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Abstract

Managing the energy-performance tradeoff has become
a major challenge with embedded systems. The cache hier-
archy is a typical example where this tradeoff plays a cen-
tral role. With the increasing level of integration density,
a cache can feature millions of transistors, consuming a
significant portion of the energy. At the same time how-
ever, a cache also permits to significantly improve perfor-
mance. Configurable caches are becoming the "de-facto"
solution to deal efficiently with these issues. Such caches
are equipped with artifacts that enable one to resize it dy-
namically. With regard to embedded systems, however,
many of these artifacts restrict the configurability at the
application level. We propose in this paper to modify the
structure of a configurable cache to offer embedded com-
pilers the opportunity to reconfigure it according to a pro-
gram dynamic phase, rather than on a per-application ba-
sis. We show in our experimental results that the proposed
scheme has a potential for improving the compiler effec-
tiveness to reduce the energy consumption, while not ex-
cessively degrading the performance.

1. Introduction

As the demand for high-performance embedded sys-
tems increases, the challenge of managing power consump-
tion in current embedded applications becomes a major
concern. The cache hierarchy is the typical example of
such a power/performance tradeoff design point. On one
hand, a large cache allows to maintain an important frac-
tion of the embedded code and data workload on-chip, thus
reducing the amount of memory traffic and thereby improv-
ing the performance and power consumption. On the other
hand, however, typical cache memory accounts for up to�����

of the total transistor count and for about � ��� of the
total chip area [8], making the cache memory subsystem an
important source of power dissipation.

Recent researches on this area have focused on the de-
sign of configurable caches [7, 12, 1, 21, 2, 20]. The main

motivation behind a configurable cache is to allow one to
adapt the cache size requirement of a running program
to a desired power/performance tradeoff. However, for-
mer configurable cache proposals for embedded systems
[7, 12, 21] have only considered configuration on a per-
application basis. A drawback with this approach is that an
optimal cache size, viewed from a performance standpoint,
has not yet been shown to exist, whereas each application
simply exhibits varying dynamic cache behaviors [16, 18].
Moreover, in the context of embedded systems, compilers
play a central role in obtaining good performance; it is thus
important to consider configuration schemes that improve
compiler’s effectiveness as well.

This paper is a first effort towards the resolution of the
problems exposed above. First, a model of a hybrid con-
figurable cache design is proposed as a shortcut to two cur-
rent proposals. With this model, we allow a cache to be
reconfigured on a per-phase basis rather than at the ap-
plication level, with only minor hardware modifications,
keeping the design complexity simple. Second, based on
the proposed model, the potential benefits of a fine-grain
cache size adaptation scheme is explored that can be used
at the compiler level for automatically characterizing the
different cache size requirements of a program phase. The
proposed model considers a great degree of flexibility, pro-
viding the compiler with the opportunity of resizing a cache
along its size and/or degree of associativity.

The remainder of this paper is organized as follows.
Section 2 provides a review of configurable cache designs.
In Section 3, we detail our model of a hybrid reconfigurable
cache architecture. The compilation support to our hybrid
cache model is presented in Section 4. Experimental re-
sults are presented in Section 5. Section 6 discusses related
work and Section 7 concludes.

2. Configurable cache designs

Configurable caches offer a powerful alternative for re-
ducing the energy dissipation of conventional caches. The
basic idea is to permit a cache memory system to adapt
to the cache size requirement of a running program. The



various proposals of configurable cache architectures prin-
cipally differ in their resizing granularity and their design
complexity.

In [1], Albonesi proposes to partition a set-associative
cache along its tag and data ways. Energy can be saved by
allowing cache ways to be disabled/enabled on demand,
according to the cache size requirement of the applica-
tion. The hardware implementation is simple, with only
a software register mask that enables/disables cache ways.
However, this approach can only be accommodated to set-
associative caches. The configurable cache design pro-
posed in [13] is somewhat similar to selective-ways. How-
ever, instead of disabling the unused cache sections, the
authors suggest to transfer useful tasks to them (e.g. in-
struction reuse for media processing).

