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Abstract. Software optimization techniques are highly reliant on pro-
gram behavior to deliver high performance. A key element with these
techniques is to identify program paths that are likely to achieve the
greatest performance benefits at runtime. Several approaches have been
proposed to address this problem. However, many of them fail to cover
larger optimization scope as they are restricted to loops or procedures.
This paper introduces a novel approach for representing and analyzing
complete program paths. Unlike the whole-program paths (WPPs) ap-
proach that relies on a DAG to represent program paths, our program
trace is processed into a suffix-array that can enable very fast search-
ing algorithms that run with time O(ln(N)), N being the length of the
trace. This allows to process reasonable trace sizes offline, avoiding the
high runtime overhead incurred by WPPs, while accurately characteriz-
ing hot paths. Our evaluation shows impressive performance results, with
almost 48% of the code being covered by hot paths. We also demonstrate
the effectiveness of our approach to optimize for power. For this purpose,
an adaptive cache resizing scheme is used that shows energy savings in
the order of 12%.

1 Introduction

The increasing processor complexity makes the optimization process a com-
pelling task for software developers. These latter usually face the difficult prob-
lem of predicting the impact of a static optimization at runtime. One approach
used to meet this challenge is to rely on path profiling to collect statistics about
dynamic program control flow behavior. While this has proved to be very effec-
tive to assist program optimization [12, 20], the way this information is recorded
fails to reveal much insight about dynamic program behavior. One main concern
with current path profiling techniques is that they are often restricted to record
intra-procedural paths only [4].

More recently, Larus [14] has proposed an efficient technique for collecting
path profiles that cross procedure boundaries. In his proposed approach, an
input stream of basic blocks is compacted into a context-free grammar using
SEQUITUR [16] to produce a DAG representation of a complete program. SE-
QUITUR, however, is a compression algorithm that proceeds online; hence, the
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grammar production rules are far from being minimal such that in practice, the
achieved compression ratio is likely to incur a high runtime overhead. In addi-
tion, as each grammar rule is processed into a DAG, the information pertaining
to a particular dynamic path is lost since all dynamic instances of a given path
are fused into a unique DAG node.

In this paper, we propose to collect and analyze whole-program paths of-
fline. In this way, we make it possible to manage reasonable trace sizes, while
shifting the cost of online processing off-line. Since, however, the relatively large
sizes of the trace may render the path analysis cumbersome, an approximation
of the trace is needed which also can enable efficient path analysis techniques.
We introduce a novel program trace representation to deal with path analysis in
an efficient way. In particular, our approach stems from the fact that the data
retrieval nature of the path analysis problem makes it very tempting to con-
sider pattern-matching algorithms as a basis for path identification. One such
approach is given by suffix-arrays [15], which have already proved to be a very
efficient data structure for analyzing biological data or text. Conceptually, look-
ing for DNA sequences in biological data, or patterns in a text, is an analogous
problem to searching for hot paths in a trace; thus making suffix-array-based
searching techniques appropriate for path analysis. In addition, in contrast to
a DAG representation, a suffix-array provides the advantage of treating each
dynamic sub-path differently from one other.

This paper makes two contributions. The first and the foremost contribu-
tion of this paper is to demonstrate the effectiveness of using suffix-array-based
techniques for analyzing hot program paths. More specifically, we show the ap-
propriateness of suffix arrays to represent program paths, and to identify and
characterize the exact occurrences of hot sub-paths in a trace. One particular
strength of suffix arrays which make them very attractive for this purpose is
their low computational complexity, which usually requires O(ln(N)) time, N

being the length of the input trace. The second contribution of this paper is
to indeed illustrate the effectiveness of the proposed path analysis technique to
guide power-related compiler optimizations. For this purpose, an adaptive cache
resizing strategy is used and its potential benefits evaluated at the hot program
paths frontiers.

