(9)IRISA

Filtrage particulaire dans la vision robotique : Application à la commande d'un mini-drone

Céline Teulière

École Thématique Filtrage Particulaire
9 février 2012

Mobile robotics

Quadri-rotor (Novadem)
A task is defined in complex and changing environments
Perception from sensors (camera, IMU, GPS, Lidar...)
Action: motion

Mobile robot localization

Objective: Estimating a robot's pose relative to a map of its environment

- Position tracking
- Global localization problem
- Kidnapped robot problem
- Multi-robot localization problem

Particle filters provide interesting solutions to these problems

Localization with particle filtering: example

State: 2D position
No initial guess -> prior: uniform sampling in the free space
Measurements: proxymeters

Fox - Dellaert 99

Problem formulation

Estimation of the state x_{k}
given the observations $\mathbf{z}_{1: k}=\left(\mathbf{z}_{1}, . ., \mathbf{z}_{k}\right)$ up to time step k

Deterministic framework:

- Optimization of ad-hoc objective function $\hat{\mathbf{x}}_{k}=\arg \min _{\mathbf{x}} E\left(\mathbf{x}_{k} ; \hat{\mathbf{x}}_{k-1}, \mathbf{z}_{k}\right)$
- Or iterative minimization of function $E\left(\mathbf{x}_{k} ; \mathbf{z}_{k}\right)$ initialized at $\hat{\mathbf{x}}_{k-1}$

Probabilistic framework:

- Sequential MAP estimate $\hat{\mathbf{x}}_{k}=\arg \max _{\mathbf{x}} p\left(\mathbf{x}_{k} \mid \hat{\mathbf{x}}_{k-1}, \mathbf{z}_{k}\right)$
- Estimation of the probability density function (pdf) $p\left(\mathbf{x}_{k} \mid \mathbf{z}_{1: k}\right)$

$$
\text { output: } \hat{\mathbf{x}}_{k}=\arg \max _{\mathbf{x}} p\left(\mathbf{x}_{k} \mid \mathbf{z}_{1: k}\right) \text { or } \mathbb{E}\left[\mathbf{x}_{k} \mid \mathbf{z}_{1: k}\right]
$$

Bayesian recursive filter

- Bayes rule for a Markov process:

$$
\begin{aligned}
& p\left(\mathbf{x}_{k} \mid \mathbf{z}_{1: k}\right)=\frac{p\left(\mathbf{z}_{k} \mid \mathbf{x}_{k}\right) p\left(\mathbf{x}_{k} \mid \mathbf{z}_{1: k-1}\right)}{p\left(\mathbf{z}_{k} \mid \mathbf{z}_{1: k-1}\right)} \\
& p\left(\mathbf{x}_{k} \mid \mathbf{z}_{1: k}\right) \propto p\left(\mathbf{z}_{k} \mid \mathbf{x}_{k}\right) \int p\left(\mathbf{x}_{k} \mid \mathbf{x}_{k-1}\right) p\left(\mathbf{x}_{k-1} \mid \mathbf{z}_{1: k-1}\right) d \mathbf{x}_{k-1}
\end{aligned}
$$

- Bayesian recursive filter:

$$
p\left(\mathbf{x}_{k-1} \mid \mathbf{z}_{1: k-1}\right) \xrightarrow{\text { prediction }} p\left(\mathbf{x}_{k} \mid \mathbf{z}_{1: k-1}\right) \xrightarrow{\text { correction }} p\left(\mathbf{x}_{k} \mid \mathbf{z}_{1: k}\right)
$$

- Different possible approximations:
- Linear, Gaussian -> Kalman ; linearization-> EKF
- Numerical approximation (discretization of the state space)
- Particle approximation (sampling) -> particle filters

Particle approximation

$$
\frac{1}{N} \sum_{i=1}^{N} \phi\left(s^{(i)}\right) \underset{N \rightarrow \infty}{\longrightarrow} E_{p}[\phi(\mathbf{x})]=\int \phi(\mathbf{x}) p(\mathbf{x}) d \mathbf{x}
$$

Particle approximation

$$
\begin{array}{r}
p^{N}(\mathbf{x})=\sum_{i=1}^{N} \pi^{(i)} \delta_{\mathcal{S}^{(i)}}(\mathbf{x}) \quad \sum_{i=1}^{N} \pi^{(i)}=1 \\
E_{p}[\phi(\mathbf{x})]=\int \phi(\mathbf{x}) p(\mathbf{x}) d \mathbf{x} \approx \int \phi(\mathbf{x}) p^{N}(\mathbf{x}) d \mathbf{x}=\sum_{i=1}^{N} \pi^{(i)} \phi\left(s^{(i)}\right)
\end{array}
$$