Other approaches of configurable caches consist in par-
titioning a cache along its sets [20] or at the granularity
of the cache line [10, 23]. In contrast to [1], these ap-
proaches can be accommodated to direct-mapped caches
as well. However, the required implementation cost can
be much more expensive. For instance, resizing a cache to
the smallest and/or largest addressable number of sets with
[20], requires to maintain a number of tag bits that often
exceeds the one found with a conventional cache of equal
size1.

A more recent work by Zhang et al. [21] proposes to
exploit the way partitioning scheme of a set-associative
cache to reconfigure it as either a direct-mapped cache or
a set-associative cache of lower degree of associativity.
The proposed configuration scheme exploits a technique
called "way-concatenation" which permits cache ways to
be merged, while still retaining the full cache capacity but
with reduced set-associativity. This approach reduces the
dynamic energy since, with same cache size, lower associa-
tivity caches perform fewer switching activities than higher
associativity caches. In addition, the implementation cost
has been shown to be minimal.

3. Cache model description

This section describes the architectural model of the re-
configurable cache assumed for this study. While the pro-
posed model can be applied to both data and instruction
caches, only the data cache is considered.

3.1. Motivation

The motivation behind the proposed model is to empha-
size the most critical application-specific cache architec-
tural tradeoffs involved during program execution. To do
so, we consider a cache with a fixed line size and mod-
ulus mapping function. Our main observation is that the
performance of such a cache is mainly dictated by its size

1e.g. to upsize the number of sets from 256 to 1024 in a 32K 4-way
cache with 8 tag index bits, 10 tag bits must be maintained instead.

size/#sets 1024 512 256

32K DM 2-way 4-way
16K DM 2-way
8K DM

Table 1. Possible cache size granularities for
a 4-way, 32B line base cache with 8K per
bank.
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Figure 1. Baseline architecture of a 2-way as-
sociative cache.

and degree of associativity. Therefore, from a software per-
spective, we would like to select the configuration with the
lower energy consumption that minimizes the miss ratio
(i.e. the one with lower degree of associativity and smaller
size). However, since programs have varying dynamic
cache behaviors, they must also feature varying dynamic
cache size and/or degree of associativity. Thus, instead of
selecting these parameters on a per-application basis, we
would then prefer to tune them according to a program dy-
namic phase.

The idea is to use a combination of schemes that per-
mits to reconfigure a cache along its size and associativity
in order to provide both in one. We do this by exploiting
the variability in the cache size and the degree of associa-
tivity provided by combining the selective-way scheme [1]
and the way-concatenation technique [21]. Such a hybrid
scheme can provide fine-grain cache sizes at various de-
grees of associativity. Table 1 shows a subset of some pos-
sible cache configurations that can be exposed to the com-
piler. For example, starting from a 4-way ��� K baseline
cache configuration, we move to the ��� K direct-mapped
configuration by either concatenating 2 banks ( ��� K 2-way)
and then selecting only one of the two, or selecting two
( ��� K 2-way) active banks and then concatenating them.

3.2. Baseline model

Our model builds upon the way-concatenation scheme
introduced in [21] and extends it in order to include a flexi-
ble selective-way scheme to resize a cache at runtime. Ba-
sically, with the way-concatenation scheme, one can select
the number of cache ways � that can be activated on each
cache lookup. In this scheme, each selected way is virtu-
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Figure 2. Drowsy cache line circuit.

ally a multiple of the size of a cache way in the � -way case,
� being the number of available cache ways. For instance,
if one way is active, it has virtually four times the size of
the 4-way case. A configuration register is provided to set
the number of active ways � . A way concatenation logic is
in charge of carrying the active/inactive way-enable signal
to each of the � cache ways. The baseline architecture is
depicted in Figure 1. In this figure, the two high-order bits
of the way concatenation register (WCR) are used as con-
figuration register to fix the number of active cache ways.

3.3. Architectural modifications

Associativity dimension. The main issue of concern
we address at this stage is preserving the cache coherency
across different cache configurations, while minimizing
the reconfiguration time. Consider, for instance, the re-
configuration scenario illustrated in Figure 3. In phase

�
,

corresponding to a 2-way cache configuration, the way-
concatenation logic activates bank 0 and bank 2 when ���
is referenced. In this case, ��� hits in bank 0. In phase��� � , however, the cache configuration changes to a direct-
mapped cache and ��� is write accessed in bank 1. At this
stage, there are two possible locations for ��� , the old one
in bank 0 and the new one in bank 1.

