Way-
prediction was proposed in [50] and then improved in [90]. The principal idea in way-
prediction is to allow ways of a set-associative cache to be accessed speculatively. In
the case of a prediction hit, this reduces the number of ways that are concurrently
accessed on each cache lookup, and therefore the energy consumption. However, when
a prediction miss occurs, the hit/miss cache access time is lengthened because the
remaining ways need to be checked again for the valid data. A similar idea is the phased-
lookup cache [43]. A cache access is split into two phases. A first phase corresponding
to a tag check allows to select the correct data way. The second phase corresponds to
a delayed data access where only the selected data way is activated. As in the previous
case, this technique also suffers a high penalty in case of a miss in the cache. Another
approach involves preventing frequently accessed working set of smaller sizes from hiting
in the L1 cache [57, 12]. A smaller, and thus more energy efficient, LO cache is placed
between the processor core and the L1 cache. A hit to the LO cache reduces the energy
because the amount of switching activities is lowered due to the small size of the L0
cache. However, a miss in the LO cache increases both the cache access time and the
energy.

Configurable caches offer a powerful alternative for reducing the energy dissipation
of conventional caches. The basic idea is to permit a cache memory system to adapt
to the cache size requirement of a running program. The various proposals of config-
urable cache architectures principally differ in their resizing granularity and their design
complexity.

In [1], Albonesi proposes to partition a set-associative cache along its tag and data
ways. Energy can be saved by allowing cache ways to be disabled/enabled on demand,
according to the cache size requirement of the application. The hardware implemen-
tation is simple, with only a software register mask that enables/disables cache ways.
However, this approach can only be accommodated to set-associative caches. The con-
figurable cache design proposed in [82] is somewhat similar to selective-ways. However,

Motivating a phase-based resizable cache scheme 89

| size/#sets | 1024 | 512 | 256
32K DM | 2-way | 4-way
16K DM 2-way
8K DM

Table 4.1: Possible cache size granularities for a 4-way, 32B line base cache with 8K per
bank.

instead of disabling the unused cache sections, the authors suggest to transfer useful
tasks to them (e.g. instruction reuse for media processing).

Other approaches of configurable caches consist in partitioning a cache along its
sets [115] or at the granularity of the cache line [55, 119]. In contrast to [1], these ap-
proaches can be accommodated to direct-mapped caches as well. However, the required
implementation cost can be much more expensive. For instance, resizing a cache to the
smallest and/or largest addressable number of sets with [115], requires to maintain a
number of tag bits that often exceeds the one found with a conventional cache of equal

sizel.

A more recent work by Zhang et al. [117] proposes to exploit the way partitioning
scheme of a set-associative cache to reconfigure it as either a direct-mapped cache or a
set-associative cache of lower degree of associativity. The proposed configuration scheme
exploits a technique called "way-concatenation" which permits cache ways to be merged,
while still retaining the full cache capacity but with reduced set-associativity. This
approach reduces the dynamic energy since, with same cache size, lower associativity
caches perform fewer switching activities than higher associativity caches. In addition,
the implementation cost has been shown to be minimal.

4.2 Motivating a phase-based resizable cache scheme

The motivation behind the proposed model is to emphasize the most critical application-
specific cache architectural tradeoffs involved during program execution. To do so,
we consider a cache with a fixed line size and modulus mapping function. Our main
observation is that the performance of such a cache is mainly dictated by its size and
degree of associativity. Therefore, from a software perspective, we would like to select
the configuration with the lower energy consumption that minimizes the miss ratio (i.e.
the one with lower degree of associativity and smaller size). However, since programs
have varying dynamic cache behaviors, they must also feature varying dynamic cache
size and /or degree of associativity. Thus, instead of selecting these parameters on a per-
application basis, we would then prefer to tune them according to a program dynamic
phase.

le.g. to upsize the number of sets from 256 to 1024 in a 32K 4-way cache with 8 tag index bits, 10
tag bits must be maintained instead.

90 Power-efficient reconfigurable cache

Address

‘ Tag‘ ‘Inda(‘Offsa‘

drowsy bit

Way #1

Figure 4.1: Baseline architecture of a 2-way associative cache.

The idea is to use a combination of schemes that permits to reconfigure a cache
along its size and associativity in order to provide both in one. We do this by exploiting
the variability in the cache size and the degree of associativity provided by combining
the selective-way scheme [1] and the way-concatenation technique [117]|. Such a hybrid
scheme can provide fine-grain cache sizes at various degrees of associativity. Table
4.1 shows a subset of some possible cache configurations that can be exposed to the
compiler. For example, starting from a 4-way 32K baseline cache configuration, we
move to the 16K direct-mapped configuration by either concatenating 2 banks (32K 2-
way) and then selecting only one of the two, or selecting two (16K 2-way) active banks
and then concatenating them.

4.3 Potential cache model

4.3.1 Baseline model

Our model builds upon the way-concatenation scheme introduced in [117] and extends it
in order to include a flexible selective-way scheme to resize a cache at runtime. Basically,
with the way-concatenation scheme, one can select the number of cache ways m that
can be activated on each cache lookup. In this scheme, each selected way is virtually a
multiple of the size of a cache way in the n-way case, n being the number of available
cache ways. For instance, if one way is active, it has virtually four times the size of the
4-way case. A configuration register is provided to set the number of active ways m. A
way concatenation logic is in charge of carrying the active/inactive way-enable signal
to each of the n cache ways. The baseline architecture is depicted in Figure 4.1. In
this figure, the two high-order bits of the way concatenation register (WCR) are used
as configuration register to fix the number of active cache ways.

Potential cache model 91

way-enable
signal

precharge gate
precharge signal

to precharge
aircuit

drowsy
signal

Trowsy
concatenation mode

'
1

1

1

'

1

1

1

'

1

1

1

'

1

1

:

Vdd 1v |
power ine ,

drowsy mode |
Vdd 0.3V I
i

1

1

'

1

1

1

'

1

1

Tow,
decoder

drowsy
_____________ \
| wordiine
' wordline
1
! wordline gate

Figure 4.2: Drowsy cache line circuit.

4.3.2 Architectural modifications
4.3.2.1 Associativity dimension

The main issue of concern we address at this stage is preserving the cache coherency
across different cache configurations, while minimizing the reconfiguration time. Con-
sider, for instance, the reconfiguration scenario illustrated in Figure 4.3. In phase 1,
corresponding to a 2-way cache configuration, the way-concatenation logic activates
bank 0 and bank 2 when @A is referenced. In this case, @A hits in bank 0. In phase
i + 1, however, the cache configuration changes to a direct-mapped cache and QA is
write accessed in bank 1. At this stage, there are two possible locations for @A, the old
one in bank 0 and the new one in bank 1.

Phase i: 32K 2—way, current active banks are 0 and 2, @A is mapped into bank 0
Way 0 Way 1 Way 2 Way 3

Phase i+1: 32K 1-way, current active bank is 1, @A is modified in bank 1
Way 0 Way 1 Way 2 Way 3

o H—

invalidation '

Figure 4.3: Reconfiguration scenario.

A possible way to overcome the cache coherency problem illustrated above is to

92 Power-efficient reconfigurable cache

maintain the tag and status arrays always accessible. This implies that only the data
array is activated/deactivated by the way-concatenation logic. The tag and status ar-
rays therefore still continue to behave like in a conventional cache. The actions of the
cache controller can then be modified to access all tag arrays on each write request to
set the corresponding status bit as invalid whenever the referenced address hits in one of
the bank. This scenario is illustrated in Figure 4.3 with the dotted arrow line indicating
the action of the invalidation signal in the tag array. Future accesses to the invalidated
data will cause the new data to be provided by the upper level cache hierarchy. For
sake of simplicity, we assume a write-through cache policy. This guarantees data co-
herency whenever a cache line is provided from the upper level memory hierarchy. This
implementation can be done via a special instruction in software to force this behavior
or it can also be done transparently in hardware.

4.3.2.2 Cache size dimension

We augmented the way-concatenation architecture to include a drowsy bit [38], repre-
sented by the low-order bit of WCR shown in Figure 4.1. The drowsy bit is intended
to control the activation/deactivation of the selective-way scheme (drowsy mode). We
assume for this mode that the machine supply voltage can be dynamically scaled to
higher values of the threshold voltage V. As in the gated-Vdd scheme [91], this mode
reduces the leakage energy by using higher threshold supply voltages that cause the
leakage current to be reduced as a by-side of the short-channel effects. In contrast to
the gated-Vdd scheme, however, the supply voltage is scaled in such a way that the
state of the memory cell is preserved. Therefore, when reducing the cache size, we do
not need to completely disconnect a cache bank which may otherwise cause the loss of
the data stored into it. Note that, the drowsy mode only applies to the data array, as
explained above. This solution has been preferred in order to avoid the one cycle wake-
up delay needed to bring a tag-way out of the drowsy mode with each write access. The
fact of continuously maintaining the tag array in a non-drowsy mode has a negligible
impact on the leakage energy since the tag ramcells count for less than 4.2% of the total
area of our base cache.

Figure 4.2 reflects the changes introduced into the cache line in order to accommo-
date the drowsy mode. The drowsy bit is ANDed with the way-enable signal of each
cache line. An entire cache way may be put into drowsy mode depending on the sta-
tus of the way-enable signal and the drowsy bit. In particular, this happens when the
drowsy bit is set and the corresponding way-enable signal is unset. In such case, the
supply voltage for each cache line switches to the lower voltage, putting the entire bank
into drowsy mode. With the other cases, the supply voltage for each cache line is set
to the normal voltage, bringing the entire cache bank out-of drowsy mode.

Trace-based program addresses analysis 93
way-mask value | drowsy bit state cache config.
0 0/1 32K1W/8K1W
1 0/1 32K2W/16K1W
2 0/1 32K2W/16K2W
3 0 32K4W

Table 4.2: Effects of the MOV WCR instruction.

4.3.3 Design cost

To drive the drowsy signal of each cache line, an inverter and a AND gate have been
added. By assuming a memory cell dimension of 1.84 x 3.66 um, this results to approx-
imatively 2 memory cells per cache line. According to [38], the voltage controller adds
about 3.35 memory cells, assuming a memory cell layout of 6.18 x 3.66 um. The two
inverters, one in the voltage controller and the other in the precharge circuit, add an
equivalent of 1 more memory cell per cache line. Finally, the wordline gating circuit
accounts for 1.5 additional memory cells, making a total of 7.85 memory cells overhead
per cache line. Overall, for a cache size of 32K and a line size of 32B, this makes an
area overhead of less than 3%. Note that, in comparison to the circuit shown in [3§],
there is no need to use a drowsy bit on each cache line since the drowsy signal is directly
derived from the way-enable signal which is driven to each cache way. Using a drowsy
cache adds however some performance penalty. When a drowsy cache way is activated,
the voltage controller to each cache line simultaneously retires from the low voltage to
set the memory cell power line to the normal voltage. This takes one additional clock
cycle.

4.3.4 ISA support

The ISA support for the presented model can be resumed to a simple WCR modify
instruction, denoted by MOV WCR, to read /write the content of WCR shown in Figure
4.1. Given that such an instruction is provided by the ISA, Table 4.2 illustrates how
this instruction can be used to feature the different cache configurations shown in Table
4.1.

4.4 Trace-based program addresses analysis

The characterization of the cache size requirement of a dynamic program phase is per-
formed on a trace of address references previously extracted by means of profiling. Since
an embedded system is often designed to run a few types of applications, it is worth
to spend a fraction of time optimizing each embedded application intensively. In such
case, the time required to profile and pre-process the embedded applications can be
justified.

94 Power-efficient reconfigurable cache

Our approach to program profiling and trace processing consists in collecting the
dynamic LRU-stack profiles P, (mapj(x)) and Er,(mapj(x)), explained later, of the
running program, at some fixed sample interval II;. The variable x in the previous
expressions corresponds to the LRU-stack depth. By exploiting the cache inclusion
property, assigning different values to x permits to simultaneously evaluate alternative
cache memory configurations that share the same set-mapping function map;. Thus,
by also varying the set-mapping function map;, we can increase the range of alternative
cache configurations that can be simultaneously evaluated in a one pass simulation
through the address trace [46]. We assume for the rest of this study that the caches we
model support no prefetching, have the same block size and use the LRU replacement
policy.

4.4.1 Cache size performance profile, Py(map(z))

At each sample interval II;, P, (map;(x)) defines the performance profile of a cache
with set-mapping function map; and LRU-stack distance x. This performance profile
can be seen as the number of dynamic references that hit in all cache configurations
with the same set-mapping function map; and with the LRU-stack distance d < x.

4.4.2 Cache size energy profile, Ey(map(z))

Similarly, the expression Efy,(map;(x)) defines the dynamic energy profile of a cache
with set-mapping function map; and LRU-stack distance . We define the dynamic
energy per sample interval as follows:

Pr, (map;(x)) * E. (4.1)

Ex, (map;(x))

—+ ‘Hz|*ET+NHL*Ed
+ (|II;] — Readm, (map;(x))) * Ep,
where
E,, = energy_ratiox E, (4.2)

In (1), E. is the dynamic energy on each cache access, E,, the dynamic energy per
memory access, F/y the dynamic energy per drowsy transition, Er the dynamic energy
per each tag access, and Ny, the number of transitions to/from drowsy mode within
the sample interval II;. N, is measured by means of monitoring all bank transitions
within two consecutive dynamic cache memory accesses, reporting only those bank
transitions whose prior state was set to drowsy. The first expression in (1) models the
dynamic energy due to a hit in the cache. The second and third expressions respectively
model the energy due to accessing the tag part and the energy due to the drowsy mode
transitions. Finally, the last expression models the energy due to the memory access
on a read miss event and on each write access to the cache. In (2), we estimated the
energy _ratio constant to be 50.