The remainder of this paper is organized as follows. Section 2 introduces
the background on suffix arrays. The profiling scheme used to collect paths is
described in Section 3. In Section 4, we introduce the offline algorithm used to
identify the sequences of basic blocks that appear repeated in the trace, while in
Section 5 we show how these sequences can be qualified as hot paths. In Section
6, we present our experimental results and discuss a practical application of our
scheme to reducing power consumption. Related work is presented in Section 7,
while Section 8 concludes.
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2 Suffix arrays background

Suffix arrays have been intensively used in several research areas such as genome
analysis or text editing to look for DNA or text patterns. However, despite
their widespread use in these domains, we are not aware of any attempt to
use this technique in the context of program path analysis. In this section, we
briefly introduce the background of suffix arrays and discuss why they may be
an efficient data structure for analyzing a whole-program trace.

Given an N-length character string S, the suffix array of S, denoted by Pos

in the remainder of this paper, is defined as the sorted array of the integer indices
corresponding to all the N suffices of S. Hence, Pos[i] denotes the string starting
at position i in S which extends until the end of the string. Figure 1 illustrates
a simple example representing a program execution trace T which is first pro-
cessed into an initial suffix array data structure and then sorted according to a
lexicographical ordering.

One key characteristic of suffix arrays is that they can enable computation
of search queries in time complexity O(p + ln(N)), where p is the length of the
searched pattern and N the length of the string; making it very convenient to
implement very fast searching algorithms. The query computation principally
undergoes a binary search phase on the sorted suffix array, taking advantage of
the fact that every substring is the prefix of some suffix. In addition to matching
the searched query, suffix arrays also permit to compute the frequency of the
queried pattern along with the exact positions of all of its occurrences in the
string. As for instance, in the given example shown in Figure 1, the basic block
sequence geabc appears 2 times in the trace, respectively at position i = 16 and
i = 17 in the sorted suffix array Pos. By generalizing this concept on variable
length substrings, several interesting items of information pertaining to dynamic
program behavior can be efficiently retrieved. These include, for instance:
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1. finding the longest repeated sequence of basic blocks in a trace, lmax ;
2. finding all n-length repeated sequences of basic blocks in a trace, n ≤ lmax;
3. determining the distribution frequency of each specific n-length basic blocks

sequence in a trace;
4. identifying the positions of each different n-length basic blocks sequence in

a trace.

Many of the above items may be of interest for several program optimiza-
tions. For instance, item 4 can be used for grouping hot sub-paths together to
drive the formation of ILP regions. In addition, if two neighbor hot paths have
associated distinct dynamic profiles, this information can be used to decide if
their respective profile can be merged or not. This may be helpful for inferring a
common configuration to adjacent hot paths in case of an adaptive compilation
strategy scheme.

Although suffix arrays present very interesting properties regarding program
path analysis, they still have some drawbacks. The most noticeable of them is
the memory space required to construct the suffix array, which is linear with
the size of the processed trace. This latter issue has since been the subject of
intensive studies and some compression algorithms have already emerged that
significantly reduce the amount of memory space required [10]. While this work
can also be accommodated with such a compression scheme, this is not our main
concern in this study.

3 Profiling scheme

In this section, we describe our general profiling scheme. In particular, we de-
scribe how the whole-program path trace is collected, and what kind of dynamic
information is recorded together with the trace.

3.1 Collecting the trace

Profiling can be used in a straightforward manner to collect a whole-program
trace by instrumenting each basic block of the CFG. This approach is however
very costly in terms of memory space. A more efficient approach is to instrument
only a subset of the executed basic blocks to capture nearly the same amount of
control flow information.