Way 0 Way 1 Way 2 Way 3

@A

Way 0 Way 1 Way 2 Way 3

@A

invalidation

@A

Phase i: 32K 2−way, current active banks are 0 and 2, @A is mapped into bank 0

Phase i+1: 32K 1−way, current active bank is 1, @A is modified                in bank 1

Figure 3. Reconfiguration scenario.

A possible way to overcome the cache coherency prob-
lem illustrated above is to maintain the tag and status arrays
always accessible. This implies that only the data array is
activated/deactivated by the way-concatenation logic. The
tag and status arrays therefore still continue to behave like
in a conventional cache. The actions of the cache controller
can then be modified to access all tag arrays on each write
request to set the corresponding status bit as invalid when-
ever the referenced address hits in one of the bank. This
scenario is illustrated in Figure 3 with the dotted arrow line
indicating the action of the invalidation signal in the tag ar-
ray. Future accesses to the invalidated data will cause the
new data to be provided by the upper level cache hierarchy.
For sake of simplicity, we assume a write-through cache
policy. This guarantees data coherency whenever a cache
line is provided from the upper level memory hierarchy.
This implementation can be done via a special instruction
in software to force this behavior or it can also be done
transparently in hardware.

Cache size dimension. We augmented the way-
concatenation architecture to include a drowsy bit [5],
represented by the low-order bit of WCR shown in Fig-
ure 1. The drowsy bit is intended to control the acti-
vation/deactivation of the selective-way scheme (drowsy
mode). We assume for this mode that the machine sup-
ply voltage can be dynamically scaled to higher values of
the threshold voltage �	� . As in the gated-Vdd scheme
[14], this mode reduces the leakage energy by using higher
threshold supply voltages that cause the leakage current to
be reduced as a by-side of the short-channel effects. In con-
trast to the gated-Vdd scheme, however, the supply voltage
is scaled in such a way that the state of the memory cell
is preserved. Therefore, when reducing the cache size, we
do not need to completely disconnect a cache bank which
may otherwise cause the loss of the data stored into it. Note
that, the drowsy mode only applies to the data array, as
explained above. This solution has been preferred in or-
der to avoid the one cycle wake-up delay needed to bring
a tag-way out of the drowsy mode with each write access.
The fact of continuously maintaining the tag array in a non-
drowsy mode has a negligible impact on the leakage energy
since the tag ramcells count for less than 4.2% of the total
area of our base cache.

Figure 2 reflects the changes introduced into the cache
line in order to accommodate the drowsy mode. The
drowsy bit is ANDed with the way-enable signal of each
cache line. An entire cache way may be put into drowsy
mode depending on the status of the way-enable signal and
the drowsy bit. In particular, this happens when the drowsy
bit is set and the corresponding way-enable signal is un-
set. In such case, the supply voltage for each cache line
switches to the lower voltage, putting the entire bank into
drowsy mode. With the other cases, the supply voltage for
each cache line is set to the normal voltage, bringing the
entire cache bank out-of drowsy mode.



way-mask value drowsy bit state cache config.
0 0/1 32K1W/8K1W
1 0/1 32K2W/16K1W
2 0/1 32K2W/16K2W
3 0 32K4W

Table 2. Effects of the MOVWCR instruction.

3.4. Design cost

To drive the drowsy signal of each cache line, an in-
verter and a AND gate have been added. By assuming a
memory cell dimension of 1.84 x 3.66 um, this results to
approximatively 2 memory cells per cache line. According
to [5], the voltage controller adds about ��� � � memory cells,
assuming a memory cell layout of 6.18 x 3.66 um. The
two inverters, one in the voltage controller and the other in
the precharge circuit, add an equivalent of 1 more memory
cell per cache line. Finally, the wordline gating circuit ac-
counts for ��� � additional memory cells, making a total of� � � � memory cells overhead per cache line. Overall, for a
cache size of ��� K and a line size of ��� B, this makes an area
overhead of less than � � . Note that, in comparison to the
circuit shown in [5], there is no need to use a drowsy bit on
each cache line since the drowsy signal is directly derived
from the way-enable signal which is driven to each cache
way. Using a drowsy cache adds however some perfor-
mance penalty. When a drowsy cache way is activated, the
voltage controller to each cache line simultaneously retires
from the low voltage to set the memory cell power line to
the normal voltage. This takes one additional clock cycle.