Experimental setup 95

Parameter ‘ Value ‘
Issue width 4
Integer ALU 4
Multiplication units 2
Load/Store unit 1
Branch unit 1
data cache 32K 4-way
data cache line size 32B
data cache access latency 1 cycle
data cache replacement policy LRU
memory access latency 20 cycles

Table 4.3: Lx microarchitecture parameters.

‘ Benchmark Suite Datasets
ftt MiBench large
gsm MiBench large
susan MiBench large
mpeg mediabench test
epic mediabench | test image
summin Powerstone custom
whestone Powerstone custom
v42bis Powerstone custom

Table 4.4: Benchmarks used and number of accesses to data cache (in million).

4.5 Experimental setup

This section presents a preliminary evaluation of the cache size adaptation scheme
introduced in Section 4.3 and Section 4.4.

Our simulations were carried out on the Lx platform [35]. The Lx platform belongs
to a family of customizable multi-cluster VLIW architectures. The implementation
used in this study features a 4-issue width processor. The details of the processor
microarchitecture parameters are shown in Table 4.3. We evaluated our cache size
adaptation scheme with different applications collected from MiBench [42], Mediabench
[62] and Powerstone [95] suites. All the chosen applications were compiled with the Lx
native compiler, with the optimization level 3, and then run until completion. Table
5.2 shows an overview of each benchmark together with the datasets used. Some of the
benchmarks from these suites that we did not considered were not able to be compiled
with the Lx native compiler or were exhibiting close behaviors to some applications that
we already selected.

Our simulation parameters were obtained by means of CACTI [98] and Hotleakage

96 Power-efficient reconfigurable cache

‘ Parameter ‘ Value ‘
process technology 0.07 um
normal supply voltage 09V
drowsy supply voltage 0.3V
memory access latency 100 cycles
processor clock speed 5.6 GHz
drowsy transition latency 1 cycle

32k 4-way dynamic energy/access | 0.294 nJ
32k 2-way dynamic energy/access | 0.173 nJ
32k 1-way dynamic energy/access | 0.110 nJ

16k 1-way dynamic energy/access | 0.104 nJ

16k 2-way dynamic energy/access | 0.164 nJ
8k 1-way dynamic energy/access | 0.104 nJ

drowsy energy /transition 0.256 pJ
gated-Vdd leakage energy/cell 0.245 fJ
drowsy leakage energy/cell 0.308 pJ
normal leakage energy/cell 0.835 pJ

Table 4.5: Simulation parameters.

[118]. In particular, we extended CACTI to include the leakage energy functions of
the Hotleakage tool. We then employed the resulted modified CACTI tool to estimate
the dynamic energy per cache access for each simulated cache configuration, as well as
the leakage energy per cell for each simulated leakage energy reduction technique. The
dynamic drowsy transition energy was derived based on the results published in [38].
Table 4.5 gives an overview of the full simulation parameters that apply to this study.

4.6 Study of program behavior

After empirical evaluations, we have chosen a sample interval size of II; = 100K cycles
to record the energy and performance values for each cache configuration, as described
in Section 4.4.2. In order to emphasize the different energy and performance tradeoffs
between the cache configurations, we graphed in Figure 4.4 and Figure 4.5 the cumulated
energy values vs the number of cumulated cache misses encountered in each sample
interval of program execution. The x-axis records the logarithmic scale of the cumulated
number of cache misses obtained in each sample interval (e.g. a 3 in the x-axis means 103
misses). Each point of the x-axis is associated with a value in the y-axis corresponding
to the cumulated amount of dynamic energy consumed (also in logarithmic scale) up to
that sample interval. Let us for instance consider the gsm and fft applications shown in
Figure 4.4(a) and Figure 4.4(b), respectively.

In Figure 4.4-a, we can observe that there exists a threshold at which the different
cache configurations are clustered according to their size, independently of the degree

Study of program behavior 97

Legend

32KB, 1-wa)
32KB, 2-wa)
32KB, 4-wa
16KB, 1-wa
16KB, 2-wa\
8KB, 1-way

32K config 1-way config
insensitive to i
16K confi
conflict miss insensitivgto
, capacity effect jct miss Legend 32K n-way
. 32KB, 1-wa o |- insensitive
15 - . 32KB. 2-wa to conflict
L Y 32KB, 4-wa s (n>1)
2E 16KB, 1-wa)
05 - 22) 05—
- %G 8K config 16KB, 2-wa
o § §, msengnv@o 8KB, 1-way 3
) conflict miss ?g
e s o L n-way config/ ,
@ insensitive
-1 to conflict
5 miss (n>1
-15 — 8)
:]') -15 —
2 2
@
=25 — §
£
4 \ \ \ \ \ \ 2 ‘ ‘ ‘ ‘ ‘ ‘

3 4 5 6 0 1 2 3 4 5 6

o
-
~

cache miss cache miss

Figure 4.4: (a) gsm energy/performance profile; (b) fft energy /performance profile.

of associativity. In particular, we can distinguish three clusters: one with 32K con-
figurations, another with 16K configurations, and the last with the 8K configuration.
Configurations that belong to the same cluster are insensitive to the degree of associa-
tivity. Within each cluster, each cache configuration distinguishes itself from the other
by the dynamic energy consumption due to the cache hits since the miss ratio is nearly
the same. In such a case, the amount of dissipated energy is tightly coupled to the
architecture of the cache configuration and is mostly a function of the cache size. A
desired energy/performance tradeoff can then be achieved by moving from one cluster
to the other, as indicated by the arrow shown in that figure. This comes at the cost of
some performance degradation.

In Figure 4.4-b, we can also observe that two main cache clusters can be distin-
guished: one including the n-way cache configurations with n > 1 and the other includ-
ing the direct mapped cache configurations. These two clusters differ essentially in the
degree of associativity. As the program execution proceeds, the increasing effect of the
capacity misses forces the first cluster to be further splitted into two distinct clusters:
one which includes the n-way 32K cache configurations with n > 1 and the other with
the 2-way 16K cache configuration. In this case, the clusters are splitted according to
the cache capacity, independently of the degree of associativity. Again, in each cluster,
the energy consumption due to the hits also serves as the main distinguishing factor.

We have observed that this property is rather common to most programs, as it can
be seen in Figure 4.5. These examples prove that the dynamic working set of a program
can be arranged so as to take benefit of the inherent working set sensitivity to the
conflict or capacity miss, to save more energy. This property is exploited in the next
section to construct regions of different energy/performance tradeoffs.

98 Power-efficient reconfigurable cache

4.7 Approach for managing reconfigurability

The objectives of achieving a partitioning of the application’s working set into clusters
of cache configurations may be mainly motivated by two facts. First, there is the need
of keeping the number of reconfiguration points smaller enough in order not to impact
the performance and the energy. In the worst case, the cache may be reconfigured
at the beginning of each sample interval, which is unacceptable especially if too much
unnecessary reconfigurations take place (e.g. each one for each sample point). Finally,
the performance and the energy consumption may be also impaired by the excessive
number of inserted reconfiguration instructions - which may grow the code size and
raise the energy consumption - and the additional number of cache misses induced by
changing cache configurations.

The partitioning is done relative to the base cache configuration. In particular, a
cluster of cache configurations with identical sensitiveness to the conflict /capacity miss
is constructed from two cache configuration points B and C' if each one of them belongs
to the closest vicinity of the other, with respect to a reference point A of the base cache
configuration.

Let us consider Cyqs and C}, as being the set of values collected at each sample inter-
val II; for the base cache configuration Cpqse and for each simulated cache configuration
Cl, respectively. The expressions of Cy,s. and Cj, are defined as follows:

Cr={(PF, E}),0<i < N} (4.3)
Chase = {(Pbase;, Ebase;),0 <i < N} (4.4)

In the above expressions, IV represents the number of sample intervals II;. In order to
partition the working set into similar sensitive cache configurations, we use a Manhattan
distance vector Vj, as follows:

Vk = (v]f77)12€7"'7v]k\7)7 (4.5)

where
vf = |PF — Pbase;| + |EF — Ebase;] (4.6)

Two cache configuration points (P!, EF!) and (P*2, EF?) belong to the same cluster
if their respective Manhattan distance value is related by the following relation:

|va — vfl| <T (4.7)

7 is a threshold value that is used to decide when to cluster or not. Once the cache
configuration points have been clustered into partitions of equal sensitiveness, each
partition is chosen a representative cache configuration based on the best performance
to energy ratio of each cluster of cache configurations.

Results 99

The performance to energy ratio of each cluster is computed based on the value of
the last sample point (i = N). The idea is to capture the relative amount of performance
degradation corresponding to a given energy budget. For this, the ratio %SQ_SEE of each
cache configuration belonging to a cluster is evaluated against each other. A smaller
ratio is preferred since this would imply that for a given power budget, the performance
is better. Then, for two clusters that span the same working set size, we choose the cache
configuration of the representative partition element which has the best performance to
energy ratio. The ISA instruction introduced in Section 4.3.4 can then be inserted at

the appropriate working set frontier to enable the corresponding cache configuration.

4.8 Results

This section presents the results obtained by evaluating the proposed cache resizing
scheme. The evaluation discussed in the remainder of this section is centered around
three different performance aspects: the dynamic energy reduction, the leakage energy
reduction and the performance degradation estimated in terms of increased total cycle
counts.

4.8.1 Dynamic energy reduction

The leftmost side of Figure 4.6 shows the dynamic energy consumption results for the
proposed cache resizing scheme. For the purpose of comparison, we also evaluated the
dynamic energy consumption of the best performing cache configuration. The best
cache configuration can be configured once before application’s execution. Therefore,
this configuration models the approach proposed by Zhang [117]. It can be seen from
the figure that the proposed hybrid scheme can indeed reduce the energy consumption
in some cases. Looking precisely at them (gsm, susan, summin, mpeg, epic and v42bis),
we observe that they correspond, to some extent, to the cases where there exists a source
of working set size variation in the program execution. This mainly explains why the
working set can be ideally partitioned into clusters of different cache configurations.
In these examples, the energy consumption can be further reduced from 5 to 12%
compared to the best performing cache configuration. However, in the other cases
where the working set shows little or no variation, the proposed hybrid scheme provides
no benefit. This is the case of fft and whestone.

4.8.2 Leakage energy reduction

We estimated the leakage energy, Ercqr, of a program as follows:

ELeak = e_leaki * Ncell * Tcyc

100 Power-efficient reconfigurable cache

In the above expression, e leak; represents the leakage energy per cell for each one
of the simulated leakage reduction technique ¢, Ncell the number of cells in the cache
and Ty, is the total number of cycles to execute the given program. T, is computed as
the sum of the number of cycles required to execute the program without any data cache
stalls, plus the estimated data cache miss times the miss penalty. Figure 4.7 illustrates
the leakage energy of the cache configurations show in Figure 4.6, left. We calculate the
leakage energy of the best performing cache configuration by employing a gated-Vdd-
based technique. It can be observed from the figure that the proposed hybrid scheme
can reduce the static energy by more than 80%. This is a substantial reduction since
the leakage energy of future caches generation are predicted to consume as much as 50%
of the total power consumption [118]. The advantages of the hybrid scheme are best
highlighted on fft, gsm, susan, summin, epic and v42bis. The best cache configuration
is however superior to our scheme whenever the capacity of the cache can be reduced
over the entire program run. This is the case of whestone. In this latter example, the
gated-Vdd scheme considerably reduces the static energy compared with the drowsy
mode. However, because this case is not the common, we believe our proposed hybrid
scheme offers a more flexible alternative for many other applications.

4.8.3 Performance degradation

We evaluated the performance degradation in terms of the number of additional clock
cycles required to execute a program. The simulated results are shown in the rightmost
side of Figure 4.6. The primary causes of performance degradation in the proposed
scheme are due to the one cycle delay of the drowsy transitions and the cache misses
induced by changing a configuration. Our results are relatively high in some cases
because we actually have considered the worst case in which a drowsy transition may
occur even within a single phase. This is indeed inherent to the architecture since two
data addresses may eventually be mapped to different combinations of cache bank in
the same phase, causing unnecessary drowsy transitions. This is mainly reflected in
susan and mpeg where the degradations are the worst, 35% and 31% respectively. From
within this additional number of cycles, more than 65%, in average, are due to the
drowsy transitions, the remaining part being due to the additional number of cache
misses. A more efficient solution will therefore consist in choosing the set of invariant
cache banks that will remain active throughout a complete program phase. This solution
provides the benefit of eliminating the superfluous drowsy transitions, but at the cost of
increasing the number of cache misses due to the invalidated data that may eventually
be accessed in other configurations.