We use Ball’s definition of a strong region [5] to reduce the amount of basic
blocks that need to be instrumented. Given a directed control flow graph, CFG,
with nodes set V and edges set E ⊆ V × V , a strong region identifies the set
of basic blocks S in which any two nodes v,w ∈ S occur the same number of
time in any complete control flow path. Strong regions are actually computed as
part of the loop analysis phase. The computation relies on a generalized notion
of dominance information to identify nodes of a strong region. Simply stated,
given a loop region L with entry node h, set of exit nodes E and set of backedge
sources B, two nodes (v,w) ∈ L are in the same strong region iff:
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Fig. 4. CFG with three
strong regions.
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h = loophead(v) = loophead(w) and (v dom w, w pdom v with respect to B+E)

The definition of the strong region given above allows us to identify regions
in the CFG in which all basic blocks execute with nearly the same dynamic
frequency, whatever the taken control flow path is. In this respect, any node
belonging to such a region can be used to capture the dynamic control flow path
induced by the other nodes of that region. This drastically reduces the number
of instrumented basic blocks, as illustrated in Figure 4. The figure shows three
strong regions, two of them are composed of 3 basic blocks while the last one
has 4 nodes. The amount of instrumented basic blocks reduces from 22 to 14
because in each strong region we need to instrument only one basic block.

In some cases, however, the remaining number of instrumented basic blocks
can still be large. Of most concern here are the strong regions composed of a
single-node. Figure 4 shows for instance that these regions can represent almost
half of the nodes. To reduce this number further, we also consider the control
dependence relation [8] on the CFG induced by the strong regions. The idea is
to reduce the number of such instrumented single-node regions by selecting only
those that are actually control condition block. In this way, we can make sure
that the number of instrumented regions with one node get reduced as we only
need to keep track of the execution frequency of single-node regions of same
control condition rather than of the execution count of each such individual
region. This is illustrated in Figure 5. As shown in the example, the number of
instrumented nodes reduces from 22 to 5 overall, providing up to 80% reduction
of the total number of instrumented basic blocks.

We applied another compression technique to further reduce the size of the
trace. This technique principally targets cyclic regions such as loops in which
basic blocks execute repeatedly. In such a case, it is not necessary to record
all the back-to-back dynamic occurrences of the same region. Instead of that,
we can choose to record in the trace the last such dynamic occurrence with all
attached information updated accordingly. Combined with our profiling scheme,
this shows a real improvement in the compression ratio, typically up to 47%, on
average, for our benchmark sets.
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3.2 Control-flow information accuracy

The profiling approach presented in the previous section makes it difficult to
rebuild a copy of the control flow path. This, however, is of less a concern since
we are merely interested of knowing which regions are executed more often than
others, rather than knowing exactly the execution count of each basic block. Such
a region-directed path profiling approach is at the advantage of the program
optimizer since it may permit him to focus the analysis only on the predominant
paths in the trace. In an another phase, however, each region can be investigated
more closely to identify individual hot basic blocks.

Consider for instance the example shown in Figure 2. Three regions are
identified: the strong region R0 and the regions of same control condition R1 and
R2. Assuming that only nodes 5, 11 and 8 get executed in each of these regions
respectively, the corresponding dynamic execution trace is shown with name P

in the figure. This simple example indicates that sub-path 5, 11 is predominant.
In the figure, we also show the cumulated execution count of each node. It is
then straightforward to derive from the sub-path 5, 11 the exact set of the most
representative basic blocks by excluding those which execute less frequently,
i.e. node 13. In our abstraction, nodes 12, 13, 9, 10 are subsumed by the control
dependence relation. While this effectively reduces the space, it also emphasizes
the rapid identification of the main sub-path 5, 11. This is central to our program
sub-path detection technique.

3.3 BBWS signature

When a sequence of basic blocks appears repeated in the trace, we denote by
basic block working set (BBWS) the set of static basic blocks that constitutes
this sequence. The annotation attached to each such sequence is called a basic
block working set signature. This annotation can be used to describe such a
sequence in a unique manner, depending on the kind of dynamic information
that is appended to it. For our experiments, we have considered the region id,
reg-id, which identifies each instrumented region, the performance parameters
cyc, dyn, dmiss, imiss which represent the number of elapsed cycles, the dynamic
instructions count, the number of data and instruction cache misses attached to
each region, respectively. This information will become more apparent during
the formation of the hot program sub-paths, to determine the pertinence of a
candidate hot region.