3.5. ISA support

The ISA support for the presented model can be re-
sumed to a simple WCR modify instruction, denoted by
MOVWCR, to read/write the content of WCR shown in
Figure 1. Given that such an instruction is provided by the
ISA, Table 2 illustrates how this instruction can be used to
feature the different cache configurations shown in Table 1.

4. Compilation support

Using the model presented previously, we describe in
this section how the compiler may characterize the cache
size requirement of a dynamic program phase.

4.1. Program cache size requirements

The characterization of the cache size requirement of
a dynamic program phase is performed on a trace of ad-
dress references previously extracted by means of profil-
ing. Since an embedded system is often designed to run a
few types of applications, it is worth to spend a fraction of

time optimizing each embedded application intensively. In
such case, the time required to profile and pre-process the
embedded applications can be justified.

Our approach to program profiling and trace process-
ing consists in collecting the dynamic LRU-stack profiles�����
	 ������ 	������ and � ���
	 ������ 	������ , explained later, of the
running program, at some fixed sample interval ��� . The
variable

�
in the previous expressions corresponds to the

LRU-stack depth. By exploiting the cache inclusion prop-
erty, assigning different values to

�
permits to simulta-

neously evaluate alternative cache memory configurations
that share the same set-mapping function ���� � . Thus, by
also varying the set-mapping function ���� � , we can in-
crease the range of alternative cache configurations that
can be simultaneously evaluated in a one pass simulation
through the address trace [9]. We assume for the rest of
this study that the caches we model support no prefetch-
ing, have the same block size and use the LRU replacement
policy.

4.1.1 Cache size performance profile,
����	 ���� 	������

At each sample interval ��� , �����
	 ������ 	������ defines the
performance profile of a cache with set-mapping function
������ and LRU-stack distance

�
. This performance pro-

file can be seen as the number of dynamic references that
hit in all cache configurations with the same set-mapping
function ���� � and with the LRU-stack distance  "! �

.

4.1.2 Cache size energy profile, � �#	 ���� 	����$�
Similarly, the expression � � �
	 ���� � 	����$� defines the dy-
namic energy profile of a cache with set-mapping function
������ and LRU-stack distance

�
. We define the dynamic

energy per sample interval as follows:
%�& �('*),+.-0/0'*1�23254 6 & �('*)7+
-8/9'*1�232;: %=<

(1)> ? @�AB? : %DC >FE & � : %HG
> ' ? @�AB?.I�JLK +�M & � '*)7+
- / '*1�23232;: %DN

where

�PORQTS �US�V�WYX _ V0�YZ �3[#\ ��] (2)

In
	 � � , �^] is the dynamic energy on each cache access,

�PO the dynamic energy per memory access, �`_ the dy-
namic energy per drowsy transition, � � the dynamic en-
ergy per each tag access, and a � � the number of transi-
tions to/from drowsy mode within the sample interval � � .
a � � is measured by means of monitoring all bank transi-
tions within two consecutive dynamic cache memory ac-
cesses, reporting only those bank transitions whose prior
state was set to drowsy. The first expression in

	 � � models
the dynamic energy due to a hit in the cache. The second
and third expressions respectively model the energy due to
accessing the tag part and the energy due to the drowsy
mode transitions. Finally, the last expression models the
energy due to the memory access on a read miss event and
on each write access to the cache. In

	 � � , we estimated the
S �US�V�WbX _ V9�YZ �3[ constant to be � � .



Parameter Value

Issue width 4
Integer ALU 4

Multiplication units 2
Load/Store unit 1

Branch unit 1
data cache 32K 4-way

data cache line size 32B
data cache access latency 1 cycle

data cache replacement policy LRU
memory access latency 20 cycles

Table 3. Lx microarchitecture parameters.

