Visual Tracking & Particle Filters

Patrick Pérez

Irisa, Feb. 2012
What?

- Definition attempt: on-line or off-line extraction, from an image sequence, of state trajectories that characterize, either in image plane or in real world, some aspects of one or several target objects

- Types of targets (by increasing level of prior)
 - Picked objects: video object manually selected, interest points (corners, blobs), moving entities
 - Objects from a given category: cars, faces, people, etc.
 - Objects from a narrower category: moving cars, walking people, talking heads, face of a given person, a specific object

- Appearance models and inference machineries
 - Depend on tracking task
 - Heavily influenced by current trends in image processing and analysis
Why?

Elementary or principal tool for multiple CV applications

A very large range of application domains, including

- Other sciences (neuroscience, ethology, biomechanics, sport, medicine, biology, fluid mechanics, meteorology, oceanography)
- Defense, surveillance, safety, monitoring, control, assistance
- Human-Computer Interfaces

Camera as a sensor (video content as a means)

- Video content production and post-production (compositing, augmented reality, editing, re-purposing, stereo-3D authoring, motion capture for animation, clickable hyper videos, etc.)
- Video content management (indexing, annotation, search, browsing)

Video content as central object
With 2D dynamic shape prior

http://www2.imm.dtu.dk/~aam/tracking/
With 3D shape prior

http://cvlab.epfl.ch/research/completed/realtime_tracking/
http://www.cs.brown.edu/~black/3Dtracking.html
With appearance prior

- in form of an object detector combined with on-line learning to distinguish among targets

With no appearance prior

- Tracking from user selection

With no appearance prior

- Tracking from user selection

http://www.robots.ox.ac.uk/~vgg/research/vgoogle/
Sources of trouble

- Why is it harder than it might seem?
 - temporal variability of visual appearance
 - low video quality: low contrast, noise, motion blur
 - occlusions (partial to total) and clutter
 - unpredictable motions
 - constraints on computational complexity

http://comaniciu.net/
Formalizing tracking

Image-based “measurements”: \(\mathbf{z}_t \in \mathbb{R} \)

- Raw or filtered images (e.g., intensities, colors, texture)
- Low-level features (e.g., edgels, corners, blobs, optical flow)
- High-level detections (e.g., face bounding boxes)

Single target “state”: \(\mathbf{x}_t \in \mathbb{X} \)

- Bounding box parameters (up to 6 DoF)
- Segmentation (pixel-wise labeling)
- 3D rigid pose (6 DoF)
- 2D/3D articulated pose (up to 30 DoF)
- 2D/3D deformation modes
- Discrete indices (identity, activity, visibility, expression, appearance examplars, etc.)
Formalizing tracking

Sequential tracking

- Given past and current measurements

\[z_{1:t} := (z_1 \cdots z_t) \]

output an estimate of current hidden state

\[\hat{x}_t = \text{function}(z_{1:t}) \]

Batch “tracking”

- Given batch of measurements \(z_{1:T} \)

output an estimate of all hidden states

\[\hat{x}_t = \text{function}(z_{1:T}), \; t = 1 \cdots T \]
Deterministic tracking

Sequential tracking
- Optimization of ad-hoc objective function
 \[\hat{x}_t = \arg \min E(x_t; \hat{x}_{t-1}, z_t) \]
- Or iterative minimization of function \(E(x_t; z_t) \) initialized at \(\hat{x}_{t-1} \)

Batch “tracking”
- Optimization of ad-hoc compound objective function
 \[\hat{x}_{1:T} = \arg \min E(x_{1:T}; z_{1:T}) \]
Probabilistic tracking

Hidden Markov chain/dynamic state space model

- Evolution model (dynamics), typically 1st-order Markov chain
 \[p(x_i|x_{1:i-1}) = p(x_i|x_{i-1}) \]

- Observation model
 \[p(z_i|z_{1:i-1}, x_{0:i}) = p(z_i|x_i) \]

- Joint distribution
 \[p(x_{0:t}, z_{1:t}) = p(x_0) \prod_{i=1}^{t} p(x_i|x_{i-1})p(z_i|x_i) \]
Probabilistic tracking