4 Identifying BBWS

The key idea to search for BBWS is to rely on the suffix array data structure to
implement an efficient suffix sorting algorithm. We employ an adapted version
of the KMR [13] algorithm used in genetic and text querying systems to achieve
this.
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4.1 KMR algorithm

The KMR (for Karp, Miller and Rosenberg) algorithm is a well known algorithm
for computing the occurrence of repeated patterns in a string. The idea is dic-
tated by the observation that each suffix in P can be defined as the k-length
suffix of another suffix starting at position i. This implies that, at the j-th stage
of the sorting algorithm, j ≥ 1, the suffix array indices i + 2j−1 computed at
stage j − 1 are used to initially sort each suffix i obtained at stage j. This tech-
nique allows to double the suffix length at each stage, requiring only O(log(N))
processing time. The ordering relation used in the KMR sorting algorithm is
based on the definition of an equivalence relation over the suffix positions of the
path P . Given a path P = p1p1p2...pn, two suffices starting at positions i and
j in P are said to be k-equivalent, k < n, denoted by i Ek j, if and only if the
path of length k starting at these positions are the same.

4.2 Sorting algorithm description

We can easily make an analogy between the suffix array Pos
(j)
k obtained at the j-

th stage of the sorting algorithm described in the previous section and a partition

of all Ek equivalent integer indices obtained from Pos
(j)
k , k being the length of

the expanded suffix at that stage. Interestingly, the number of elements in the
partition gives the actual number of BBWS of length k, whereas their integer

indices in the suffix array Pos
(j)
k gives their position in the trace P . Hence, it

becomes straightforward to identify a BBWS according to its size (i.e length k),
its dynamic frequency of occurrence (i.e cardinal of the partition Ek) as well as
its dynamic coverage time (i.e start position in the trace until the position where
a new BBWS is encountered).

The algorithm used to sort the suffix array Pos is shown in Algorithm 4.
The alphabet is composed of the set of regions encountered in each CFG. The
input search space P represents the execution trace. In line 6 of the algorithm,
we first build the partition En corresponding to the set of BBWS with maximal
repeated occurrence of length n. As each element of the partition is identified, it
is hashed into a table of BBWS partitions with the hash key featuring the length
of the BBWS. This is done for En as well as for the other partition elements used
to iteratively compute it (see Algorithm 3). In lines 8-10 of the algorithm, the
program terminates as soon as the set of BBWS identified so far is representative
enough of the whole trace P . This issue is addressed in the next section. If this
is not the case, i.e. the set of BBWS is not representative enough of the trace,
then the algorithm undergoes a binary search to look for other BBWS, as shown
in lines 11-19. The idea is to incrementally add new BBWS until the condition
of the trace representativeness is met. At the end of the algorithm, the partition
table T contains, for each valid entry k, the set of all k-length BBWS that appear
repeated in the trace. The processing time for this algorithm is quite feasible. For
instance, a 40MB trace size requires less than a few minutes to process, whereas
for trace sizes ranging from several hundreds of MB to a GB, the processing time
is within the order of hours.
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Algorithm 1 Initialization

Require: P : control flow path defined over Σm

1: Construct the suffix array Pos
(0)
k=1

2: Add class elements E1 to T [1]

Algorithm 2 Construct suffix array Pos
(j)
k from Pos

(j−t)
k′

1: repeat

2: Use Pos
(j−t)

k′ to construct Pos
(j−t+1)

k′+1

3: Add class elements Ek′+1 to T [k′ + 1]
4: k′ := k′ + 1
5: until k′ < k

Algorithm 3 Construct suffix array Pos
(N)
k=max and Emax, N number of pro-

cessing steps

1: Use Algorithm 1 to initialize the suffix array Pos
(0)
k=1

2: repeat

3: r = r′ + 2j−1

4: Construct Pos
(j)
k=r from Pos

(j−1)

k=r′

5: Add class elements Er to T [r]