Benchmark Suite Datasets

fft MiBench large
gsm MiBench large

susan MiBench large
mpeg mediabench test
epic mediabench test_image

summin Powerstone custom
whestone Powerstone custom

v42bis Powerstone custom

Table 4. Benchmarks used and number of ac-
cesses to data cache (in million).

4.2. Management of reconfigurability

The reconfiguration can be undertaken by the compiler
in the following manner. Assuming the ISA support intro-
duced in Section 3.5 is given and that the application work-
ing set has been partitioned into different cache configura-
tions, the compiler may insert reconfiguration instructions
in the code at the positions corresponding to the begin-
ning of each phase, with each instruction initialized con-
veniently with the appropriate parameters (e.g drowsy bit
state, way-mask). This step can be done within a separate
compilation pass. Since, in this paper we focus on the po-
tential benefits provided by such a scheme, we do not ad-
dress the compilation issues associated with the automatic
insertion of the reconfiguration instructions. This research
will be delegated to future works.

5. Experimental setup and results

This section presents a preliminary evaluation of the
cache size adaptation scheme introduced in Section 3 and
Section 4.

5.1. Simulation platform and benchmarks

Our simulations were carried out on the Lx platform [4].
The Lx platform belongs to a family of customizable multi-
cluster VLIW architectures. The implementation used in

Parameter Value

process technology 0.07 um
normal supply voltage 0.9 V
drowsy supply voltage 0.3 V
memory access latency 100 cycles
processor clock speed 5.6 GHz

drowsy transition latency 1 cycle
32k 4-way dynamic energy/access 0.294 nJ
32k 2-way dynamic energy/access 0.173 nJ
32k 1-way dynamic energy/access 0.110 nJ
16k 1-way dynamic energy/access 0.104 nJ
16k 2-way dynamic energy/access 0.164 nJ
8k 1-way dynamic energy/access 0.104 nJ

drowsy energy/transition 0.256 pJ
gated-Vdd leakage energy/cell 0.245 fJ

drowsy leakage energy/cell 0.308 pJ
normal leakage energy/cell 0.835 pJ

Table 5. Simulation parameters.

this study features a 4-issue width processor. The details of
the processor microarchitecture parameters are shown in
Table 3. We evaluated our cache size adaptation scheme
with different applications collected from MiBench [6],
Mediabench [11] and Powerstone [15] suites. All the cho-
sen applications were compiled with the Lx native com-
piler, with the optimization level 3, and then run until com-
pletion. Table 4 shows an overview of each benchmark
together with the datasets used. Some of the benchmarks
from these suites that we did not considered were not able
to be compiled with the Lx native compiler or were exhibit-
ing close behaviors to some applications that we already
selected.

Our simulation parameters were obtained by means of
CACTI [17] and Hotleakage [22]. In particular, we ex-
tended CACTI to include the leakage energy functions of
the Hotleakage tool. We then employed the resulted modi-
fied CACTI tool to estimate the dynamic energy per cache
access for each simulated cache configuration, as well as
the leakage energy per cell for each simulated leakage en-
ergy reduction technique. The dynamic drowsy transition
energy was derived based on the results published in [5].
Table 5 gives an overview of the full simulation parameters
that apply to this study.

5.2. Analysis of the energy and performance pro-
files

After empirical evaluations, we have chosen a sample
interval size of � � Q � � ��� cycles to record the energy and
performance values for each cache configuration, as de-
scribed in Section 4.1. In order to emphasize the different
energy/performance tradeoffs between the cache configu-
rations, we graphed in Figure 4 and Figure 5 the cumulated
energy values vs the number of cumulated cache misses
encountered in each sample interval of program execution.
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Figure 4. (a) gsm energy/performance profile; (b) fft energy/performance profile.

The x-axis records the logarithmic scale of the cumulated
number of cache misses obtained in each sample interval
(e.g. a 3 in the x-axis means � ��� misses). Each point of the
x-axis is associated with a value in the y-axis correspond-
ing to the cumulated amount of dynamic energy consumed
(also in logarithmic scale) up to that sample interval. Let
us for instance consider the gsm and fft applications shown
in Figure 4-a and Figure 4-b, respectively.