Recursive filter steps

$$
\begin{aligned}
& p^{N}\left(\mathrm{x}_{k-1} \mid \mathrm{z}_{1: k-1}\right)=\sum_{i=1}^{N} \pi_{k-1}^{(i)} \delta_{s_{k-1}^{(i)}}\left(\mathrm{x}_{k-1}\right) \\
& p^{N}\left(\mathrm{x}_{k} \mid \mathbf{z}_{1: k-1}\right)=\sum_{i=1}^{N} \pi_{k-1}^{(i)} \delta_{s_{k}^{(i)}}\left(\mathrm{x}_{k}\right)
\end{aligned}
$$

Weights update

$$
\begin{aligned}
& p\left(\mathbf{x}_{k} \mid \mathbf{z}_{1: k}\right) \approx \sum_{i=1}^{N} \pi_{k}^{(i)} \delta_{s_{k}^{(i)}}\left(\mathbf{x}_{k}\right) \\
& \pi_{k}^{(i)}=\frac{\pi_{k-1}^{(i)} p\left(\mathbf{z}_{k} \mid \mathbf{x}_{k}=s_{k}^{(i)}\right)}{\sum_{i=1}^{N} \pi_{k-1}^{(i)} p\left(\mathbf{z}_{k} \mid \mathbf{x}_{k}=s_{k}^{(i)}\right)}
\end{aligned}
$$

Degeneracy issue

- This first algorithm tends to a situation where a single particle has a strong weight and the other have a negligible weight.

$N_{e f f}=\frac{1}{\sum_{i=1}^{N}\left(\pi^{(i)}\right)^{2}} \quad \begin{aligned} & \text { measures the degeneracy of the particle set: } \\ & \text { if all the weight are equal, the coefficient is the number of particles }\end{aligned}$

Sampling Importance Resampling (SIR) steps

Sample impoverishment issue

- Need to have a good representation of the regions of interest without losing to much information on the space

Examples of particle filter applications:

UAV tracking and localization

Unmanned aerial vehicles (UAV)

Applications?

- Surveillance, inspection: Fire, combat zone, bridges, plants, search and rescue,...
- Different prior knowledge about the environment

Target tracking

Ínría

Vision based tracking

- Extracting relevant information about the position of the object in the camera frame
- Parameters to estimate :
- Position, orientation, scale
- Constraints:
- Unknown environment

state \boldsymbol{x}
- Occlusions
- Poor image quality
- Fast motion (large inter-frame displacement)
- Real-time

Choice of object representation:

- Non parametric representation, by color histograms

Pros: Good robustness to appearance changes
Cons: Lack of spatial information

Single kernel configuration

Choice of object representation:

- Non parametric representation, by color histograms

Pros: Good robustness to appearance changes

Single kernel configuration

- Multi kernel representation (multi histogram)

$$
\begin{aligned}
\left\{\mathbf{q}_{j}\left(\mathbf{x}_{k}\right)\right\}_{j} & =1 . .9 \\
d_{m}\left(\mathbf{x}_{k}\right) & =\frac{1}{9} \sum_{j=1}^{9} d_{j}\left(\mathbf{x}_{k}\right) \\
d_{j}\left(\mathbf{x}_{k}\right) & =d\left(\mathbf{q}_{j}^{*}, \mathbf{q}_{j}\left(\mathbf{x}_{k}\right)\right)
\end{aligned}
$$

Multi-kernel representation

Tracking scheme

Find the state which minimises the distance criterium $d_{m}\left(\mathbf{x}_{k}\right)=\frac{1}{9} \sum_{j=1}^{9} d_{j}\left(\mathbf{x}_{k}\right)$

Main tracking approaches:

Deterministic search
Iterative minimisation of the cost function by differentiation of the similarity criterium
Mean shift, gradient descent, GaussNewton, Levenberg-Marquardt...
[Comaniciu00][Hager04][Megret06][Fan07]

Bayesian methods

Estimation of the probability density function from the prior one

Particle filtering...
[IsardBlake98][Pérez04]

Tracking scheme

Find the state which minimises the distance criterium $d_{m}\left(\mathbf{x}_{k}\right)=\frac{1}{9} \sum_{j=1}^{9} d_{j}\left(\mathbf{x}_{k}\right)$

Main tracking approaches:

Deterministic search
Iterative minimisation of the cost
function by differentiation of the
similarity criterium
Mean shift, gradient descent, Gauss-
Newton, Levenberg-Marquardt...
[Comaniciu00][Hager04][Megret06][Fan07]

+ Good accuracy
- Single hypothesis
- Non robust to large occlusions

Bayesian methods

Estimation of the probability density function from the prior one

Particle filtering...
[IsardBlake98][Pérez04]

Bayesian methods
Estimation of the probability density
function from the prior one
Particle filtering...
[IsardBlake98][Pérez04]