6: until Pos
(j)
k=r is unchanged

7: return r

Algorithm 4 Basic block working set partitioning

1: n, k : Integer := 0
2: T : BBWS partition table
3: Σ := {Set of reg-id}, |Σ| = m

4: P : p1 p2 p3 ... pm ∈ Σm

5:
6: Use Algorithm 3 to suffix sort the array Pos, obtaining n, the longest repeated

BBWS
7:
8: if all BBWS are representative of P then

9: stop here
10: end if

11: for k = n − 1 to 2 do

12: if T [k] is empty then

13: Find T [d] such that d < k, d is a power of 2 and T [d] 6= ∅
14: Use Algorithm 2 to iteratively construct Ek from Ed

15: end if

16: if all BBWS are representative of P then

17: stop here
18: end if

19: end for
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4.3 Sorting example

Let us consider the example shown in Figure 6. We illustrate next the different
processing steps involved when searching for the longest repeated BBWS. Step

0 shows the suffix array Pos
(0)
k=1 that corresponds to the initial sorting stage

with suffix length k = 1. The partition elements of the equivalent class Ek=1 are

deduced directly from Pos
(0)
k=1. The cardinal of the partition gives the number

of BBWS of length k = 1. At the next iteration step, the array Pos
(1)
k=2 is

computed from the array Pos
(0)
k=1 in the following way. The suffix positions of

P that correspond to the integer indices in Pos
(0)
k=1 are sorted into buckets of

same equivalent class. For instance, suffix positions 2, 7, 12 in P will belong the

same bucket since their integer indices in Pos
(0)
k=1 are identical (i.e. 2). Note

that, at this stage, the number of elements in each bucket yields the dynamic
execution frequency of the considered BBWS in P . From here, each bucket is
sorted according to the b-equivalent relation, where b = k(j) − k(j−1), i.e. b = 1
at stage 1. The result of this sorting is a new set of buckets where two suffix
positions belong the same bucket iff they are Eb equivalent with regard to their

integer indices in Pos
(0)
k=1. For instance, suffix positions 2, 7 belong the same

bucket because they are E1 equivalent with respect to Pos
(0)
1 . The array Pos

(j)
k

is obtained by renumbering the integer indices of the suffix positions contained
in a bucket list with a same equivalent class number if they satisfy to the b-
equivalent relation. Note that BBWS that appear only once are systematically
discarded from the suffix array since we are only interested in identifying those
that appear at least twice in the trace. This explains the stars in the arrays

Pos
(1)
k=2 and Pos

(2)
k=4.

5 Qualified BBWS for hot sub-paths

Not all BBWS that are identified with the algorithm described in the previous
section are of interest. Of course, there are some BBWS that effectively appear
repeated in the trace but which inherently bring no value for the optimization.
To distinguish among the BBWS those who are the most representative, we
apply three selection criteria, as illustrated in Figure 7.
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The first criterion is the local coverage. This metric is an indication of the
number of elapsed cycles in the region, or the dynamic instructions count of that
region, before a transition to another region occurs. Either one of the number
of cycles or the dynamic instructions count can be directly obtained from the
trace, as indicated in Section 3.3.

The second criterion is the global coverage. This metric is related to the local

coverage by the dynamic execution frequency of a BBWS, global coverage =
frequency× local coverage. With respect to the overall program execution, this
metric assigns to each potential hot path a global cycle weight or a dynamic
instructions count weight.

The last criterion is the reuse distance, measured in number of dynamic basic
blocks. The reuse distance is an approximation of the temperature of a BBWS.
As the reuse distance gets larger, the probability that the underlying BBWS is
a hot path lowers. This can be mainly attributed to the fact that, although the
BBWS appears repeated in the trace, it is not too often executed to infer a hot
temperature. In contrast, tighter reuse distances indicate a high probability that
the considered BBWS is a hot path. A consequence of this is that cold blocks
in the vicinity of a hot path may also be inferred a hot temperature since the
heat may propagate to them indirectly. In Figure 7 for instance, if the reuse
distance of the highlighted hot path is below a given threshold, block A can be
included in the BBWS induced by the nodes of the hot path to form a coarser
region. Assuming Position designates the set of all consecutive, non-overlapping
positions of a BBWS in the trace, the average reuse distance D is computed as
shown in Equation (1), where width refers to the size of the BBWS (number of
basic blocks) and % represents the modulo function.