In Figure 4-a, we can observe that there exists a thresh-
old at which the different cache configurations are clustered
according to their size, independently of the degree of as-
sociativity. In particular, we can distinguish three clusters:
one with ��� K configurations, another with � � K configu-
rations, and the last with the

�
K configuration. Configu-

rations that belong to the same cluster are insensitive to
the degree of associativity. Within each cluster, each cache
configuration distinguishes itself from the other by the dy-
namic energy consumption due to the cache hits since the
miss ratio is nearly the same. In such a case, the amount
of dissipated energy is tightly coupled to the architecture
of the cache configuration and is mostly a function of the
cache size. A desired energy/performance tradeoff can then
be achieved by moving from one cluster to the other, as in-
dicated by the arrow shown in that figure. This comes at
the cost of some performance degradation.

In Figure 4-b, we can also observe that two main cache
clusters can be distinguished: one including the � -way
cache configurations with ��� � and the other including
the direct mapped cache configurations. These two clus-
ters differ essentially in the degree of associativity. As the
program execution proceeds, the increasing effect of the
capacity misses forces the first cluster to be further splitted
into two distinct clusters: one which includes the � -way
��� K cache configurations with ��� � and the other with
the � -way � � K cache configuration. In this case, the clus-
ters are splitted according to the cache capacity, indepen-
dently of the degree of associativity. Again, in each cluster,
the energy consumption due to the hits also serves as the

main distinguishing factor.
We have observed that this property is rather common

to most programs, as it can be seen in Figure 5. These ex-
amples prove that the dynamic working set of a program
can be arranged so as to take benefit of the inherent work-
ing set sensitivity to the conflict or capacity miss, to save
more energy. This property is exploited in the next section
to construct regions of different energy/performance trade-
offs.

5.3. Working set partitioning algorithm

The objectives of achieving a partitioning of the applica-
tion’s working set into clusters of cache configurations may
be mainly motivated by two facts. First, there is the need
of keeping the number of reconfiguration points smaller
enough in order not to impact the performance and the en-
ergy. In the worst case, the cache may be reconfigured at
the beginning of each sample interval, which is unaccept-
able especially if too much unnecessary reconfigurations
take place (e.g. each one for each sample point). Finally,
the performance and the energy consumption may be also
impaired by the excessive number of inserted reconfigu-
ration instructions - which may grow the code size and
raise the energy consumption - and the additional number
of cache misses induced by changing cache configurations.

The partitioning is done relative to the base cache con-
figuration. In particular, a cluster of cache configurations
with identical sensitiveness to the conflict/capacity miss is
constructed from two cache configuration points � and �
if each one of them belongs to the closest vicinity of the
other, with respect to a reference point � of the base cache
configuration.

Let us consider ���
	��� and ��� as being the set of val-
ues collected at each sample interval �`� for the base cache
configuration ����	��� and for each simulated cache configu-
ration ��� , respectively. The expressions of ���
	��� and ���
are defined as follows:
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Figure 5. Energy and performance profiles
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In the above expressions, a represents the number of
sample intervals � � . In order to partition the working set
into similar sensitive cache configurations, we use a Man-
hattan distance vector � � , as follows:

� � Q 	� �� � � �� � � � � � � �� � � (5)

where

� �� Q�� � ���� �	� ��
�S9��� � � � ���� � � ��
�S9��� (6)

Two cache configuration points
	�� � �� � � � �� �

and	�� � ���� � � �� �
belong to the same cluster if their respective

Manhattan distance value is related by the following rela-
tion:

� � � �� � � � �� � ��� (7)
�

is a threshold value that is used to decide when to clus-
ter or not. Once the cache configuration points have been
clustered into partitions of equal sensitiveness, each parti-
tion is chosen a representative cache configuration based
on the best performance to energy ratio of each cluster of
cache configurations.