4.9 Related work

Our work is primarily concerned with research related to cache size adaptivity. In this
sense, the work in [7, 114, 32| bear some similarities with our own. These researches

Summary 101

share the particularity that some means of hardware adaptation scheme is required to
allow a search of the optimal solution. In [7], the authors adapt the cache size of a
L1/L2 or L2/L3 memory hierarchy in reaction to the sensitivity of a running program
to some performance metrics collected dynamically, involving the IPC, the cache miss
ratio and the branch frequency. The authors rely on the selective-way architecture
[1] to accordingly enable/disable cache ways. This work is intended to general purpose
systems featuring several levels of cache memory hierarchy. The proposed cache resizing
algorithm can however be used as well in the context of embedded systems, provided
that some means of dynamic performance monitoring is available. In the same order,
[32] reformulates the cache resizing adaptivity algorithm of [7] to use instead working
set signatures, to capture phase changes and to estimate the size of a working set. This
solution however also requires an extra hardware effort. Yang et al. [114] proposed
a work similar to ours. They rely on the cache resizing schemes of [1] and [115] to
propose a hybrid cache of superior resizing granularity than either one of them. The
hardware implementation cost of the selective-set scheme is however very expensive to
be integrated on a embedded system. In addition, the proposed hybrid cache has a
more restrictive cache resizing granularity for direct-mapped cache configurations (8K
in the paper for a cache size of 32K). In addition to this, we should notice that our work
primarily addresses embedded systems. We seek therefore a low-cost, software-based
cache resizing adaptivity scheme. Though our objectives are the same, the different
application domains impose us to look for different solutions.

Zhang et al. [117] also presented how the way-concatenation scheme could be used
together with a selective-way-based scheme to further reduce energy. The main differ-
ence between our approach and the one proposed by Zhang is essentially on the appli-
cability of cache resizing. Zhang et al. look for the cache configuration that gives the
best performance on a per-application basis, and therefore only configure the program
once at startup time. Thus, the variations in cache size requirements within the run-
ning program are not taken into account. We seek instead to adapt the cache memory
to meet the dynamic cache size requirements of the running program. This difference
infers some divergences in the implementation decisions of the selective-way scheme.
Zhang et al. propose to use a circuit technique called gated-Vdd [91] to implement their
selective-way scheme. Gated-Vdd permits to reduce the cache leakage energy by gating
off the supply voltage to the unused cache memory cells. However, this technique does
not preserve the memory cell state, causing the stored data to be loss. This, in addition
to the coherency problem we addressed in Section 4.3, are serious hindrance to make
their scheme reconfigurable on a per-phase basis.

4.10 Summary

This chapter has proposed to modify the structure of a configurable cache in order to
offer embedded compilers the possibility to reconfigure the underlying cache memory
according to the cache size requirement of a dynamic program phase. The objective

102 Power-efficient reconfigurable cache

followed was the reduction of the switching activity on the cache subsystem. We showed
that with the proposed cache resizing scheme, some reduction in the dynamic and static
energy can be realized. In essence, we proved that this energy reduction is significant
for applications showing a dynamic working set size variation. In particular, we showed
that in such cases, the application’s working set can be classified according to a program
property we called conflict/capacity miss insensitiveness. We presented simulation re-
sults that demonstrated this property is rather common with most programs. In the
light of this model, we explored a compiler strategy that may take advantage of this
property to partition the application’s working set into clusters of similar cache sensitive
configurations that can save more energy.

Summary 103

SUSAN MPEG2DEC
25 |
Legend Legend
2 32KB, 1-way 05 32KB, 1-way
32KB, 2-way 32KB, 2-way
B 32KB, 4-way oL 32KB, 4-way
1 - 16KB, 1-way 16KB, 1-way
16KB, 2-way 16KB, 2-way
.o 8KB, 1-way o 8KB, 1-way
o >
[} o 3
c c
5}) g
-05
g i -15 —
-15 —
ok
o
25 | | | | | | 25 | | | | |
0 1 2 3 4 5 6 0 1 2 3 4 5
cache miss cache miss
EPIC SUMMIN
' Legend 2 Legend
32KB, 1-way 15 32KB, 1-way
2 32KB, 2-way 32KB, 2-way
32KB, 4-way 1 32KB, 4-way
16KB, 1-way 16KB, 1-way
e 16KB, 2-way 05 1= 16KB, 2-way
- 8KB, 1-way - 8KB, 1-way
o 3 0
@ 0= 5]
3 & -05 —
b b
-15 -
ok
o
3 | | | | | | 225 | | | | | |
0 1 2 3 4 5 6 0 1 2 3 4 5 6
cache miss cache miss
V42BIS WHESTONE
Legend Legend
2 32KB, 1-way . | 32KB, 1-way
15 32KB, 2-way 32KB, 2-way
32KB, 4-way 32KB, 4-way
e 16KB, 1-way 1 16KB, 1-way
16KB, 2-way 16KB, 2-way
“r 8KB, 1-way 8KB, 1-way
3 o
o < 0
5] o 2
5 / 5
-05 — z‘&
& E1s
b
-15
ok
o
25 | | | | | | | a3 | | | |
0 1 2 3 4 5 6 7 0.0 05 10 15 20
cache miss cache miss

Figure 4.5: Energy and performance profiles

L% omS3rg

"91o®D 9seq o] Ym pareduwod A310ud oFeed] SATIR[IY

32K2W
ft
16K2W[32K2W

32KW

16K2W[32KIW

32K2W
susan
16KIW[32K2W

32K2W
mpeg
32K1W[32K2W

32K2W
epic
32KIW16K2W

32KIW
summin
16K2W[32K2W

sKaw
whestone
sKIw

32K2W
V42bis
16K1W[32K2W

Relative leakage energy

80

90

o
zo
9T-98'

aseyd-1ad
uoneaidde-1ad

e

puaba

uorydwnsuod A31aus otwreuA(q (1Jo[) 9§ 231

¢

"uo1yepeIdep ouRULIONSJ (1SLI)

¥0T

Relative energy consumption

32Kaw
epic 39K2W
32K1W|T6K2W

Kaw

o o o o
° S IS > & N
32Kaw T T T T {
fft 32K2W
16K2W|32K2W
32K4wW
gsm 32K1W
16K2W|32K1W
32Kaw
susan 32K2W
16K1W|32K2W
32KawW
mpe% 32K2W
KWK —
32KawW
epic TGN (—
32K1W|16K2W
32KawW
summin 32K2W
16K2W|32K2W
32K4w |
whestone 8KIW
8K1W
- 32K4w |
VA i —
16K1W|32K2W
- 5 o
g8 2
s 5 0 h
38 o0&
2 T 2 @
8 53 3
83 =
3
El
Performance degradation
o 13 o o e I
° S N > & - o IS
sacaw | T T
fft 32K2W]
azkaw]
gsm 32K1W |
16K2W[32KL
32Kaw 1
susan 32K2W |
32Kaw 1
mpe% 32K2W
2K1W[32K2W
]
|
32t]
summin 2K1W
16K2W|32K2W

s2kaw [|

whestone BKIW
BKIW
2kaw []

E
Vazbis 32KaW
i m————

9YorD S[qRINSIFTI0IAT JUSIIIJO-TOMOJ

:

aseyd-sad

uoneoydde-iad
ayoed aseq
puaba

Chapter 5

Power-eflicient reconfigurable
processor datapath

With the trend toward high-performance, new generation processors have evolved to
support aggressive architected features to reap maximum performance. This trend has
also been accompanied with a continuing increase of the bit-width size, principally be-
cause of the need of larger addressing space and memory bandwidth. Whereas in many
case this trend had settled on 32-bit wide datapath, it is now keeping growing, sup-
porting up to 64-bit datapath width for new generation processors such as the Itanuim.
This bit-width growth has been set forth to benefit first to the vast majority of ap-
plications, which until recently were largely dominated by scalar processing on 32-bit
integer data types. However, with the recent confluence of general purpose and mul-
timedia applications on modern embedded processors, this is no more the case, since
many of these latter applications operate on narrower data widths, e.g. 8- and 16-bit
data. Brooks et. al. [18] have recognized this opportunity. They observed that with a
64-bit Alpha-like processor, more than 50% of the instructions had their operands with
16-bit or less while executing the MiBench programs suite [42]. A significant fraction of
the processor’s power-efficiency is thus wasted when operating with these narrow-width
operands.

Many techniques have been deployed to reduce the energy consumption in modern
processors [109]. However, using bit-width optimization as a means to tackle this prob-
lem is a relatively new topic of research and only few works have already emerged in
this direction. Basically, employing bit-width optimization for the purpose of energy
reduction requires that a few common operations be implemented, which involve:

(1) detecting the useful bit-width of the operand and,

(2) clock-gating the insignificant bit portions of the operand being operated on by a
functional unit.

A taxonomy of bit-width-based optimizations can then be arranged according to

105

106 Power-efficient reconfigurable processor datapath

the issues involved when considering the first operation. Schemes that rely on a form
of compiler analysis to discover ranges of useful bit-width values [21, 105, 26, 69, 25]
can be classified as software proposals, since the bit-width detection operation is done
statically. On the other hand, schemes that rely on some means of architected feature
to infer operand bit-width [18, 29, 24] can be deemed as hardware proposals.

Problematic and approach Software approaches offer a low-cost solution to bit-
width-based optimizations and can therefore be easily adapted to existing embedded
systems. However, due to their inadequacy to exploit the dynamic variations of operand
sizes, they may also miss a substantial number of bit-width optimization opportunities.
In contrast, architectural approaches are designed to take this variation into account
and can therefore provide a more accurate solution to (1). However, these architectural
schemes also require complex hardware mechanisms that are often not affordable in the
embedded system context. As an alternative, we propose in this chapter to explore a new
synergistic hardware /software approach for better exploiting an embedded system with
narrow-width data. The principal idea of this chapter is reducing the power consumption
of a processor by minimizing the amount of switching transitions on the datapath.
Energy is saved because few switching transitions may occur in the datapath as it
is resized to lower bit-width sizes. To do so, we assume that the ISA is augmented
with an instruction indicating that the subsequent code might be executed through
a narrower path; thus requiring only narrow datapath and narrow register operands.
This instruction is just a hint. Then, at hardware-level, a simple exception management
allows to recover instructions executing with full datapath-width on an incorrect hint.
In this sense, we introduce datapath-width speculation principally as a means to predict,
at the software level, the operand bit-width of certain program regions; this in order to
anticipate the reconfiguration of the processor resources. We show that our proposed
scheme enables lower hardware complexity, while exploiting the full software potential
for bit-width detection.

Chapter contributions The contributions of this chapter are two-folded. First, we
provide evidence that there exists static code regions corresponding to dynamic program
instances, where the vast majority of the operands execute with a narrow-width. We
then present techniques to uncover these regions at code generation time. Second, we
present the architectural support that exploits these regions at runtime. The idea is to
reconfigure the datapath width as well as the register file width when such a narrow-
width operand region is encountered. Central to our approach is the speculative nature
of the execution width of a region: we present a simple and efficient recovery mechanism
for handling such width mispredictions.

Chapter organization The remainder of this chapter is organized as follows. Section
5.1 discusses the prevalence of narrow-width operands in programs and motivates this
research. In Section 5.2, we review software and hardware approaches for exploiting

Prevalence of narrow-width operands 107

B svis [] tebits [320its

100%

0%

=
E 2 8 £ 2 3 9 & ¢ & 5 2 £ 2
g 5 ¥ ¥ @& = ¢ © = ~ & = 2
Qa ™ Qa9 =© o = 5 b T o
o o £ o 5 T
® € o] a >

9]

v

Figure 5.1: Cumulated distribution of operands bit-width. The first bar shows results
for one operand; the second bar shows results when both operands are considered.

narrow-width operands. In particular, we discriminate among the issues that make these
techniques less attractive for high-performance VLIW processors. We show evidence of
narrow-width operands regions in Section 5.3. The architectural support that permits
to exploit these narrow-width operands regions is detailed in Section 5.4. Then, in
Section 5.5, we present our strategy to detect them at code generation time. Our
solution overview is detailed in Section 5.6. Our methodology and experimental results
are presented in Section 5.7 and Section 5.8, respectively. Section 5.9 concludes this
chapter.

5.1 Prevalence of narrow-width operands

Brooks et. al. [18] were the first to emphasize the availability of narrow-width operands
in programs. They conducted their experiments with a 64-bit Alpha-like processor. We
have performed equivalent experiments on typical embedded applications, e.g. Power-
stone benchmarks [95], running on a 32-bit RISC-like embedded processor [35]. The re-
sults shown in Figure 5.1 illustrate that, on average, 45.5% of the instructions have their
operands with less than 16-bit or equal. This is already in accordance with Brooks’s es-
timations, which found that about 50% of the integer instructions execute with narrow-
width operands in multimedia applications running on a general purpose system.

Unlike a general purpose system, however, in an embedded system, the compiler
plays a central role in achieving high performance. It is therefore of importance to
improve the compiler’s effectiveness to manage both power and performance. Since the
basic block is the natural compiler granularity, we introduced the possibility to master

108 Power-efficient reconfigurable processor datapath

uint32 x;
for(i = 0; i < 25; i++) {
xr +=i; /* 8-bit: 88); 16-bit: 12/ */

Figure 5.2: C code example.

narrow-width operands at the basic block level. At this granularity, the compiler can
even achieve better energy/performance tradeoff, rather than relying solely on the hard-
ware, since much more hardware components can be "turned off" over a longer period
of time. Moreover, in contrast to the dynamic approach proposed in [18], considering
bit-width regions at the compiler level provides the additional advantage of reducing
the overhead due to clock-gating on a cycle-by-cycle basis.

5.2 Approaches for exploiting narrow-width operands

In this section, we review some of the approaches often deployed to take benefit of
narrow-width data. We mainly focus on the approaches that try to reduce the energy
consumption using bit-width optimization.