D =

∑
(posi−1 + width) % posi

|Position|
(1)

Note that, since a region is represented with a single basic block, the compu-
tation of D must actually consider all basic blocks encountered in that region.
Hence, the expression of D provides only an approximation of the reuse distance
value. A hot path candidate is then formed by selecting BBWS with a relatively
high local coverage and low reuse distance. The global coverage serves as an
indication of the hot paths weight in the program.

6 Experimental evaluation

This section presents an evaluation of the proposed approach. We first introduce
the simulation platform and the benchmarks used in Section 6.1. Then, in Section
6.2, we evaluate and discuss our results.

6.1 Experimental methodology

We conducted our experiments using applications collected from MiBench [11] as
illustrated in Table 1. The applications are first compiled with the PISA compiler
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Fig. 8. Simulation framework.

Table 1. Benchmark

Bench. size (MB) compr. ratio

dijkstra 110 65%

adpcm 148 67%

bf 55 74%

fft 6 85%

sha 11 77%

bmath 6 78%

patricia 21 77%

Table 2. Machine parameters.

Issue in-order 4-issue

Integer ALU 4

Mult. units 2

Load/Store unit 1

Branch unit 1

instr. cache 32K 1-way

data cache 32K 4-way

cache access latency 1 cycle

data cache replacement policy LRU

memory access latency 100 cycles

from the SimpleScalar [7] tool suite, with optimization level 3, to obtain an input
assembly file. Each assembly file is then processed by SALTO [6], which is a
general, compiler-independent tool that makes the manipulation of the assembly
code at the CFG level easier. SALTO is used essentially to instrument the code,
using the SimpleScalar annotation feature, and to add new compiler optimization
passes. The produced executable is processed by SimpleScalar to extract the
compressed trace which is then fed to the offline analyzer. After the hot paths
have been identified, this information can be re-injected into SALTO to drive
the various compiler-dependent optimization passes. An overview of the different
processing stages is shown in Figure 8.

Our measurements were performed with SimpleScalar, which we use to model
a 5-stage in-order issue processor such as those encountered in the embedded
computing domain, e.g. the Lx processor [9]. Details on the processor configura-
tion parameters used in this study are shown in Table 2.

6.2 Evaluation

This section presents the evaluation results of using our scheme on the set of
benchmarks described in the previous section. The evaluation consisted to mea-
suring the relative compression ratio achieved by our approach and to analyzing
the quality of the detected hot paths with respect to the criteria introduced in
Section 5.
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Trace size. The last column of Table 1 gives an estimate of the compression ratio
achieved with our approach. Note that the size of the trace depends strongly on
the information encoded with each trace line. For this experiment, we used 20
bytes for each trace line, one byte each for recording the region id, the number of
cycles, the number of dynamic instructions, the number of data and instruction
cache misses associated with each region respectively. More elaborate trace line
representations can be imagined to reduce further the trace size; however, this is
not the scope of this paper. The column labeled trace size shows the original size
of the trace. As it can be seen from the table, the trace size can be reduced by
up to 74% on average. This compression ratio includes the compaction of back-
to-back occurrences of loop paths (see Section 3.1), which accounts for about
47% of the trace reduction.