-

Tracking scheme

Find the state which minimises the distance criterium $d_{m}\left(\mathbf{x}_{k}\right)=\frac{1}{9} \sum_{j=1}^{9} d_{j}\left(\mathbf{x}_{k}\right)$
Main tracking approaches:

Deterministic search
Iterative minimisation of the cost
function by differentiation of the
similarity criterium
Mean shift, gradient descent, Gauss-
Newton, Levenberg-Marquardt...
[Comaniciu00][Hager04][Megret06][Fan07]

+ Good accuracy
- Single hypothesis
- Non robust to large occlusions

Bayesian methods

Estimation of the probability density function from the prior one

Particle filtering...
[IsardBlake98][Pérez04]

+ Robustness to occlusions
+ The whole pdf is estimated
- Balance to find between accuracy and computation time

Color-based CONDENSATION scheme

- Reference histogram computed in the first frame

Initialisation: Creation of the particle set according to the prior density

Color-based CONDENSATION example:

- Circuit sequence
- Evolution of the particles with constant velocity model
- Output: weigthed mean (expectation estimate)

Particles

Estimate

Using deterministic search within particle filter:

How to use fewer particles while keeping a good accuracy?

- Deterministic search from the position obtained by particle filtering

\equiv
Larger displacements
\Rightarrow Robustness to occlusions
\Rightarrow Accuracy
\rightarrow Reduction of the particle number
\Rightarrow Reduction of the number of iterations in the minimization

Comparative results:

Sequence with full occlusion and blur

\longrightarrow Deterministic search

-

Particle filter with a single kernel (500p)
\longrightarrow
Particle filter with multi-kernel (75p)

Particle filter with multi-kernel (500p) ~4Hz / 5000 pix

Combined approach (75p)
~10Hz / 5000 pix

Application to UAV target tracking:

Video

[Teuliere-IROS'11]

3D localization

Íniá

Problem formulation

The hidden state is the full rigid-body transformation between the camera frame and the world frame

$$
\mathbf{M}=\left[\begin{array}{cc}
\mathbf{R} & \mathbf{t} \\
0 & 1
\end{array}\right] \in S E(3)
$$

- Different strategies according to the prior knowledge available and the measurement function

Non Euclidean state space SE(3)

SE(3) is not a vector space but a Lie group

- Notions of distance, mean, or gaussian distribution need to be defined They are defined thanks to the structure of Lie Group of SE(3) which provides an exponential map between the Lie algebra se(3) and the Lie group SE(3)

$$
\begin{aligned}
& s e(3) \mapsto S E(3) \\
& \boldsymbol{\xi} \mapsto \mathbf{M}=\exp (\boldsymbol{\xi}) \\
& \operatorname{se}(3)=\left\{\left.\boldsymbol{\xi}=\left[\begin{array}{cc}
{[\boldsymbol{\omega}]_{\times}} & \boldsymbol{v} \\
0 & 0
\end{array}\right] \right\rvert\,[\boldsymbol{\omega}]_{\times} \in \operatorname{so}(3), \boldsymbol{v} \in \mathbb{R}^{3}\right\} \subset \mathbb{R}^{4 \times 4}
\end{aligned}
$$

- A pose matrix from $\operatorname{SE}(3)$ is then parametrized by a vector: $\mathbf{V}=(\boldsymbol{v}, \boldsymbol{\omega})$

$$
\exp (\mathbf{v})=\exp \left(\left[\begin{array}{cc}
{[\boldsymbol{\omega}]_{\times}} & \boldsymbol{v} \\
0 & 0
\end{array}\right]\right)
$$

Localization with prior knowledge of the 3D model

3D model-based localization

- Given:
- A 3D model
- A calibrated camera

- Idea: the real 3D pose is the one providing a good alignement between the current frame and the projection of the model

- Measurement?

Deterministic / Probabilistic approaches

Optimization based approaches
Minimization of the reprojection error expressed as a cost function or an error to regulate to zero

$$
\widehat{{ }^{c} \mathbf{M}_{w}}=\arg \min _{{ }^{{ }_{M}} \mathbf{w}} \sum_{i=1}^{n} d^{2}\left(\mathbf{x}_{i}, p r\left({ }^{c} \mathbf{M}_{w},{ }^{w} \mathbf{X}_{i}\right)\right)
$$

Deterministic / Probabilistic approaches

Optimization based approaches

Minimization of the reprojection error expressed as a cost function or an error to regulate to zero

$$
\widehat{{ }^{c} \mathbf{M}_{w}}=\arg \min _{{ }^{c} \mathbf{M}_{w}} \sum_{i=1}^{n} d^{2}\left(\mathbf{x}_{i}, p r\left({ }^{c} \mathbf{M}_{w},{ }^{w} \mathbf{X}_{i}\right)\right)
$$