The performance to energy ratio of each cluster is com-
puted based on the value of the last sample point (

� QRa ).
The idea is to capture the relative amount of performance
degradation corresponding to a given energy budget. For

this, the ratio ����� �
	��� �
	��� �  of each cache configuration belong-
ing to a cluster is evaluated against each other. A smaller
ratio is preferred since this would imply that for a given
power budget, the performance is better. Then, for two
clusters that span the same working set size, we choose
the cache configuration of the representative partition ele-
ment which has the best performance to energy ratio. The
ISA instruction introduced in Section 3.5 can then be in-
serted at the appropriate working set frontier to enable the
corresponding cache configuration.

5.4. Preliminary results

This section presents the results obtained by evaluating
the proposed cache resizing scheme. The evaluation dis-
cussed in the remainder of this section is centered around
three different performance aspects: the dynamic energy
reduction, the leakage energy reduction and the perfor-
mance degradation estimated in terms of increased total cy-
cle counts.

Dynamic energy reduction. The leftmost side of Fig-
ure 6 shows the dynamic energy consumption results for
the proposed cache resizing scheme. For the purpose of
comparison, we also evaluated the dynamic energy con-
sumption of the best performing cache configuration. The
best cache configuration can be configured once before ap-
plication’s execution. Therefore, this configuration mod-
els the approach proposed by Zhang [21]. It can be seen
from the figure that the proposed hybrid scheme can in-
deed reduce the energy consumption in some cases. Look-
ing precisely at them (gsm, susan, summin, mpeg, epic and
v42bis), we observe that they correspond, to some extent,
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Figure 6. (left) Dynamic energy consumption; (right) Performance degradation.

to the cases where there exists a source of working set size
variation in the program execution. This mainly explains
why the working set can be ideally partitioned into clus-
ters of different cache configurations. In these examples,
the energy consumption can be further reduced from � to
��� � compared to the best performing cache configuration.
However, in the other cases where the working set shows
little or no variation, the proposed hybrid scheme provides
no benefit. This is the case of fft and whestone.

Leakage energy reduction. We estimated the leakage
energy, ��� �	�� , of a program as follows:

� � �	�� Q S _ � S9��� � \ a��.S ��� \	� ]�
.]
In the above expression, S _ � S9��� � represents the leakage en-
ergy per cell for each one of the simulated leakage reduc-
tion technique

�
, Ncell the number of cells in the cache

and
� ]�
.] is the total number of cycles to execute the given

program.
� ]�
.] is computed as the sum of the number of

cycles required to execute the program without any data
cache stalls, plus the estimated data cache miss times the
miss penalty. Figure 7 illustrates the leakage energy of the
cache configurations show in Figure 6, left. We calculate
the leakage energy of the best performing cache configura-
tion by employing a gated-Vdd-based technique. It can be
observed from the figure that the proposed hybrid scheme
can reduce the static energy by more than

�����
. This is

a substantial reduction since the leakage energy of future
caches generation are predicted to consume as much as
� ��� of the total power consumption [22]. The advantages
of the hybrid scheme are best highlighted on fft, gsm, su-
san, summin, epic and v42bis. The best cache configuration
is however superior to our scheme whenever the capacity
of the cache can be reduced over the entire program run.
This is the case of whestone. In this latter example, the
gated-Vdd scheme considerably reduces the static energy

compared with the drowsy mode. However, because this
case is not the common, we believe our proposed hybrid
scheme offers a more flexible alternative for many other
applications.

Performance degradation. We evaluated the perfor-
mance degradation in terms of the number of additional
clock cycles required to execute a program. The simulated
results are shown in the rightmost side of Figure 6. The
primary causes of performance degradation in the proposed
scheme are due to the one cycle delay of the drowsy tran-
sitions and the cache misses induced by changing a config-
uration. Our results are relatively high in some cases be-
cause we actually have considered the worst case in which
a drowsy transition may occur even within a single phase.
This is indeed inherent to the architecture since two data
addresses may eventually be mapped to different combina-
tions of cache bank in the same phase, causing unnecessary
drowsy transitions. This is mainly reflected in susan and
mpeg where the degradations are the worst, � � � and � � �

respectively. From within this additional number of cycles,
more than � � � , in average, are due to the drowsy transi-
tions, the remaining part being due to the additional num-
ber of cache misses. A more efficient solution will there-
fore consist in choosing the set of invariant cache banks that
will remain active throughout a complete program phase.
This solution provides the benefit of eliminating the super-
fluous drowsy transitions, but at the cost of increasing the
number of cache misses due to the invalidated data that may
eventually be accessed in other configurations.