Local coverage. This metric measures the time spent in a BBWS, or the num-
ber of dynamic instructions executed within that BBWS. Figure 9 shows the
distribution of the local coverage for some representative BBWS when consid-
ering the dynamic instructions count. As it can be observed from the figure,
some applications have their BBWS which extend from a few tens of instruc-
tions to a few hundreds or more, e.g. adpcm, fft, bf, dijkstra, patricia, bmath.
These applications are therefore best candidates for local optimizations such as
instruction coalescence that reduces a region’s critical path, or local strength
reduction which replaces expensive operations with cheaper ones. In the figure,
some BBWS whose sizes extend beyond a few thousand of instructions are also
distinguishable, e.g. bmath, dijkstra, patricia, sha. As these applications tend to
spend a large amount of their execution time within a single region, they may
best benefit from memory re-layout techniques such as cache-conscious place-
ments or resizing. The local coverage is however not sufficient enough for deciding
on the pertinence of a BBWS.
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Table 3. Qualified BBWS as hot paths.

Bench BBWS (%) local cov. (%) glob. cov. (%) reuse (avg)

dijkstra 2.81 0.09 47 1.74

adpcm 5.88 < 0.005 90 0.00

bf 27.01 0.06 24 85.00

fft 11.7 < 0.005 7 4.21

sha 20.0 0.06 72 0.75

bmath 15.22 0.05 37 19.21

patricia 5.85 0.15 65 24.84

Table 4. Energy ratio.

config energy/access

32K4W 1.00

32K2W 0.58

32K1W 0.37

16K2W 0.55

16K1W 0.35

8K1W 0.35

Global coverage. The local coverage must be interpreted in the light of global
coverage to yield a fair understanding of the pertinence of a BBWS. Such a com-
prehensive reading can be provided with help of Figure 10. For this experiment,
we have fixed an arbitrary threshold at 5% of the total instructions count as
indicated in the figure with the threshold line. With regard to the local coverage
of each BBWS, all the points above the threshold line are therefore these that
are likely to provide substantial performance benefits across the whole program
run. Of most concern are all the applications at the exception of fft, which has
a global coverage value slightly below the threshold. Some applications such as
sha and patricia exhibit BBWS whose sizes extend from a few hundreds to a few
thousands of instructions, with a fairly good distribution among the two. This
is an indication that these BBWS are good candidates for both local and global
optimizations.

Reuse distance. The last criterion that qualifies a BBWS as a hot path is the
reuse distance. This metric measures the heat of a BBWS by estimating the
average number of accesses to different basic blocks between non-overlapping
occurrences of this BBWS. Clearly, the larger is the reuse distance, less is the
probability that it is a hot path. This trend can be well observed in Figure
11 where we show the cumulative distribution of the reuse distance for our
benchmarks set. Applications with BBWS whose sizes extend to a few tens of
instructions tend to have reuse distance values distributed among a few tens
(e.g. bmath, fft, bf ) to a few hundreds (e.g. dijkstra, bmath, fft, sha, adpcm)
and thousands (e.g. patricia, dijkstra, adpcm) of basic blocks. Medium sized
BBWS which extend from a few hundreds to a few thousands of instructions
constitute the other category with reuse distance values less than a thousand,
at the exception of patricia, dijkstra and bmath. Finally, as it is to be expected,
very large BBWS tend to have also poor reuse distance values as evidenced with
patricia and dijkstra. Tough, an exception with dijkstra is to be noted as a few
number of these BBWS exhibit very good reuse distance value with D ≈ 1.

We summarize our experimental results in Table 3. The values were computed
with a global threshold at 5%. This table presents results obtained by combining
all the selection criteria together in order to qualify a BBWS as a hot path. As
illustrated in the table, from 7% to 90% of the program dynamic instructions
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Fig. 12. Hotpath d-cache miss distribution for
dijkstra (baseline config is 32K4W).

can be covered using our approach, with only as much as 0.15% of the dynamic
instructions being executed within a single region.

6.3 Application example: adaptive cache reconfiguration

The cache hierarchy is the typical example where the power/performance trade-
off plays a central role. While a large cache permits significant improvements
in performance, only a small fraction of it is usually accessed during a program
run. Henceforth, to address this source of inefficiency, much recent work has fo-
cused on the design of configurable caches [2, 21]. A key point with such work is
deciding when to perform such a reconfiguration. With general purpose proces-
sors, this can be done dynamically with some mean of hardware, or at software
following procedure boundaries [2]. With embedded systems, this is often done
once on a per-application basis [21].