5.2.1 Exploiting narrow-width operands via SIMD compilation

Exploiting the processor’s datapath with short data-types is not a new topic of research.
The SIMD programming paradigm has been introduced primarily as a means to take
advantage of the full processor’s data-width for improving the multimedia performance
[92, 59, 87|. As a side-effect of applying SIMD techniques, some studies have shown
that energy consumption can also be reduced [33]. This can be primarily attributed
to the reduction in the number of executed instructions. Many issues however make
the exploitation of SIMD techniques very difficult to realize. In particular, the natural
approach to exploit SIMD compilation is to rely on vectorizing technology as a basis for
discovering SIMD parallelism. Since many instruction set imposes some constraints on
memory data alignment, an alignment analysis phase is often added to take this issue
into account. Finally, recognizing the right instruction to use is a difficult task because
many multimedia instructions implement complex operations dedicated to computation
intensive kernels such as FIR filters. For instance, the TriMedia [34] instruction set offers
an instruction capable of simultaneously computing four averages on bytes data.

Approaches for exploiting narrow-width operands 109

5.2.2 Exploiting narrow-width operands in software

Most of the recent compiler research devoted to bit-width analysis rely on dataflow
analysis techniques to determine the maximum bit-width of operands. In order to do
so, the compiler must compute the possible ranges of bit-width values a variable can take
during execution, while remaining overly conservative to preserve program correctness.
An algorithm reminiscent to constant propagation is used to propagate initial value
ranges over the program control flow paths, along with the corresponding refinements
obtained at each point of variable definitions. Variants of this algorithm have been
implemented in the literature [105, 26, 69, 25]. In either case, the initial value ranges
are collected for some set of variables and forward and backward compilation passes
are applied iteratively in order to propagate the refinements obtained at each point of
definition to the next point of use. This is done until no changes in the value ranges of
a variable occur or after that some fixed number of iterations have elapsed.

However, since the purpose of these algorithms is to assign the mazimum bit-width
range a variable can take during execution, they may miss a significant number of
optimizations opportunities. In order to evidence this, let us, for instance, consider the
piece of code shown in Figure 5.2. This code illustrates the limitations of a bit-width
analysis approach regarding the representation of the variable z. In the example, the
variable z can be represented with at most 16-bit for a correct execution. A compiler
analysis technique will therefore adjust the variable bit-width size to a more appropriate
bit-width, i.e. 16-bit. Nevertheless, as depicted in Figure 4.3, the variable z requires
most of the time (i.e. 88%) only one byte for executing. However, since the bit-width
transformation must preserve program correctness, it may not be possible to adjust the
bit-width size to less than 16-bit; thus missing a non-negligible amount of bit-width
optimization opportunities, as already pointed out in [18].

5.2.3 Exploiting narrow-width operands in hardware

As highlighted in previous section, software approaches exclude a significant portion
of bit-width optimizations since they must preserve program correctness. By contrast,
hardware schemes permit to cover the entire bit-width potential since the size of data
are detected at runtime. Some works have been proposed in this sense [18, 29, 24] that
dynamically exploit narrow-width operands. The main distinction between these latter
lies in the manner by which narrow-width values are recognized.

In the approach proposed by Brooks et. al. [18], a narrow-width operand is detected
upon evaluating the high-order data wire signals to zero. This evaluation is performed
each time an ALU result is produced. Depending on the outcome of the evaluation, a
zero-bit signal is generated and stored along with the result operand whose upper bit
values are provided either via hardwired zeros or via the result bus, through the use
of a multiplexor. By reading an operand from the register file, this signal is used to
selectively latching the upper bits of the operand; thereby saving energy in both the
latches and the functional unit. Apart the zero detection logic that the authors assume

110 Power-efficient reconfigurable processor datapath

narrow-width regions

-1 ~ <

100%

80%

60%

40%

Fraction of 8/16 bits

20%

0% .
Cycle time

Figure 5.3: Dynamic bit-width distribution at the granularity of a basic block for adpcm.

being available in modern machines, this approach can as well be applied in our context.

The approach proposed by Choi [29] is to some extent similar to that of Brooks. The
ALU is divided into a least significant part and a most significant part, the latter part
being activated via a guarded latch whose control falls to a zero detection logic that
acts every time an operand is presented to the ALU input latches. Compare to [18], the
detection logic operates just before the ALU computation takes place; therefore adding
to the delay and clock cycle time.

In [24], Canal et. al. have considered a byte-serial (8-bit) or a semi-parallel (16-
bit) pipeline to exploit narrow-width data at the architecture level. The idea relies
on appending extension bits to data residing in caches and registers in order to reflect
which part of the processing data is significant. Only the useful bytes are loaded,
stored or computed on, and therefore a significant fraction of the switching activities
can be reduced. However, the fixed nature of the processor’s datapath incurs a high
performance penalty when processing operands of a larger bit-width, e.g. 32-bit or
more. This performance degradation can simply not be afforded on performance-critical
systems.

5.3 Narrow-width operands distribution analysis

Through profiling, we collected some statistics on the width of operands for applications
from the Powerstone benchmarks suite [95] on various input data sets. For instance,
Figure 5.1 illustrates that narrow-width operands can be of a large number on adpcm.
In this section, we consider their availability at the basic block level and we propose to
examine their distribution across a program run.

Narrow-width operands distribution analysis 111

adpcm
00%

v42bis auto

Figure 5.4: Average operand bit-width convergence.

Figure 5.3 captures a snapshot of the dynamic operand bit-width profile of the adpcm
benchmark. Each point of the x-axis identifies a dynamic instance of a given basic block,
while the value associated with the y-axis represents the availability of the narrow-width
operands within that basic block. It can be seen from the figure that a sufficiently large
number of basic blocks execute with more than 60% of their operands having 16-bits
or less. This last point may lead to two main observations. First, this indicates that a
strong narrow-width operand locality exists for the considered granularity. Second, this
suggests that executing these basic blocks on a narrower datapath-width may increase
the compiler opportunities for saving the energy. Hence, we may try to take advantage
of this to speculatively accommodate the width of the processor’s datapath to the
operand’s width of a basic block or region.

However, before we may exploit this fact, we must ensure that basic blocks exhibiting
such a behavior verify a property we call bit-width convergence. Bit-Width convergence
refers to the fact that, for a given basic block, its operands width may not vary frequently
enough during execution. The rationale behind this property is to prevent the compiler
from optimizing on very sensitive narrow-width operands regions. We estimated the
bit-width convergence in the following manner. When a basic block is found to execute
with 16-bit or less (according to a defined threshold), we record for each future execution
of the same basic block the number of times we are wrong. We then average this value
on all the basic blocks of concern. This provides us with an estimate of the average
bit-width convergence for a given application. Typically, a high value indicates that
bit-width transitions occur very infrequently from one dynamic instance of a region to
another. The results of the bit-width convergence, considering an 80% narrow-width
operands availability, are shown in Figure 5.4. On most applications in our benchmarks
set, basic blocks execute with constant operand’s bit-width on our data set inputs.

112 Power-efficient reconfigurable processor datapath
5.4 Architectural support for speculative execution

In this section, we examine a potential architectural support for exploiting narrow-
width operands regions. One beneficial approach may consist in reducing the pipeline’s
activity while achieving acceptable performance. Therefore, we present a reconfigurable
architecture that may dynamically adapt itself to an application’s bit-width behavior.

5.4.1 Hardware-exposed datapath-width reconfiguration instruction

In order to benefit from narrow-width data elements at the software level, we propose to
enhance an ISA with an hardware-exposed datapath-width reconfiguration instruction.
The effect of this instruction can be deemed only as a hint to predict the execution
width of subsequent regions. Via the use of this instruction, the compiler may specu-
latively cause the execution of a region to accommodate on a narrower datapath-width
(8-bit, 16-bit or 32-bit mode). Then at runtime, a simple hardware-based exception
mechanism will allow to recover instructions executing with full datapath-width in case
of a misprediction.

5.4.2 Reconfigurable register file model
5.4.2.1 Related Work

Previous research on reducing the register file activity focused on either, limiting the
number of registers [8] or, limiting the number of ports [110]. Only few studies attempted
to capitalize on narrow-width data for the same purpose. Canal et al. [24] proposed
to load, store or compute only significant bytes in the whole pipeline stages. To do
so, they designed a byte-serial pipeline where the data are processed on 8-bit slices. In
order to provide this 8-bit access, they considered a 32-bit register file partitioned into
8-bit banks. In their study, as only one bank is requested per cycle, this multi-banked
approach permits to reduce the register file activity. In contrast to their work, we
are considering a data-path that is dynamically resizable according to the application’s
needs. As a matter of fact, in a multi-banked model, the row decoders are replicated on
each bank. Therefore, accessing a wide data would generate redundant decoding and
thus, useless power consumption.

5.4.2.2 Owur Approach

We introduce a novel register file organization, the byte-slice register file. This energy-
aware design permits to dynamically resize the register file width so that it can be viewed
as a 8-, 16- or 32-bits conventional register file, as depicted in Figure 5.5. The register
file is logically splitted into three slices: the first slice, representing the low-order data
byte, is always enabled, whereas the others are controlled by means of a "slice-enable"
signal. In our scheme, at anytime, the registers can hold different bit-width data; and

Architectural support for speculative execution 113

;\ slice-enable signal
EXN
%>, 8bits 8 bits 16 bits
KN
— | lo1] 10010011 0000 0000 0000 0000 0000 0000
Q
B | o] 10010011 00101100 0000 0000 0000 0000
gl . . .
< .
2
g
11| 1001 0011 00101000 1100 0010 0000 0010
i BT g i b S
32 bits

Figure 5.5: Byte-slice register file.

thus, it is not possible to turn off unused slices, unless there is a way to recover the
lost informations. Considering this fact, the slices are turned off in a low-power mode,
achieved by the drowsy state [38]. In order to support such a state, we assume that
the memory cells are modified as described in [4]. Technically, the drowsy circuitry is
a state-preserving circuit that relies on voltage scaling for leakage reduction. A slice
in a low-power mode preserves its data, although, it must switch back to the normal
mode to get the correct information. The tag bits illustrated in Figure 5.5 provide this
feature. We will get back to this later when we will discuss the recovery mechanism.

In contrast to [24], the adaptability and the simplicity of the byte-slice concept
provide the advantages of being well suited to dynamically reconfigurable pipelines. In
addition, the drowsy circuitry, which represents only a small area overhead [4], makes
our design inherently low-power.

5.4.3 Reconfigurable datapath

In this section, we describe a power-effective pipeline that may take advantage of the
narrow-width regions. As depicted in Figure 5.6, the datapath has the ability to adapt
to the bit-width behavior of an application. This reconfigurable aspect is done via the
clock-gating technique [18]. Clock-gating is a well-known scheme used to reduce the
dynamic power consumption in today’s processors [72]. In our approach, the coarser
clock-gating granularity (at region level) reduces the amount of dynamic power dissi-
pated by the clock-gating circuitry [5].

5.4.4 Recovery mechanism

To tackle the disadvantages of a static compiler analysis, as pointed in [18], we propose
to statically construct narrow-width regions by using runtime informations. In order to
increase the number of these regions, we also consider the ones that verify the bit-width
convergence property; thus introducing datapath-width speculation. However, since

114 Power-efficient reconfigurable processor datapath

1 1 1 1
1 1 1 1

X write-back | ! !

\ Ehesz | X X

slice-enable signal | signal | \ \
(18/16/32] signal) 1 1 I I
—_— 1 1 1 1
| bypass | | |

\ : [8/16/32] : :

I signal \ \

1 1 1

1 1 1

1 1 1

1 1

! 1

| ALU > > LSU \

[8/1711/32] > [{16/32‘ | 1

. signal 1 1 1

sigpal 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

RR . EX . MEM . WB .

1 1 1 1

Figure 5.6: datapath.

it is not realistic to profile each application for each input data, or due to a dynamic
event, a datapath-width misprediction may occur. In this section, we present a recovery
mechanism that identifies the malformed regions and acts accordingly.

The main idea is to use a few tag bits to decide whether the current narrow-width
region has been correctly predicted. In this respect, we use two tag bits appended to
each register (see Figure 5.5) in order to discriminate between the different datapath
modes (i.e. 8, 16, 32-bit mode). With a 32-bit width register file, this represents a
negligible area overhead, with only 6% of the area being devoted to the tag bits. These
tag bits reflect the true data-width and are generated by the functional unit, upon
completion of an operation, and by the memory unit, upon a load instruction. [24] uses
a similar scheme, however, we employ the tag bits in a different manner. While in [24]
they act as a way to serialize the execution, in our proposal the tag bits dictate the use
of the recovery mechanism.

The flow chart shown in Figure 5.7 illustrates the basic concept of this recovery
mechanism. When an instruction reads its source operands from the register file, both
the data and the tag bits are fed to the functional unit. A simple comparison logic,
located at the execute stage, detects whether the current operating mode is correct or
not. If it appears that the current mode is narrower than the one expected, the current
instructions are replayed, i.e. the pipeline is flushed and the correct width is enabled.
When an instruction produces a result larger than the current mode, the pipeline is
stalled while switching to the correct width. Although this mechanism may relatively
impact on performance, its hardware simplicity fits well into the embedded context.

Architectural support for speculative execution 115

reading source operands

1
1
RR stage tag bits !
and tag bits : N 1
1
1
1
1 -
1 comparison :
| source operangs
EX stage compare the tag bits 1 % !
to current mode 1 ALU :
1
] o
exception
incorrect
mode
continue execution replay trap continue execution
and correct mode and shrink the datapath

Figure 5.7: Recovery mechanism.