6. Related work

Our work is primarily concerned with research related
to cache size adaptivity. In this sense, the work in [2, 19, 3]
bear some similarities with our own. These researches
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Figure 7. Relative leakage energy compared with the base cache.

share the particularity that some means of hardware adap-
tation scheme is required to allow a search of the optimal
solution. In [2], the authors adapt the cache size of a L1/L2
or L2/L3 memory hierarchy in reaction to the sensitivity of
a running program to some performance metrics collected
dynamically, involving the IPC, the cache miss ratio and
the branch frequency. The authors rely on the selective-
way architecture [1] to accordingly enable/disable cache
ways. This work is intended to general purpose systems
featuring several levels of cache memory hierarchy. The
proposed cache resizing algorithm can however be used
as well in the context of embedded systems, provided that
some means of dynamic performance monitoring is avail-
able. In the same order, [3] reformulates the cache resizing
adaptivity algorithm of [2] to use instead working set sig-
natures, to capture phase changes and to estimate the size
of a working set. This solution however also requires an
extra hardware effort. Yang et al. [19] proposed a work
similar to ours. They rely on the cache resizing schemes
of [1] and [20] to propose a hybrid cache of superior re-
sizing granularity than either one of them. The hardware
implementation cost of the selective-set scheme is however
very expensive to be integrated on a embedded system. In
addition, the proposed hybrid cache has a more restrictive
cache resizing granularity for direct-mapped cache config-
urations (

�
K in the paper for a cache size of ��� K). In ad-

dition to this, we should notice that our work primarily ad-
dresses embedded systems. We seek therefore a low-cost,
software-based cache resizing adaptivity scheme. Though
our objectives are the same, the different application do-
mains impose us to look for different solutions.

Zhang et al. [21] also presented how the way-

concatenation scheme could be used together with a
selective-way-based scheme to further reduce energy. The
main difference between our approach and the one pro-
posed by Zhang is essentially on the applicability of cache
resizing. Zhang et al. look for the cache configuration that
gives the best performance on a per-application basis, and
therefore only configure the program once at startup time.
Thus, the variations in cache size requirements within the
running program are not taken into account. We seek in-
stead to adapt the cache memory to meet the dynamic cache
size requirements of the running program. This difference
infers some divergences in the implementation decisions
of the selective-way scheme. Zhang et al. propose to use a
circuit technique called gated-Vdd [14] to implement their
selective-way scheme. Gated-Vdd permits to reduce the
cache leakage energy by gating off the supply voltage to
the unused cache memory cells. However, this technique
does not preserve the memory cell state, causing the stored
data to be loss. This, in addition to the coherency problem
we addressed in Section 3.3, are serious hindrance to make
their scheme reconfigurable on a per-phase basis.

7. Conclusions and future works

This research has been primarily motivated by the fact
that future embedded systems workload will soon become
more and more sophisticated [18], requiring even more ag-
gressive, but at low cost, cache resizing architectures. For
this purpose, we have proposed to modify the structure of a
configurable cache to offer embedded compilers the possi-
bility to reconfigure the underlying cache memory accord-
ing to the cache size requirement of a dynamic program



phase. We showed that with the proposed cache resizing
scheme, some reduction in the dynamic and static energy
can be realized. In essence, we proved that this energy re-
duction is significant for applications showing a dynamic
working set size variation. In particular, we showed that in
such cases, the application’s working set can be classified
according to a program property we called conflict/capacity
miss insensitiveness. We presented simulation results that
demonstrated this property is rather common with most
programs. In the light of this model, we explored a com-
piler strategy that may take advantage of this property to
partition the application’s working set into clusters of sim-
ilar cache sensitive configurations that save more energy.

We envision in the future to develop a compiler tech-
nique for automatic insertion of the reconfiguration instruc-
tions. In addition, we are experiencing with more aggres-
sive cache bank access policy to reduce the penalty due to
drowsy transitions. We believe that reducing this perfor-
mance penalty may make this scheme very attractive for
embedded systems.
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