Sequential tracking
- Sequential MAP estimate: \(\hat{x}_t = \arg \max p(x_t|\hat{x}_{t-1}, z_t) \)

- Computation of the filtering pdf \(p(x_t|z_{1:t}) \), and point estimate:
 \[
 \hat{x}_t = \arg \max p(x_t|z_{1:t}) \text{ or } E[x_t|z_{1:t}]
 \]

Batch “tracking”
- Joint MAP estimate: \(\hat{x}_{1:T} = \arg \max p(x_{1:T}|z_{1:T}) \)

- Computation of smoothing pdf \(p(x_t|z_{1:T}) \), and point estimates:
 \[
 \hat{x}_t = \arg \max p(x_t|z_{1:T}) \text{ or } E[x_t|z_{1:T}], \ t = 1 \cdots T
 \]
Probabilistic filtering

- Various forms
 - (approximately) linear Gaussian: Kalman filters and variants
 - General case: sequential Monte Carlo approximation (*particle filter*)

- Pros: transports full distribution knowledge
 - Takes uncertainty into account (helps with clutter, occlusions, weak model)
 - Provides some confidence assessment
 - Allows more powerful parameter estimation

- Cons
 - More computations
 - Curse of dimensionality
Limitation of KF for visual tracking

- Strong limitations on observations model
 - Measurements must be of same nature as (part of) state, e.g. detected object position
 - Measurement of interest must be identified (data association problem)

- In visual tracking, especially difficult
 - State specifies which part of data is concerned (actual measurement depends on hypothesized state)
 - Clutter is frequent

- Variants of KF (extended KF, unscented KF) can help, to some extent
Useful deterministic trackers with no prior

- “Point” (fragment) tracking
- Fragment-based object tracking
- Statistics-based object tracking

Common denominators

- Iterative search initialized at previous estimate (static camera)
 - Successive linearizations
Problem: tracking “key points” (SIFT, SURF, STAR, RIFF, FAST), or random image patches, as long as possible

- Input: detected/chosen patches
- Output: tracklets of various life-spans

$$\hat{d} = \arg \min_d \sum_{p \in R(x)} |I^{(t+1)}(p + d) - I^{(t)}(p)|^2$$
Fragment-based tracking of arbitrary objects

- Track in next frame fragments from current bounding box
- Terminate weak tracklets
- Infer global motion of bounding box
- Select new fragments if necessary
- In effect: part-based adaptive appearance model

\[\hat{x}_{t+1} = \hat{x}_t + \text{robust average}(d_1 \cdots d_{nt}) \]
Fragment-based tracking of arbitrary objects

- Can work really well (and fast), with accurate positioning

- Until
 - It drifts (due to partial occlusion, out-of-plane rotation)
 - It breaks down (diverging drift, total occlusion)
Face grouping

For face recognition in movies and TV series

- Detect faces in each frame
- Connect faces traversed by sufficient fraction of tracklets

http://www.robots.ox.ac.uk/~vgg/research/nface/
Statistics-based tracking of arbitrary objects

- Instead of pixel-wise appearance modeling, model appearance via global or semi-local statistics

- Examples
 - Texture statistics
 - Color and intensity distributions, possibly part-based
 - Intensities co-occurrences and co-variances

- Archetypical example: tracking with color histograms

http://comaniciu.net/
Color-based tracking and meanshift

- Global description of tracked region: color histogram
- Reference histogram with B bins
 \[q^* = (q_u^*)_{u=1 \ldots B} \]
 set at track initialization
- Candidate histogram at current instant
 \[q(x) = (q_u(x))_{u=1 \ldots B} \]
 gathered in region $R(x)$ of current image.
- At each instant
 \[\hat{x}_{t+1} = \arg \min_x \text{dist}(q^*, q(x)) \]
 - searched around \hat{x}_t
 - iterative search initialized with \hat{x}_t
Color-based tracking and meanshift