ISA extension Description
MOVACC Reg ACC = Reg
MOVREG ACC Reg = ACC
LDACC Reg (ACC) = Reg
STACC Reg Reg = (ACC)
ADDACC Reg | Reg + ACC = ACC
SUBACC Reg ACC - Reg = ACC

Table 5.1: Basic address instructions.

5.4.5 Handling address instructions

Address instructions, e.g. load and store, must be handled separately, since they usually
require a larger bit-width to represent memory addresses. We may address this problem
by using a dedicated register file for memory addresses, in a way which is reminiscent
to a decoupled architecture approach [102]. This feature is already integrated on some
modern embedded processors [74]; they may therefore directly benefit from our scheme.
For the processors that do not provide support for this feature, we suggest using spe-
cial purpose registers, e.g. accumulator registers, for hosting and computing memory
addresses. Along with the accumulator registers, the ISA must also permit the data
transfers between the register file and the accumulators. Table 5.1 shows a possible
subset of basic instructions that must be provided to support this scheme. In the table,
the load and store instructions must have their base address residing in an accumulator
register. The arithmetic instructions might be needed for computing new addresses.

116 Power-efficient reconfigurable processor datapath

. 32 bits other |:| 32 bits address |:| 8/16 bits E % regions

‘m!!' el L

80% 1 /

60% |

40% /\ / /\

narrow-width regions characteristics

20%-/\ \/
T N
o o a v = o)) 2
EScg3¢§8 g5
2 ® 49 =2 8 35 =2 > g - g
° < 9 >
© €) aQ
o
o

Figure 5.8: Average narrow-width regions characteristics (bargraph) and regions repre-
sentativeness in program (linepoint).

5.5 Detecting narrow-width regions

Having analyzed the distribution of the narrow-width operands and the relative bit-
width convergence of the regions, this section discusses the formation of the narrow-
width regions in the back-end compiler.

5.5.1 Selecting candidates regions

In selecting the candidates regions, we may be forced to leverage the availability of the
narrow-width operands against the probability that a bit-width misprediction occurs at
runtime. This might be primarily due to the fact that only a few regions would be able to
exhibit narrow-width operands exclusively. This phenomenon can be indeed observed
in Figure 5.3, where no perfect candidates regions can be found. Therefore, these
regions may be chosen according to an arbitrary narrow-width operands availability,
first ignoring the constraints due to the wide data. We assume for the rest of this
study a threshold at 80%, which corresponds, on average, to one instruction out of five
that executes with at least one 32-bit operand. Under this consideration, Figure 5.8
illustrates the average bit-width profile of a narrow-width operands region. The figure
reveals that some applications have perfect narrow-width operands regions, e.g. bcnt
and bilv. Some others, however, include instructions with larger operand’s bit-width.
These are labeled in the figure with 32-bit other and 32-bit address. The former indicates
the fraction of instructions, not counting the memory instructions, having one of their
operands with 32-bit. The latter represents the fraction of memory instructions. We
may then attempt to build 32-bit-free operands regions out of these regions.

Detecting narrow-width regions 117

5.5.2 Regions transformation

It is explicit from the previous section that building a narrow-width operands region
implies to deal with the 32-bit operands instructions. This section discusses a technique
to efficiently overcome this problem.

Graph partitioning

By assuming that we have a means to deal with address instructions separately, e.g.
accumulator registers, the problem to which we are confronted at this stage may be
viewed as a graph partitioning problem. Let the graph G denotes the data dependence
graph confined to a basic block. A node N of GG represents a basic block operation. Two
nodes, N and M, of G are connected via an edge e if there exists a def-use relationship
among them. The graph partitioning problem consists in selecting the set of load/store
nodes having one of their operand with 32-bit, in order to replace them with equivalent
accumulator-based instructions, while minimizing the cut-size. The cut-size may be
viewed as the number of additional instructions needed to move the data between the
accumulators and the register file. This latter must be kept small enough in order not to
impair the performance and the energy. We use a simple branch-and-bound heuristic to
achieve this goal, deciding at each processing step whether or not the cut-size is within
an acceptable range. Otherwise, the transformations are simply undone and the region
is left unchanged.

Code restructuring

The problem that is pointed out in this section arises as soon as we have a narrow-
width operands availability of less than 100% within a region. Let us assume that we
are dealing with such a candidate region (a basic block). The problem to which we are
confronted is to reorder the instructions in that region such that instructions having at
least one operand with 32-bit (determined during profiling) are moved around it. The
solution to this problem may be better illustrated in Figure 5.9.

A first operation consists in renaming all destination operands of instructions having
one of their source operand with 32-bit, that may be used ahead of its computation. In
this way, we augment the opportunities of finding more instructions that can be moved
around. A second operation consists in computing the sets MoveUp and MoveDown
corresponding to the 32-bit instructions that can be moved towards the beginning or the
end of the basic block, respectively. Finally, a last operation consists in scheduling the
instructions contained in each one of these sets upwards or downwards the underlying
basic block, depending on the set to which they belong. Note that a side-effect of this
algorithm may eventually cause some instructions to be duplicated if they are scheduled
across a control flow graph join point. In addition, this might also lead to augment the
pressure on the register file. This latter point can however be avoided if we consider a
large register file, e.g. 64 general-purpose registers like that featured in our processor

118 Power-efficient reconfigurable processor datapath

B MoveUp: instructions that can be safely moved to begin
B MoveDown: instructions that can be safely moved to the next basic block(s)

[0 renamed instructions (with one of its source operand width on 32 bits)

BB

| D
BB2
scheduling))
BB3 BB4 BB3

32 bits 32 bits

Figure 5.9: Bit-Width sensitive scheduling example.

BB1

8/16 bits
region

model.

5.6 Solution overview

A synoptic view of our approach can be depicted in Figure 5.10. It consists of two
main phases, a profiling phase and a narrow-width regions formation phase. In the
first phase, the program is instrumented and stressed with different input data sets.
At each time, statistics about the operand’s width are gathered and stored for further
utilization. The instrumentation is done by means of SALTO [16], which is a general,
compiler-independent tool that makes the manipulation of the assembly code at the
CFG level easier. In the second phase, the profiled data collected during the first phase
are merged to create a converged profile for each application. From this profile, narrow-
width regions candidates are initially identified by SALTO and then processed to create
more refined regions. The reconfiguration of the processor datapath as well as the width
of the register file is performed at runtime, every time the execution proceeds through
a narrow-width region. For this latter to take place, we assume that the widths of
the execution datapath and the register file are exposed to the compiler via explicit
reconfiguration instructions (see Section 5.4.1).

Methodology 119

I
|
|
I
I
]]
I |
| I
| | o
I | =
| machine =0 === = = - = 1 %
| description I Profiling Phase | T
U [| =
_______________________ o
| I 5
e e e e e — o |
(I ! | I
fined ' I ! !
refine 1 L | I
. A raw bit-width
bit-width SALTO | regions SALTO |
regions : ! | ! | :
I Scheduling” I ¥ merging profiled 1 |
I _ fegions _ ! Lo_data__ N
| |
! S)
| Bit-width Regions|
! 1 Formation J

Figure 5.10: Optimization flow-graph.

5.7 Methodology

5.7.1 Platform and Simulation

Our experiments were conducted on a RISC-like, 32-bit embedded processor belonging
to the Lz family of customizable, multi-cluster VLIW architectures [35]. The processor’s
implementation used in this study features a six-stages pipeline, 4-issue width processor
composed of 4 ALUs, 2 Multipliers, and 1 Load/Store unit with in-order execution,
on each cluster. The different pipeline stages model the instruction fetch (IF), the
instruction decode (ID), the register read (RR), the first stage execution (EX1), the
second stage execution (EX2), and the write-back (WB). There are 3 forwarding paths
which are EX1-EX1, EX2-EX1 and EX2-RR. Each cluster provides a set of 64 32-bit
general purpose registers organized in a monolithic conventional register file. A set of 8
1-bit registers are used as branch registers.

The Lx platform is provided with a software tool-chain, where no visible changes are
exposed to the programmer. The tool-chain comprises, among other things, an aggres-
sive ILP compiler, called the Lx compiler, from which we generate an input assembly.
The extracted assembly code is processed by SALTO [16] as described in Section 5.6, to
instrument the code and construct the narrow-width regions. The instrumented code is
used to gather runtime statistics about register file access frequency, instruction’s types,
and operands bit-width.

120 Power-efficient reconfigurable processor datapath

Benchmark Description
adpcm voice encoding/decoding
auto automotive control code
bent bit count
bffo find first zero
bilv shift, and, or operations
brev bit reverse operations
compress data compression
des data encryption
engine engine control application
fir integer FIR filter
g721 protocol for voice transmission
pocsag communication protocol for paging
qurt root computation of a quadratic equation
v42bis modem encoding/decoding

Table 5.2: Benchmarks.

5.7.2 Benchmarks

We evaluated our scheme with applications collected from the Powerstone [95] suite of
benchmarks. All the chosen applications were compiled with the Lx native compiler,
with the optimization level 3, and then run until completion. Table 5.2 provides an
overview of each benchmark used.

5.7.3 Energy model

In order to have a rough estimate of the energy savings that one may expect to gain
with our scheme, we must quantify the energy consumption that is due to the register
file on one side, and to the various pipeline stages on the other side. Let us first consider
the register file. We model the dynamic energy consumption of a register file, E](g}%in)
as follows:

b

Egg}:?‘n) — Nrw * Eaccess (51)

where Fgecess is the average energy consumption on a read/write access, and Ny,
the number of read/write accesses to the register file. We used a modified version of
CACTI [98] for estimating the values of Fyccess, for both a conventional register file, as
well as for our byte-slice register file architecture.

We employ the expression shown in (5.2) to quantify the static energy consumption
due to the register file.

Methodology 121

‘ components ‘ datapath energy | saving 16-bit ‘ saving 8-bit ‘
latches 36% 18% 9%
ALU 27% 13% 7%

Table 5.3: Maximal energy savings.

Parameter Value
Clock 1 GHz
nb of read/write ports 8/4

Egccess (monolithic RF) 0.36 nJ
FEoccess (8-bit byte-slice) 0.11 nJ
Eoccess (32-bit byte-slice) | 0.40 nJ
normal leakage power/cell | 9.47 pW
drowsy leakage power/cell | 2.34 pW

Table 5.4: Simulation parameters.

ES}M) = Ncyc * Ncell * PLeak * % (52)

In the above expression, Ny is the number of cycles needed to execute the pro-

gram, N the number of cells contained in the register file, Pr..; the leakage power

consumption per cell and f the processor’s clock speed. The term Pr.x is strongly

dependent on the technology and may vary with transistor size, width and tempera-

ture. Assuming current process technology parameter of 0.18um, we estimate Preqr by
means of Hotleakage [117], for both the normal and the drowsy modes.

Estimating the energy consumed by the other pipeline stages is a more difficult task,
since very few processors vendors communicate detailed results about it. Nevertheless,
we rely on power consumption estimates found in some research articles to derive realis-
tic trends that govern the energy consumption of the involved processor’s components.
For our purpose, we are primarily interested on the energy consumption of the integer
ALU and pipeline latches. In [112], the authors published energy results for a generic
embedded processor, with a pipeline model very similar to ours. They noted that the
obtained energy values were independent of the code being executed. One could deduce
from this study that, on average, the register file and the pipeline latches account for
~64% of the datapath power consumption, with the former representing 28% of the
power and the latter 36%. The remaining 36% is due to the datapath multiplexers and
the ALU, with the latter contributing for more than 27%.

Since on a narrower bit-width mode, the clock-gating circuitry prevents the high-
order bytes of a pipeline to be latched, we can expect that the corresponding energy
savings will be proportional to the bit-width mode of the latch. Similarly, we save energy
in the ALU structure by preventing its input latches from changing; thus restricting the
computation to the low-order bytes of the input latches, yielding a linear reduction in

122 Power-efficient reconfigurable processor datapath

33% 2% 84% 0% 2%

100% —

>

9)

©

o

3

9]

®

© 80

K]

=

=

bl

9]

s

a
E2EQ 23388 2&E59¢8 2
v 5 v % § £ 0 o = N »a 2
Q [o © o = o)) > O T d
he] o c o by
© IS 7] Q >

o
V)

Figure 5.11: Accuracy.

the energy!. We summarize all the simulation parameters and the obtained ratios in
Table 5.4 and Table 5.3.

5.8 Results

This section presents the evaluation results of the proposed narrow-width regions for-
mation scheme. We center our discussion around four different aspects: the impact of
the recovery mechanism, the code size growth, the dynamic energy reduction, and the
leakage energy reduction.

5.8.1 Recovery mechanism

Let us consider a per-region narrow-width prediction rate of r for a total of nbb executed
basic blocks. Then, assuming a misprediction frequency of m, and an associated miss
penalty of p, we may express the diminishing returns, C'ost, of the recovery mechanism
as follows:

Cost = nbb*r*xmxp (5.3)

In (5.3), the misprediction penalty p may be viewed as the cost of flushing the
pipeline plus the additive cost to recover the correct bit-width size. Since the mispre-
diction takes place at the execute stage, we may assume a 3 cycles penalty for flushing
the pipeline. On the other hand, the cost to recover the correct bit-width mode may
vary with the implementation complexity and the processor design. We assume a 5

1We assume that the carry signal can be prevented from propagating along the higher-bit carries of
the ALU. In such case, the energy savings can even be more important than what we have presumed.