In this section, we examine the possibility of reconfigurating a cache at hot
path boundaries. To do so, we assume a scheme similar to that presented in [21]
in which the associativity of a cache can be modified while still preserving the
whole cache capacity. Furthermore, we also assume an extension of this scheme,
proposed in [18], in which the associativity as well as the size of a cache can
be adapted at runtime with the help of a reconfiguration instruction. Because
of space convenience, we will only discuss one result, namely dijkstra which is
that having the best BBWS profiles with larger local and global coverage and low
reuse distance. Figure 12 shows the cumulative distribution of the number of data
cache misses, using varying cache configurations, for the two most representative
hot paths of dijkstra with global coverage at 10% and 83%, respectively. As
indicated in the figure, each hot path has a set of cache configuration candidates
which vary according to either of the selection criteria introduced in Section 5.
The first hot path, for instance, has a reuse distance of ≈ 0 and a local coverage
of 0.09%, whereas the second occurs practically each 4 blocks with a relative
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low local coverage (≈ 0.004%). The first hot path is therefore more regular than
the second, which could explain the larger choice for the former. Table 4 shows
the relative energy per access obtained by means of CACTI [19] for each cache
configuration. Each xKyW stays for a cache of size x and associativity y. The
best configuration for hot path0 is given by 32K1W which is from far more
energy-efficient than the 32K4W case. On the other hand, for hot path1, 32K2W
yields the best energy-performance ratio. However, although both hot paths yield
substantial energy savings, only the first one may be of interest because it has a
near 0 reuse distance value, which infers that reconfiguration will take place very
infrequently. This is crucial for performance as each reconfiguration instruction
consumes extra cycles and energy. The energy savings obtained in this way is in
the order of 12% with almost no performance slowdown (less than 1%).

7 Related work

Many work have been proposed to collect profiling information. In [3], Ball and
Larus propose to collect profile information via edges profiling. They extended
their work in [4] to include path profiling information that are restricted to intra-
procedural paths. Bala [1] then augmented the intra-procedural path profiling
scheme to capture inter-procedural paths as well. A similar work has been pro-
posed by Larus [14] which relies on a online compression scheme, SEQUITUR
[16], to produce a compact representation of a whole-program paths. Our scheme
is to some extent similar to [14] in that we also provide a representation of a
whole-program paths. However, unlike the DAG representation used in [14], we
rely on a suffix array representation that permits the implementation of very
fast searching algorithms, allowing quick offline processing; thereby offsetting
the high runtime overhead of Larus’s scheme. In addition, this also permits
us to treating each dynamic path distinctly from one other and consider large
trace sizes. The performance of the proposed scheme can be rather significantly
improved, namely by using other compression techniques which are complemen-
tary to that proposed in this paper. For instance, a direct improvement can
be obtained by encoding the suffix array compression scheme described in [10].
Compression techniques such as that describe in [17] can also be used to further
reduce the size of the trace to less than a fraction of a bit per reference.

8 Conclusions

While suffix arrays (SAs) have been widely used in biological data analysis or text
editing, we are not aware of any prior published work that shows its application
to compiler optimization. In this paper, we presented a first attempt to apply
suffix array to the compiler domain. In particular, we showed how a SA can be
used to represent a whole-program paths and to accurately identify hot program
paths. Our evaluation results revealed that up to 48% of the code can be covered
by hot paths, each one representing at most 0.15% of the total instructions
count. Practical application of our approach has confirmed its effectiveness to
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reduce power consumption. We showed that up to 12% energy savings can be
obtained with a hot-path-directed adaptive cache resizing strategy that used
our technique. Because of its power to precisely model program paths (reuse
distance, local+global coverage), we believe that SAs can be of a crucial aid to
assist a programmer during the optimization process.
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