Error vector computation

- Sample points on each projected edge
- Search for the strongest gradient along the normal

Deterministic / Probabilistic approaches

Optimization based approaches

\Longrightarrow
Minimization of the reprojection error expressed as a cost function or an error to regulate to zero

$$
\widehat{{ }^{c} \mathbf{M}_{w}}=\arg \min _{{ }^{c} \mathbf{M}_{w}} \sum_{i=1}^{n} d^{2}\left(\mathbf{x}_{i}, p r\left({ }^{c} \mathbf{M}_{w},{ }^{w} \mathbf{X}_{i}\right)\right)
$$

Deterministic / Probabilistic approaches

Optimization based approaches
Minimization of the reprojection error expressed as a cost function or an error to regulate to zero [Drummond02], [Comport06]

Deterministic approach

Example:
Métivier conference room
[Comport-ISMAR03]

Deterministic / Probabilistic approaches

Deterministic approaches

- Least square formulation
- Virtual visual servoing

Bayesian approaches

- Particle filter [PupilliCalway06]
$\Longrightarrow \quad$ Set of N particles

3D Model

Deterministic / Probabilistic approaches

Deterministic approaches

- Least square formulation
- Virtual visual servoing

Bayesian approaches

- Particle filter [PupilliCalway06]
$\longrightarrow \quad$ Set of N particles

3D Model

Deterministic / Probabilistic approaches

Deterministic approaches

- Least square formulation
- Virtual visual servoing

Bayesian approaches

- Particle filter [PupilliCalway06]
$\Longleftrightarrow \quad$ Set of N particles

$$
\begin{aligned}
& d(s)=\frac{1}{n} \sum_{i} d_{i} \\
& p(\mathbf{z} \mid \mathbf{x}=s)=e^{-\lambda\left(\frac{d(s)-d_{\text {min }}}{d_{\text {max }}-d_{\text {min }}}\right)^{2}}
\end{aligned}
$$

Distance map

Example

Example: Box sequence

(e) laqudic

Example

Example:
 Window sequence

Combination deterministic/probabilistic

 approach

Combination deterministic/probabilistic approach

Reweighting

The proposal function is approximated by a mixture of Gaussian centered on the predicted and optimized particles

$$
\pi_{k}^{(i)} \propto \frac{f_{k}\left(s_{k}^{(i)}\right)}{g_{k}\left(s_{k}^{(i)}\right)} p\left(\mathbf{z}_{k} \mid \mathbf{x}_{k}=s_{k}^{(i)}\right) \quad \int \phi(\mathbf{x}) p^{N}(\mathbf{x}) d \mathbf{x}=\frac{1}{N} \sum_{i=1}^{N} \frac{p\left(s^{(i)}\right)}{q\left(s^{(i)}\right)} \phi\left(s^{(i)}\right)
$$

$$
f_{k}\left(\mathrm{x}_{k}\right)=\frac{1}{N} \sum_{i}^{N} \mathcal{N}\left(s_{k}^{(i)}, \Sigma\right)\left(\mathrm{x}_{k}\right)
$$

$$
g_{k}\left(\mathrm{x}_{k}\right)=\frac{N}{N+N^{*}}\left(\frac{1}{N} \sum_{i=1}^{N} \mathcal{N}\left(s_{k}{ }^{(i)}, \Sigma\right)\left(\mathrm{x}_{k}\right)+\frac{1}{N^{*}} \sum_{i=1}^{N^{*}} \mathcal{N}\left(s_{k}^{*(i)}, \Sigma\right)\left(\mathrm{x}_{k}\right)\right)
$$

Example

Comparative results

MH : Particle filter with optimized particles
25 particles $\sim 10 \mathrm{~Hz}$

UAV (Kalman filter!)

UAV navigation
 Teuliere IROS'10

Second 3D localization example: no full model available

Known target

Principle

Example:

Filter initialization
(Eck, CEA-LIST)

Íniáa

Particle filtering approach

Example:
Pupilli-Calway
BMVC05

Fusion with inertial sensor

IMU: gyrometers/accelerometers

- Gyrometers are used for the prediction (dynamic model of the UAV)
- Accelerometers are used in the likelihood
- The obtained gravity vector should be vertical in the world frame for a pose to be correct

Results

Example:
 Building exploration strategy CEA-LIST

Conclusion

In this presentation we illustrated:

- Examples of mobile robotics issues: localization and tracking
- Deterministic and probabilistic approaches to vision based methods
- A recall on the most classic particle filter algorithms
- The importance of the choice of the measurement function
- The possibility to easily integrate other measurements
- Basic ideas to use deterministic search to guide the particle set towards regions of interest
- Real applications to UAV tasks