Results 123

60%
. 5 cycles penalty and t=0.8
50% []2s cycles penalty and t= 0.8
B 5 cycles penalty and t= 0.6
B 25 cycles penalty and T = 0.6
40%
30%
20%
10%
0%

auto
bcnt
bffo
bilv
brev
des
engine
g721
pocsag
qurt
v42bis

IS
S
Q.
©
IS

compress

Figure 5.12: IPC degradation for different values of 7 and p.

cycles recovery penalty for the best case and 25 cycles for the worst case. In Figure
5.11, we illustrated the impact of varying the narrow-width operand availability 7 on
the performance. As we increase 7, the speculation rate decreases because few regions
may have high narrow-width operand availability. As a consequence, the misprediction
frequency is also expected to decrease because the accuracy is sharpened. In contrast,
lowering 7T increases both r and m. Considering this fact, we plotted in Figure 5.12 the
IPC degradation observed by varying the values of the narrow-width operands availabil-
ity 7 and the misprediction penalty p. On average, most applications experience IPC
degradations without consequences on the performances when considering a best case
misprediction penalty p = 5. In contrast, a worst case misprediction penalty of p = 25
can affect the performances by up to 31% for 7 = 0.8 and 60% for 7 = 0.6. An efficient
scheme may therefore strive to keep p as low as possible.

5.8.2 Code size growth

Code size growth is mainly due to the re-encoding of the 32-bit address instructions
with equivalent accumulator-based instructions and to the scheduling of the 32-bit in-
structions around the underlying basic block. Practically, a good cross-block scheduling
algorithm may benefit from this code motion to improve the IPC and thereby alleviating
the impact of the code size growth. We have not implemented such a tricky cross-block
scheduling algorithm. Still, the impact of the code size growth is marginal. Considering
a per-region narrow-width operands availability of 80%, we experienced less than 3,1%
code size growth, on average, for our benchmarks set.

124 Power-efficient reconfigurable processor datapath
. latch |:| reg . alu |:| energy savings

40%

30%

20%

breakdown

10%

0%

10%

20%

30% —

40%

50%

overall savings

60%

70%

80%

adpcm
auto
bent
bffo
bilv
brev
compress
des
engine
fir
g721
pocsag
qurt
v42bis

Figure 5.13: Breakdown of the datapath dynamic energy savings and overall gain.

5.8.3 Dynamic energy reduction

Figure 5.13 shows the breakdown of the dynamic energy savings obtained for each
component of the processor’s datapath. Some applications such as bent, brev and qurt
show no benefit from using our scheme. This is mainly because not enough static narrow-
width regions have been uncovered at code generation time. We may probably improve
the detection of these regions by combining our scheme with a software-based technique
such as the one proposed in [25]. On the other applications, however, we can observe an
average datapath energy savings of up to 17%. On some modern embedded processors
such as the M.Core [95], for instance, the datapath dynamic energy contributes to as
much as 42% of the total processor’s power consumption. Achieving a 17% energy
reduction can therefore provide a substantial energy gain.

5.8.4 Leakage energy reduction

The byte-slice register file architecture we proposed also permits to tackle the static
energy consumption. This is mainly due to the fact that when executing on a narrower
datapath-width, the upper byte-slices of the register file are put into in low-power mode.
Figure 5.14 illustrates the static energy savings observed in the register file when using
our scheme. For the vast majority of the applications, an average of 22% reduction of
the static energy is realized, with a peak energy savings of roughly 80% for the compress
benchmark.

Summary 125

80%
70%
60%
50%
40%
30%
20%

Fraction of static energy savings

10%

all

0%

O ¥ o0 = > v v o x o £ »
E 8 5 &£ £ 8 § 8 c& 3 g 5 3
Q © a9 =© 4o 7 =) > 8 T o
° < Q pd
IS € a o

<}
v

Figure 5.14: Register file static energy savings.

5.9 Summary

Operand-gating has been recently proposed as a means to dynamically exploiting the
availability of narrow-width data elements in programs. Implementations of operand-
gating have principally relied on the hardware to drive the gating decision. From a
software point of view, some solutions have also emerged that take benefit of narrow-
width operands to save energy. However, software-only solutions suffer a lot from not
considering runtime informations. Hence, they must often be very conservative about
the ranges of bit-width values that a data may take during its execution.

In this chapter, we have proposed a speculative software management scheme to
overcome the difficulties encountered by software-only solutions. Central to our ap-
proach is the ability to expose dynamic narrow-width operands to the compiler; this
in order to allow it to speculatively accommodate the execution of static narrow-width
regions on a narrower datapath-width. For this purpose, we have introduced a novel
register file organization, the byte-slice register file, that permits the width of the register
file to be dynamically reconfigured; and a simple and efficient exception management
mechanism to handle width mispredictions. Our evaluation results have indeed demon-
strated the efficacy of our approach in managing the energy consumption at the software
level. We showed that up to 17% of the dynamic energy and 22% of the static energy
can be saved on the datapath, while only a negligible IPC degradation is observed for
most applications.

126 Power-efficient reconfigurable processor datapath

Conclusions and perspectives

VLIW architectures have established themselves as one of the most successful ap-
proaches to deliver high performance at lower costs. They offer a good compromise
between processing power and energy dissipation; as such they are becoming very pop-
ular in the embedded system domain. The key point with embedded VLIW architectures
is that most of the circuit complexity found in general purpose processors to achieve
higher performance is withdrawn from the processor’s critical path and placed into
the compiler, which is responsible to deliver the maximum of the performance. How-
ever, with power consumption becoming a key design constraint, and due to the lack
of resource usage anticipation in the compiler, many power-related optimizations are
actually obfuscated at the compiler level. The central idea of this thesis is that some im-
provements in the reduction of the energy consumption can be achieved at the compiler
level if VLIW processors had some degree of adaptability to the application they are
running. To defend this position, we proposed synergistic hardware-software solutions
that can potentially improve the compiler effectiveness to manage power consumption,
while still guaranteeing acceptable performance levels. Our investigations have focussed
on four main areas of research:

1. ILP compilation analysis
2. study of program behaviors
3. adaptability of the cache subsystem

4. adaptability of the processor data-path
In this chapter, we quickly review some of the key research contributions presented in

this thesis. We also suggest some future directions to improve this research.

Summary of research contributions

In Chapter 2, we have investigated the energy consumption issues involved when com-
piling for performance. The classic approach to this problem is based on the observation
that energy and power consumption are roughly proportional to the total program ex-
ecution time. In order to challenge this classical view of power management at the

127

128 Conclusions and perspectives

software level, we have developed a prototype compiler which includes classical ILP
scheduling techniques such as the hyperblock. We have proposed an heuristic for study-
ing the energy requirement of ILP techniques which basically relies on the observation
that monitoring the variations in program performance could be achieved through some
form of prediction mechanism or profiling at the software level. The rationale behind
this approach is that using performance monitoring to drive energy or power consump-
tion makes it possible to identify conditions leading to energy increase. Our analysis
have revealed that there exists an ILP threshold above which an increase in performance
may turn into diminishing energy reduction returns.

The results obtained in Chapter 2 confirmed our hypothesis about architecture-
specific ILP limitations that could put a burden on power management opportunities. In
order to account for these architecture peculiarities, we have started looking at compile
time techniques that can be coupled with hardware management mechanisms to improve
power management. From a compiler standpoint, this is equivalent to identifying the
regions of the program that can benefit most from runtime optimizations and then
adapting the underlying hardware to meet the architecture requirement of each of these
regions.

In this sense, the first step toward achieving the above goal has been to lay emphasis
on program characterization in order to understand the dynamic program behavior.
Knowing the most frequently executed paths of a program can be of a crucial importance
for the compiler since specific optimizations can be associated to them according to the
characteristics enclosed in a program path. In Chapter 3, we have introduced such a
program path analysis technique to reveal and characterize hot paths. The originality of
the proposed approach is to rely on suffix arrays to devise a fast and efficient algorithm
for searching hot program paths in a trace. This approach is unique in itself as no prior
attempt to analyze a whole-program paths with suffix arrays has existed.

Scrutinizing inside a hot program path can reveal interesting characteristics that can
benefit an optimizer. For instance, one can compute the optimal cache size required
to host the data referenced within a hot region. This makes it possible to adapt the
size of a cache to that of a hot region in order to save energy. In the embedded com-
puting domain, however, current techniques to make a cache re-configurable addressed
this at the application level. In Chapter 4, we introduced a new model of a cache to
make it re-configurable on a per-phase basis in order to better take advantage of hot
program regions. The model uses an intelligent combination of two techniques called
way-concatenation and selective cache ways to propose an hybrid cache model with
enhanced cache resizing granularities, and provides the possibility to adapt the size of
the cache on a per-phase basis. A cache reconfiguration instruction is exposed to the
compiler to take advantage of this at compile time.

Finally, in Chapter 5, we also looked at the possibility to adapt the width of a
processor data-path to that of a program region. The principal motivation to lay em-
phasis on the processor data-path has come from the fact that its bit-width size keeps
growing, especially because the pipeline is widened to process multiple instructions in

Conclusions and perspectives 129

50% [— IC Power
DC Power
RF Power
40% H N 5 N Core Power
a om0 Bus Power

30%

20% H

Power consumption [in %]

10% [

oo LI I

cre
gsm
bf
rijndael F
sha P
search F
cjpeg IF
tiff2bw

tiffmedian '
tiffdither |

Figure 5.15: Distribution of power consumption.

parallel on one hand, and that the demand for more memory bandwidth increases on
the other hand. Hence, on some embedded systems, the processor data-path accounts
for a large fraction of the total dynamic power consumption (e.g. 42% on the M.Core).
Up to now, the energy consumption of the processor data-path has been successfully
addressed with hardware techniques, in particular for general purpose processors. At
the compiler level, the few attempts that tried to do so bumped into the limitations of
static analysis which are too restrictive in nature. We introduced a speculative software
approach to better exploiting dynamic narrow-width operands at the compiler level,
bursting most of the restrictions due to a static analysis. An ISA instruction allows the
compiler to switch from a normal execution mode to a narrower bit-width mode, and
vice-versa. Then, at hardware level, a simple exception management mechanism allows
to recover to the correct execution mode if a misprediction is encountered.

Future work and perspectives

Time considerations prevented us from fully considering some of the key research contri-
butions we investigated, but which would have warranted to be studied in more details.
In this section, we elaborate on some of these which need to be looked into more pre-
cisely. Then, we draw some future research directions in the continuation of this thesis.

130 Conclusions and perspectives

Future work

There are a few short terms studies that can bring added values to the quality of this
research. At first, recall that most of the experiments conducted in this thesis targeted
the data cache (d-cache). Although, such a choice can be easily warranted since the d-
cache consumes an important fraction of the total power consumption, there is another
important fraction of the energy consumption that is dissipated in the instruction cache
(i-cache). Figure 5.15 shows the power consumption distribution for a few applications
collected from the MiBench suite of benchmarks. The energy consumption model used
to obtain these values is that described in Chapter 2, Section 2.2.1. It is clear from the
figure that the most energy consuming resource is the i-cache, with more than 35% of
the dynamic energy consumption being dissipated in this structure.

The question that directly comes in mind is to which extent the research contribu-
tions proposed in this thesis apply to the i-cache as well 7 There is an avenue to exploit
the cache resizing scheme proposed in Chapter 4 whenever SIMD operations can give
rise to substantial performance improvements. This might be the case when embedded
VLIW processors are used to implement DSP algorithms and graphics applications,
which show high data parallelism potential. The fact is that when SIMD operations are
employed, the number of executed instructions can be potentially reduced; hence, there
may exist some opportunity to resize the i-cache as well. This, however, must be traded
off with the amount of available data parallelism which sometimes requires that some
transformations such as loop unrolling be applied to uncover even more opportunities;
thus increasing the total instruction count.

The impact of using SIMD operations on the overall power consumption is more
questionable, and we see here some opportunity to provide models that can help better
understanding these issues. At first, there is a need to extend the instruction-based
energy model described in Chapter 2, Section 2.2.1, to include the energy cost of SIMD
operations. Then, the study we conducted to investigate the energy issues involved by
ILP compilation can also be done to analyse the energy issues due to data parallelism.
Of principal concern here are not only the energy cost of SIMD operations, but also that
of the overhead operations used to uncover data parallelism, e.g. packing and unpacking
operations.

An interesting study in the continuation of the work presented in Chapter 5 will be to
consider using SIMD operations to exploit narrow-width operands as well. Intuitively,
using SIMD operations can give rise to more opportunities to apply clock gating at
the functional unit level. It might be interesting to see how effective this technique
compares to the narrow-width scheme we proposed in Chapter 5.

There is a very interesting research paper of Dhodapkar et al. [32] about managing
multi-configuration hardware via dynamic working set analysis. It would be of same
interest to see in which extent such a technique can be used conjointly with the program
path analysis scheme of Chapter 3 to catch different program path signatures into a
single one. This will provide an effective basis to analyse the interplay of using different

Conclusions and perspectives 131

re-configuration techniques to save energy, e.g. cache size adaptation and data-path
reconfiguration.