- Global description of tracked region: color histogram
- Reference histogram with B bins
 \[q^* = (q_u^*)_{u=1}^{B} \]
 set at track initialization
- Candidate histogram at current instant
 \[q(x) = (q_u(x))_{u=1}^{B} \]
 gathered in region $R(x)$ of current image.
- At each instant
 \[\hat{x}_{t+1} = \arg \min_x \text{dist}(q^*, q(x)) \]
 - searched around \hat{x}_t
 - iterative search initialized with \hat{x}_t
Pros and cons

- Low computational cost (easily real-time)
- Surprisingly robust
 - Invariant to pose and viewpoint
 - Often no need to update reference color model

- Invariance comes at a price
 - Position estimate prone to fluctuation
 - Scale and orientation not well captured
 - Sensitive to color clutter (e.g., teammates in team sports)

- Deterministic local search challenged by
 - abrupt moves
 - occlusions
Variants

- Remove background corruption in reference
 - Simple segmentation based on surrounding color at initialization
 - Re-estimation of foreground model
 - Amounts to zero bins for colors more frequent in surrounding than in selection

- Scale/orientation estimation
 - Originally: greedy search around current scale/orientation
 - Afterwards: incorporate loose spatial layout (via multiple spatial kernels or spatial partitionning with sub-models)

- Robustness to camera movement
 - Robust estimation of dominant apparent motion
 - Start search at previous position displaced according to dominant motion
Particle filtering

- Monte Carlo based on sequential importance sampling

History
- Gordon 1993, *Novel approach to non-linear/non-Gaussian Bayesian state estimation*
- Kitagawa 1996, *Monte Carlo filter and smoother for non-Gaussian nonlinear state space models*
- Isard et Blake 1996, *CONDENSATION: CONditional DENSity propagATION for visual tracking*

Reason of success in CV
- Visual tracking often implies multimodal filtering distributions
- PF maintains multiple hypothesis: more robust to occlusion and temporary loss
- Easy to implement and little restrictions on model ingredients
Generic synopsis

- **Given** \(\{(x_{0:i-1}^{(m)}, \pi_{i-1}^{(m)})\}_{m=1}^{M} \)
- **One step proposal**
 \[\tilde{x}_{i}^{(m)} \sim q(x_{i}^{(m)}|x_{i-1}^{(m)}, z_{i}), \quad m = 1 \cdots M \]
- **Weights update**
 \[\tilde{\pi}_{i}^{(m)} \propto \pi_{i-1}^{(m)} \frac{p(z_{i}|x_{i}^{(m)})p(x_{i}^{(m)}|x_{i-1}^{(m)})}{q(x_{i}^{(m)}|x_{i-1}^{(m)}, z_{i})} \quad \text{avec} \quad \sum_{m=1}^{M} \tilde{\pi}_{i}^{(m)} = 1 \]
- **Resampling**
 - **If** \(\sum_{m=1}^{M} \tilde{\pi}_{i}^{(m)} > \frac{M}{\text{seuil}} \)
 \[\forall m, a_{m} \sim \sum_{k=1}^{M} \tilde{\pi}_{i}^{(k)} \delta_{k}, \quad x_{1:i}^{(m)} = (x_{1:i-1}^{(a_{m})}, \tilde{x}_{i}^{(a_{m})}) \quad \text{et} \quad \pi_{i}^{(m)} = \frac{1}{M} \]
 - **Otherwise**
 \[\forall m, \quad x_{1:i}^{(m)} = (x_{1:i-1}^{(m)}, \tilde{x}_{i}^{(m)}) \quad \text{et} \quad \pi_{i}^{(m)} = \tilde{\pi}_{i}^{(m)} \]
- **Monte Carlo approximation**
 \[\mathbb{E}[f(x_{i})|z_{1:i}] \approx \sum_{m=1}^{M} \pi_{i}^{(m)} f(x_{i}^{(m)}) \]
Proposal density

- Optimal density

\[q(x_i|x_{i-1}, z_i) = p(x_i|x_{i-1}, z_i) = \frac{p(z_i|x_i)p(x_i|x_{i-1})}{p(z_i|x_{i-1})} \]

\[\Rightarrow \pi_i^{(m)} \propto \pi_{i-1}^{(m)} p(z_i|x_i^{(m)}) \text{ with } \sum_{m=1}^{M} \pi_i^{(m)} = 1 \]

usually not accessible

- Bootstrap filter: classic for its simplicity (but often confused with general SIS)

\[q(x_i|x_{i-1}, z_i) = p(x_i|x_{i-1}) \]

\[\Rightarrow \pi_i^{(m)} \propto \pi_{i-1}^{(m)} p(z_i|x_i^{(m)}) \text{ with } \sum_{m=1}^{M} \pi_i^{(m)} = 1 \]

- In-between: try and use current data for better efficiency
“CONDENSATION”

- State: active shape model with autoregressive dynamics
- Observation model: based on edgels near hypothesized silhouette
- Bootstrap filter: proposal and dynamics coincide

\[p(z^j_i | x_i) \]

[Isard and Blake, IJCV 29(1), 1998]
Color-based PF

- Based on color histogram similarities, following Comaniciu’s idea
- Bootstrap filter and data model $p(z_t|x_t) \propto \exp \lambda \rho[q(x_t), q^*]$
Color-based PF

- Based on color histogram similarities, following Comaniciu’s idea
- Bootstrap filter and data model $p(z_t|x_t) \propto \exp \lambda \rho[q(x_t), q^*]$

[Perez et al. ECCV’02]
Proposal densities

- Exploit current (even future) data
 - Get close to optimal density with approximation or iterative search (beware though!)
 - Use detection in proposal: mixture centered on detections and modification of dynamics to allow jumps

\[
q(x_i|x_{i-1}, z_i) = \beta p(x_i|x_{i-1}) + \frac{1-\beta}{D_i} \sum_{d=1}^{D_i} \mathcal{N}(x_i; \mu_d, \Gamma_d)
\]

\[
p(x_i|x_{i-1}) = \nu p_{\text{smooth}}(x_i|x_{i-1}) + (1 - \nu) \mathcal{U}_\Lambda(x_i)
\]

- Exploit model graphical structure (esp. for higher dim.)
 - Rao-Blackwellisation (FP on part of state-space, conditional KF on other)
 - Exploits exact or approximate conditional decoupling between state parts
 - Factored, hierarchical, layered sampling...
MOT PF and detection-based proposal

- Color-based detection

- Object category detection

[Vermaak et al. ICIP’05][Okuma et al. ECCV’04]
PF with multiple cues

- Complementary cues for improved robustness
 - Persistent though ambiguous (e.g., color) vs. precise though transient (e.g., movement)
 - Sensitivity to different clutter, invariant to different perturbations (e.g., global color, local intensity, contours)

- Bayesian fusion often under conditional independency assumption

\[
p(z_{1,i} \cdot \cdot \cdot z_{A,i}|x_i) = \prod_{a=1}^{A} p(z_{a,i}|x_i)
\]

- Proposal can exploit specificities of different cues
PF with multiple cues

[Wu and Huang, ICCV’01][Gatica-Perez et al., 2003]
Goal: update/expand appearance model on the fly for robustness to unexpected changes (on target and/or environment), esp. if no off-line knowledge on appearance

Problem: drift if adaptation too rapid, esp. during occlusions

Some (insufficient) solutions
- Tunable learning rate
- Adaptation conditioned on global monitoring
- Adaptation on one type of measurement if others suffice for tracking (anchoring)
On-line subspace learning

- One example: Ross et al.
 - Constant time PCA update with new data, with learning rate $\alpha \sim 0.02$
 - Robust metric to account for background corruption
 - Tracking with particle filter

http://www.cs.toronto.edu/~dross/ivt/
Adaptation with external monitoring

- Color model update during zooms

[Lehuger et al. ICIP’06]
Adaptation with multiple cues

[Badrinarayanan et al. ICCV’07]
Interactions between parts of state space
- Through evolution and/or observation
- Permanently or intermittently

Articulated objects
- Admissible values (joints limits)
- Kinematics

MOT
- Intermittent interaction through observation

Segmentation
- MRF on pixel labels

http://www.robots.ox.ac.uk/~cbibby/index.shtml