Perspectives

This thesis has provided the groundwork for a number of future key research contribu-
tions. May be the most noticeable one we see in the direct continuation of this thesis is
on improving embedded VLIW processors to allow them take runtime decisions about
a program dynamic execution. This may be at the advantage of both the performance
and the power consumption. There are several clue which make we believe that this
would be a plausible scenario in a near future. First, even if the compiler can take
advantage of runtime data to reconfigure the underlying architecture, this is done at
static time and is still highly reliant on profiles information accuracy. Hence, there is
often a large optimization potential made possible by the knowledge of runtime infor-
mation that is lost. Second, with the advances in processor architecture and the denser
silicon manufacturing processes, it is now possible to envision integrating some archi-
tecture features into embedded processors to tolerate some degree of dynamic control
mechanisms. This might open several research directions. One of them must be con-
cerned with determining to which extent the integration of these architectural features
in embedded VLIW processors can be energy counter-efficient with respect to the added
performance value. There are also some opportunities for new compilation techniques
that can take advantage of such features. In this respect, we see some opened doors in
the direction of dynamic compilation to provide some added values to the optimization
process.

132 Conclusions and perspectives

Bibliography

1]

2]

3]

4]

[5]

[6]

7]

8]

[9]

Albonesi, D.H. Selective cache ways: On-demand cache resource allocation. In
Proceedings of the 32nd International Symposium on Microarchitecture, November
1999.

Allen, J.R., Kennedy, K., Porterfield, C., and Warren, J. Conversion of control
dependence to data dependence. In Proceedings of the 10th ACM Symposium on
Principles of Programming Languages, (POPL 83), January 1983.

Amicel, R., and Bodin, F. A new system for high-performance cycle-accurate
compiled simulation. In Proceedings of the 5th International Workshop on Software
and Compilers for Embedded Systems, 2001.

Ayala, J.L., Lopez, V.M., Veidenbaum, A., and Lépez C.A. Energy aware register
file implementation through instruction predecode. In Proceedings of the Interna-
tional Conference on Application-Specific Systems, Architectures and Processors,
June 2003.

Bahar, R.I., and Manne, S. Power and energy reduction via pipeline balancing.
In Proceedings of the 28th International Symposium on Computer Architecture,
June 2001.

Bala, V. Low overhead path profiling. Technical Report HPL-96-87, Hewlett
Packard Labs, 1996.

Balasubramonian, R., Albonesi, D.H., Buyuktosunoglu, A., and Dwarkadas, S.
Memory hierarchy reconfiguration for energy and performance in general purpose
processor architectures. In Proceedings of the 33th International Conference on
Microarchitecture, pages 245257, December 2000.

Balasubramonian, R., Dwarkadas, S., Albonesi, D. Reducing the complexity of
the register file in dynamic superscalar processor. In Proceedings of the 34th
International Symposium on Microarchitecture, December 2001.

Ball, T., and Larus, J.R. Optimally profiling and tracing programs. ACM Trans-
actions on Programming Languages and Systems, 16(4):1319-1360, July 1994.

133

134

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Bibliography

Ball, T., and Larus, J.R. Efficient path profiling. In Procedings of the 29th Annual
International Symposium on Microarchitecture, December 1996.

Ball, Thomas. What’s in a region? -or- computing control dependence regions in
linear time and space. Technical Report 1108, University of Wisconsin — Madison,
Computer Sciences Department, September 1992.

Bellas, N., Hajj, I.N., Polychronopoulos, C.D., and Stamoulis, G. Architectural
and compiler support for energy reduction in the memory hierarchy of high-
performance microprocessors. In International Symposium on Low Power Elec-
tronics and Design (ISLPED), pages 70-75, August 1998.

Benini, L., and De Micheli, G. System-level power optimization: techniques
and tools. ACM Transactions on Design Automation of Electronic Systems (TO-
DAES), 5(2):115-192, April 2000.

Benini, L., Bruni, D., Chinosi, M., Silvano, C., Zaccaria, V., and Zafalon, R. A
power modeling and estimation framework for vliw-based embedded systems. In
Proceedings of the IEEE FEleventh International Workshop on Power and Timing
Modeling, Optimization and Simulation, September 2001.

Beszedes, A., Ferenc, R., Gyimothy T., Dolenc, A., and Karsisto, K. Survey of
code-size reduction methods. ACM Computing Survey, 35(3):223-267, September
2003.

Bodin, F., Rohou, E., and Seznec, A. Salto: System for assembly-language trans-
formation and optimization. In Proceedings of the Sizth Workshop on Compilers
for Parallel Computers, 1996 December.

Bohr, M. Silicon trends and limits for advanced microprocessors. Communications
of the ACM, 41(3):80-87, March 1998.

Brooks, D., and Martonosi, M. Dynamically exploiting narrow width operands to
improve processor power and performance. In Proceedings of the 5th International
Symposium on High-Performance Computer Architecture, January 1999.

Brooks, D., Martonosi, M., and Bose, P. Modeling and analyzing cpu power
and performance: Metrics, methods and abstractions. In Tutorial presentation at
the 7th IEEE Symposium on High Performance Computer Architecture (HPCA),
January 2001.

Brooks, D., Tiwari, V., and Martonosi, M. Wattch: A Framework for
Architectural-Level Power Analysis and Optimizations. In Proc. of the 27th Int’l
Symp. on Computer Architecture, June 2000.

Budiu, M., Goldstein, S., Sakr, M., and Walker, K. Bitvalue inference: Detecting
and exploiting narrow bitwidth computations. In Proceedings of the 6th Furopean
Conference on Parallel Computing (EuroPar), August 2000.

Bibliography 135

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

Burger, D., and Austin, T. The SimpleScalar Tool Set, Version 2.0. Computer
Architecture News, pages 13 25, 1997.

Butts, J.A., and Sohi, G.S. A static power model for architects. In Proceedings of
the 33th Annual International Symposium on Microarchitecture, December 2000.

Canal, R., Gonzales, A., and Smith, J.E. Very low power pipelines using sig-
nificance compression. In Proceedings of the 33th International Symposium on
Microarchitecture, December 2000.

Canal, R., Gonzales, A., and Smith, J.E. Software-controlled operand-gating. In
Proceedings of the International Symposium on Code Generation and Optimiza-
tion, March 2004.

Cao, Y., and Yasuura, H. System-level energy minimization approach using data-
path width optimization. In Proceedings of the International Symposium on Low
Power Electronics and Design, August 2001.

Cao, Y., and Yasuura, H. Low-energy design using datapath width optimization
for embedded processor-based systems. IPSJ Journal, 43(5):1348-1356, May 2002.

Chang, P.P., Mahlhe, S.A., and Hwu,W.W. Using profile information to assist
classic code optimizations. Software-Practice and Fzrperience, 21:1301-1321, De-
cember 1991.

Choi, J., Jeon, J., and Choi, K. Power minimization of functional units by partially
guarded computation. In Proceedings of the International Symposium on Low
Power Electronics and Design, 2000.

Cytron, R., Ferrante, J., Rosen, B., Wegman, M., and Zadeck, K. Efficiently
computing static single assignement form and the control dependence graph. In
Proceedings of the Symposium on Principles of Programming Languages, pages
25 35, January 1989.

Cytron, R., Ferrante, J., Rosen, B.K., Wegman, M.N., and Zadeck, K. Efficiently
computing static single assignment form and the control dependence graph. ACM
Transactions on Programming Languages and Systems, 13(4):451-490, 1991.

Dhodapkar, A., Smith, J.E. Managing multi-configuration hardware via dynamic
working set analysis. In Proceedings of the 29th International Symposium on
Computer Architecture, May 2002.

Drach, N., and Sebot, J. SIMD ISA Extensions: Tradeoff between Power Con-
sumption and Performance on a Superscalar Processor. In Proceedings of the Kool
Chips Workshop, December 2000.

Philips Electronics. TM1000 Preliminary Data Book, 1997.

136

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

Bibliography

Faraboschi, P., Brown, G., Fisher, J.A., Desoli, G., and Homewood, F. Lx: A
technology platform for customizable vliw embedded processing. In Proceedings
of the 27th International Symposium on Computer Architecture, June 2000.

Fisher, J.A. Trace scheduling: A technique for global microcode compaction.
IEEE Transaction on Computers, 30(7):478-490, 1981.

Fisher, Joseph A. Very long instruction word architectures and the eli-512. In
Proceedings of the 10th annual international symposium on Computer architecture,
pages 140 150, June 1983.

Flautner, K., Nam Sung Kim, Steve Martin, David Blaauw, and Trevor Mudge.
Drowsy caches: Simple techniques for reducing leakage power. In Proceedings of
the 29th International Symposium on Computer Architecture, May 2002.

Gandhi, K.R., and Mahapatra, N.R. A detailed study of hardware techniques that
dynamically exploit frequent operands to reduce power consumption in integer
function units. In Proceedings of the 2nd Workshop on Duplicating, Deconstruct-
ing, and Debunking, June 2003.

Gonzalez, R. and Horowitz, M. Energy dissipation in general purpose micropro-
cessors. IEEE Journal of Solid-State Circuits, 31(9):1277-1283, September 1996.

Grossi, R., and Vitter, J.S. Compressed suffix arrays and suffix trees with applica-
tions to text indexing and string matching. In Proceedings of the ACM Symposium
on the Theory of Computing, 2000.

Guthaus, M.R., Ringenberg, J.S., Ernst, D., Austin, T.M., Mudge, T., and Brown,
R.B. Mibench: A free, commercially representative embedded benchmark suite.
In Proceedings of the 4th IEEE International Workshop on Workload Characteri-
zation, pages 3—14, December 2001.

Hasegawa, A., Kawasaki, I., Yamada, K., Yoshioka, S., Kawasaki, S., and Biswas,
P. Sh3: High code density, low power. IEEE Micro, pages 11-19, 1995.

Hayakawa, F., Okano, H., and Suga, A. An eight-way vliw embedded multimedia
processor with advanced cache mechanism. In Proceedings of the Third IEEE
Asia-Pacific Conference on ASICs, August 2002.

Hennessy, J. The future of systems research. IEEE Computer, pages 27-33,
August 1999.

Hill, M.D., Smith, A.J. Evaluating associativity in cpu caches. IEEFE Transactions
on Computers, 38:1612-1630, December 1989.

Horowitz, M., Indermaur, T., and Gonzalez, R. Low-Power Digital Design. In Pro-
ceedings of the IEEE Symposium on Low Power Electronics, pages 811, October
1994.

Bibliography 137

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

Hsu, C-H., Kremer, U., and Hsiao, M. Compiler-directed dynamic frequency and
voltage scheduling. In Proceedings of the Workshop on Power-Aware Computer
Systems, November 2000.

Hwu, W.W., Mahlke, S.A., Chen, W.Y., Chang, P.P., Warter, N.J., Bringmann,
R.A., Ouellette, R.G, Hank, R.E., Kiyohara, T., Haab, G.E., Holm, J.G., and
Lavery, D.M. The superblock: An effective technique for vliw and superscalar
compilation. Journal of Supercomputing, 7(1-2):229-248, 1993.

Inoue, K., Ishihara, T., and Murakami, K. Way-predicting set-associative cache
for high performance and low energy consumption. In Proceedings of the In-
ternational Symposium on Low Power Electronics and Design (ISLPED), pages
273-275, August 1999.

Texas Instruments. TMS320C62zx CPU and Instruction Set: Reference Guide,
January 1997.

Irwin, M.J., Kandemir, M., and Vijaykrishnan, N. Low Power Design Method-
ologies: Hardware and Software Issues. Low Power Design Tutorial at PACT,
2000.

Jacobson, Q., Rotenberg, E., and Smith, J. Path-based next trace prediction. In
Proceedings of the 30th International Symposium on Microarchitecture, November
1997.

Karp, R.M., Miller, R.E., and Rosenberg, A.L.. Rapid identification of repeated
patterns in strings, arrays and trees. In Proceedings of the 4th ACM Symposium
on Theory of Computing, 1972.

Kaxiras, S., Hu, Z., and Martonosi, M. Cache decay: Exploiting generational
behavior to reduce cache leakage power. In Proceedings of the 28th International
Symposium on Computer Architecture, July 2001.

Kim, N.S, Todd, A., Blaauw, D., Mudge, T., Flautner, K., Hu, J.S., Irwin, M.J.,
Kandemir, M., and Vijaykrishnan, N. Leakage current : Moore’s law meets static
power. IEEE Computer, pages 68—75, December 2003.

Kin, J., Gupta, M., and Magione-Smith, W.H. The filter cache: An energy
efficient memory structure. In Proceedings of the 30th International Conference
on Microarchitecture, December 1997.

Langdale, G., and Gross, T. Evaluating the relationship between the usefulness
and accuracy of profiles. In Proceedings of the 2nd Workshop on Duplicating,
Deconstructing, and Debunking, June 2003.

Larsen, S., and Amarasinghe, S. FExploiting superword level parallelism with
multimedia instruction sets. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, June 2000.

138

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Bibliography

Larus, J.R. Whole program paths. In Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, May 1999.

Lee, C., Lee, J.K., and Hwang, T. Compiler optimization on instruction schedul-
ing for low power. In Proceedings of 13th International Symposium on System
Synthesis, September 2000.

Lee, C., Potkonjak, M., and Mangione-Smith, W.H. Mediabench: A tool for eval-
uating and synthesizing multimedia and communications systems. In Proceedings
of the 30th International Symposium on Microarchitecture, December 1997.

Lee, S., Ermedahl, A., and Min, L. An accurate instruction-level energy con-
sumption model for embedded RISC processors. In Proceedings of the ACM SIG-
PLAN Conference on Languages, Compilers, and Tools for Embedded Systems
(LCTES’01), June 2001.

C. Lefurgy. Efficient Execution of Compressed Programs. PhD thesis, University
of Michigan, 2000.

Lekatsas. Code Compression for Embedded Systems Princeton University. PhD
thesis, Princeton University, 2000.

Loh, G. Exploiting data-width locality to increase superscalar execution band-
width. In Proceedings of the 35th International Symposium on Microarchitecture,
November 2002.

Lowney, P.G., Freudenberger, S.G., Karzes, T.J., Lightenstein, W.D., Nix, R.P.,
O’Donnell, J.S., and Ruttenberger, J.C. The multiflow trace scheduling compiler.
Journal of Supercomputing, 7(1-2):51 142, May 1993.

Mahlke, S. A., Lin, D. C., Chen, W. Y., Hank, R. E., and Bringmann, R. A.
Effective compiler support for predicated execution using the hyperblock. In
Proceedings of the 25th Annual International Symposium on Microarchitecture,
December 1992.

Mahlke, S., Ravindran, R., Schlansker, M., Schreiber, R., and Sherwood, T.
Bitwidth cognizant architecture synthesis of custom hardware accelerators. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
20(11), November 2001.

Malik, A., Moyer, B., and Cermak, D. A low power unified cache architecture
providing power and performance flexibility. In Proceedings of International Sym-
posium on Low Power Electronics and Design, pages 241-243, 2000.

Manber, U., and Myers, G. Suffix arrays: A new method for on-line string
searches. In Proceedings of 1st ACM-SIAM SODA, pages 319-327, 1990.

Bibliography 139

[72]

[73]

[74]

[75]

[76]

[77]

78]

[79]

[30]

[81]

[82]

[83]

[84]

Manne, S., Klauser, A., and Grunwald, D. Pipeline gating: Speculation control
for energy reduction. In Proceedings of the 25th International Symposium on
Computer Architecture, June 1998.

Marculescu, D. Profile-driven code execution for low power dissipation. In Pro-
ceedings of ACM International Symposium on Low Power Electronics and Design

(ISLPED), July 2000.

Moreno, J.H., et al. An innovative low-power high-performance programmable
signal processor for digital communications. IBM Journal of Research € Devel-
opment, 47(2-3):299-326, March /May 2003.

Muchnick, Steven S. Advanced Compiler Design Implementation. Morgan Kauf-
mann Publishers, 1997.

Mudge, T. Power: A first class design constraint. Computer, 34(4):52-57, April
2001.

Nakra, T., Childers, B.R., and Soffa, M.L. Width-sensitive scheduling for
resource-constrained vliw processors. In Proceedings of the 3th ACM Workshop
on Feedback-Directed and Dynamic Optimization, December 2000.

Nevill-Manning, C.G. and Witten, I.LH. Identifying hierarchical structure in se-
quences. Journal of Artificial Intelligence Research, 7:67-82, 1997.

Nicolau, A., and Fisher, J. Measuring the parallelism available for very long
instruction word architectures. IEEE Transaction on Computers, 33(11):968-976,
November 1984.

Palacharla, S., Jouppi, N., and Smith, J.E. Complexity-effective superscalar pro-
cessors. In Proceedings of the 24th Annual International Symposium on Computer
Architecture, pages 206—218, June 1997.

Parikh, A., Kandemir, M., Vijaykrishman, N., and Irwin, M.J. Instruction
scheduling based on energy and performance constraints. In Proceedings of the
IEEFE Computer Society Annual Workshop on VLSI, April 2000.

Parthasarathy Ranganathan, N.P.J., Adve, S., and Jouppi, N.P. Reconfigurable
caches and their application to media processing. In Proceedings of the 27th
International Symposium on Computer Architecture, June 2000.

Plezkun, A.R. Techniques for compressing program address traces. In Proceedings
of the 27th International Conference on Microarchitecture, pages 32-40, 1994.

Pokam, G., and Bodin, F. An Off-line Approach for Whole-Program Paths Anal-
ysis using Suffix Arrays. In Proceedings of the 17th International Workshop on
Languages and Compilers for Parallel Computing, 2004.

140

[85]

[36]

[87]

[33]

[89]

[90]

[91]

[92]

(93]

[94]

[95]

Bibliography

Pokam, G., and Bodin, F. Energy-efficiency potential of a phase-based cache
resizing scheme for embedded systems. In Proceedings of the 8th IEEE Interna-
tional Worskhop on Interaction between Compilers and Computer Architectures
(INTERACT-8), February 2004.

Pokam, G., and Bodin, F. Understanding the energy-delay tradeoff of ilp-based
compilation techniques on a vliw architecture. In Proceedings of the 11th Workshop
on Compilers for Parallel Computers, July 2004.

Pokam, G., Bihan, S., Simonnet, J., and Bodin, F. SWARP: A retargetable pre-
processor for multimedia instructions. Concurrency and Computation: Practice
and Ezperience, 16(2-3):303-318, February-March 2004.

Pokam, G., Rochecouste, O., Seznec, A., and Bodin, F. Speculative software
management of datapath-width for energy optimization. In Proceedings of the
ACM SIGPLAN/SIGBED International Conference on Languages, Compilers and
Tools for Embedded Systems (LCTES’04), June 2004.

Pokam, G., Simonnet, J., and Bodin, F. A retargetable preprocessor for multime-
dia instructions. In Proceedings of the 11th Workshop on Compilers for Parallel
Computers, June 2001.

Powell, M.D., Agarwal, A., Vijaykumar, T., Falsafi, B., and Roy, K. Reducing
set-associative cache energy via way prediction and selective direct-mapping. In
Proceedings of the 34th International Symposium on Microarchitecture, December
2001.

Powell, M.D., Yang, S-H., Falsafi, B., Roy, K., and Vijaykumar, T. Gated-vdd:
A circuit technique to reduce leakage in deep-submicron cache memories. In Pro-

ceedings of the International Symposium on Low Power FElectronics and Design,
2000.

Ruby, Lee. Subword parallelism. IEEE Micro, 16(4):51-59, 1996.

Russell, J.T., and Jacome, M.F. Software power estimation and optimization for
high performance, 32-bit embedded processors. In Proceedings of the International
Conference on Computer Design, 1998.

Saputra, H., Kandemir, M., Vijaykrishnan, N., Irwin, M.J., Hu, J.S., Hsu, C-
H., and Kremer, U. Energy-conscious compilation based on voltage scaling. In
Proceedings of the ACM SIGPLAN Joint Conference on Languages, Compilers,
and Tools for Embedded Systems (LCTES’02) and Software and Compilers for
Embedded Systems (SCOPES’02), June 2002.

Scott, J., Lea Hwang Lee, John Arends and William Moyer. Designing the low-
power m.core architecture. In Proceedings of Power Driven Microarchitecture,
June 1998.

Bibliography 141

[96] Sharangpani, H. Itanium processor microarchitecture. IEEE Micro, 20(5):24-43,
September 2000.

[97] Sherwood, T., Calder, B. Time varying behavior of programs. Technical Report
(CS99-630, University of California, San Diego, August 1999.

[98] Shivakumar, P., and Jouppi, N. Cacti 3.0: An integrated cache timing power, and
area model. Technical report, DEC Western research Lab, 2002.

[99] SIA. International Technology Roadmap for Semiconductors, 2001.

[100] Sinha, A., and Chandrakasan, A. Energy aware software. In Proceedings of the
13th International Conference on VLSI Design, January 2000.

[101] Slingerland, N., Smith, A.J. Cache performance for multimedia applications. In
Proceedings of International Conference on Supercomputing, pages 204217, June
2001.

[102] Smith, I.E., et al. The zs-i central processor. In Proceedings of the 2nd Inter-
national Conference on Architectural Support for Programming Languages and
Operating Systems, pages 199 204, October 1987.

[103] Smith, J.E, and Sohi, G.S. The microarchitecture of superscalar processors. Pro-
ceedings of the IEEE, 83(12):1609-1624, December 1995.

[104] Sprangle, E., and Carmean, D. Increasing processor performance by implementing
deeper pipelines. In Proceedings of the 29th International Symposium on Computer
Architecture, pages 25-34, May 2002.

[105] Stephenson, M., Babb, J., and Amarasinghe, S. Bitwidth analysis with applica-
tion to silicon compilation. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, June 2000.

[106] Thompson, S., Packan, P., and Bohr, M. MOS scaling: Transistor challenges for
the 21st century. Intel Technology Journal, 1998.

[107] Tiwari, V., Malik, S., and Wolfe, A. Power analysis of embedded software: A first
step towards software power minimization. IEEE Transactions on VLSI Systems,
2(4):437-445, December 1994.

[108] Tiwari, V., Malik, S., Wolfe, A., and Lee, M. Instruction level power analysis and
optiomization of software. Journal of VLSI Signal Processing Systems, (1):1-18,
1996.

[109] Tiwari, V., Singh, D., Rajgopal, S., Mehta, G., Patel, R., and Baez, F. Reducing
power in high-performance microprocessors. In Proceedings of the 35th Design
Automation Conference, June 1998.

142

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

Bibliography

Tseng, J.H., and Asanovic, K. Banked multiported register files for high-frequency
superscalar microprocessors. In Proceedings of the 30th International Symposium
on Computer Architecture, June 2003.

Unsal, O.S., Koren, 1., Krishna, C.M., and Moritz, C.A. Cool-fetch: Compiler-
enabled power-aware fetch throttling. ACM Computer Architecture Letters, 1,
2002.

Vijaykrishnan, N., Kandemir, M., Irwin, M.J., Kim, H.S., and Ye, W. Energy-
driven integrated hardware-software optimizations using simplepower. In Proceed-
ings of the 27th International Symposium on Computer Architecture, June 2000.

Vivek De and Shekhar Borkar. Technology and design challenges for low power
and high performance. In Proceedings of the 1999 International Symposium on
Low Power Electronics and Design (ISLPED), pages 163 — 168, 1999.

Yang, S-H., Powell, M.D., Falsafi, B., and Vijaykumar, T. Exploiting choice
in resizable cache design to optimize deep-submicron processor energy-delay. In
Proceedings of International Symposium on High Performance Computer Archi-
tecture, February 2002.

Yang, S-H., Powell, M.D., Falsafi, B., Roy, K., and Vijaykumar, T. An integrated
circuit /architecture approach to reducing leakage in deep-submicron high perfor-
mance i-caches. In Proceedings of International Symposium on High Performance
Computer Architecture, January 2001.

Young, Cliff., and Smith, Michael. Better global scheduling using path profiles. In
Proceedings of the 31th International Symposium on Microarchitecture, December
1998.

Zhang, C., Vahid, F., and Najjar, W. A highly configurable cache architecture
for embedded systems. In Proceedings of the 30th International Symposium on
Computer Architecture, June 2003.

Zhang, Y., Parikh, D., Sankaranarayanan, K., Skadron, K., and Stan, M. Hotleak-
age: A temperature-aware model of subthreshold and gate leakage for architects.
Technical Report CS-2003-05, University of Virginia, Department of Computer
Science, March 2003.

Zhou, H., Toburen, M.C., Rotenberg, E., and Conte, T.M. Adaptive mode-control:
A static-power-efficient cache design. In Proceedings of International Conference
on Parallel Architectures and Compilation Techniques, September 2001.

Zyuban, V., and Kogge, P. Split register file architectures for inherently lower
power microprocessors. In Proceedings of Power-Driven Microarchitecture Work-
shop, pages 32-37, 1998.

144 Bibliography

Résumé

Cette thése propose de réduire la consommation d’énergie des architectures VLIW tout
en essayant de préserver le maximum de performance possible. Contrairement a cer-
taines approches logicielles tendant & favoriser ’optimisation de code pour obtenir des
gains en énergie, nous présentons des arguments en faveur d’une approche synergique
intégrant matériel et logiciel & la fois. L’idée principale défendue tout au long de cette
thése repose sur le fait que seule une compréhension avancée du comportement dy-
namique d’un programme au niveau du compilateur est susceptible de produire un
meilleur controle de la gestion de la consommation d’énergie. Pour cela, nous intro-
duisons une technique d’analyse statique du comportement dynamique d’un programme
afin de parvenir a identifier et a caractériser les chemins les plus fréquemment exécutés
d’un programme. L’objectif visé étant la réduction de la consommation d’énergie, nous
montrons par la suite que sur directive du compilateur, I’architecture de la machine
peut étre modifiée pour s’adapter a un état dynamique particulier du programme. Nous
présentons les conditions d’une telle reconfiguration ainsi que les éventuelles modifica-
tions & apporter & ’architecture, & la fois pour le systéme des caches que pour le chemin
de données d’un processeur VLIW.

Mots clefs : compilation, puissance dissipée, analyse de programmes, architecture recon-
figurable

Abstract

This thesis concerns low power compilation techniques for VLIW architectures. In contrast
to many software approaches that rely on code optimization techniques to save energy, we
present arguments in favour of a synergistic approach that integrates both the hardware and
the software. The principal idea defended throughout this thesis rests on the fact that only a
comprehensive understanding of a program dynamic behavior at the compiler level is likely to
provide a better power consumption control mechanism. For this purpose, a static approach
for analyzing a program dynamic behavior is introduced that can identify and characterize hot
program paths. Since the focus of this thesis is on energy reduction, we also present how a
compiler might take advantage of the knowledge of a program dynamic behavior to adapt the
underlying architecture to a specific dynamic program instance. We present the conditions to
undertake such a reconfiguration, as well as the possible modifications brought to the architec-
ture, both for the cache components and the processor data-path.

Keywords : compilation techniques, low power, program analysis, reconfigurable computing

