Recursive computation for HMMs AND PARTICLE APPROXIMATIONS
 Olivier Cappé (ENST TSI / CNRS)
 joint work with François LeGland (IRISA)

- Notations
- Filtering formulas
- Particle approximation
- Application to the estimation of the initial condition
- Conclusions

Notations for discrete-time HMM
Hidden state $\left(X_{k}\right)_{k \geq 0}$
Transition kernel Q (also $q \lambda$, with $p_{0} \lambda$ for the distribution of the initial state, where λ is a dominating measure)

Observations $\left(Y_{k}\right)_{k \geq 0}$ and $Y_{0: n}=\left(Y_{k}\right)_{0 \leq k \leq n}$
Observation pdf $g\left(y_{k} \mid x_{k}\right)$ (or $\psi_{k}\left(x_{k}\right)$ when conditioning upon

$$
\left.Y_{0: n}\right)
$$

Prediction distribution $\left\langle\mu_{n \mid n-1}, \phi\right\rangle=\mathrm{E}\left[\phi\left(X_{n}\right) \mid Y_{0: n-1}\right]$
Prediction distribution $\left\langle\mu_{n}, \phi\right\rangle=\mathrm{E}\left[\phi\left(X_{n}\right) \mid Y_{0: n}\right]$, where

$$
\begin{aligned}
\mu_{n+1 \mid n} & =\mu_{n} Q & \text { (prediction) } \\
\mu_{n+1} & =\frac{\psi_{n+1}}{\left\langle\mu_{n+1 \mid n}, \psi_{n+1}\right\rangle} \mu_{n+1 \mid n} & \text { (Bayes) }
\end{aligned}
$$

Starting point Most standard texts on Hidden Markov Models (eg. Rabiner's 1989 tutorial, McDonald \& Zucchini's 1997 monograph) ignore a remarkable observation about HMMS:

- The intermediate quantity of the EM algorithm
- The gradient of the log-likelihood (score)
- The Hessian of the log-likelihood (observed information)
and more generally any function that may be written as

$$
\begin{equation*}
A_{n}=\mathrm{E}\left[\sum_{k=1}^{n} f_{k}\left(X_{k}, X_{k-1}, Y_{k}\right) \mid Y_{0: n}\right] \tag{1}
\end{equation*}
$$

can be computed recursively in t (ie. without resorting to "Forward-Backward" smoothing)

Zeitouni \& Dembo (IT, 1989), Campillo \& LeGland (SPA, 1989), Elliot, Aggoun \& Moore (1994) + applications to Gaussian state space models, eg. Charalambous \& Logothetis (CDC, 1998)

EM

$$
\begin{aligned}
Q_{(\mathrm{EM})}(\theta ; \hat{\theta})=\mathrm{E}^{\hat{\theta}}[& \log p_{0}^{\theta}\left(X_{0}\right)+\log g^{\theta}\left(Y_{0} \mid X_{0}\right) \\
& \left.+\sum_{k=1}^{n}\left(\log g^{\theta}\left(Y_{k} \mid X_{k}\right)+\log q^{\theta}\left(X_{k-1}, X_{k}\right)\right) \mid Y_{0: n}\right]
\end{aligned}
$$

In exponential families, it suffices to compute $\mathrm{E}^{\hat{\theta}}\left[\sum_{k=1}^{n} f_{k}\left(X_{k}, X_{k-1}, Y_{k}\right) \mid Y_{0: n}\right]$ (with functions that do not depend upon θ

Gradient of the log-likelihood (Fisher formula)

$$
\begin{aligned}
\nabla_{\theta} \log p^{\theta}\left(Y_{1: n}\right) & =\mathrm{E}^{\theta}\left[\nabla_{\theta} \log p_{0}^{\theta}\left(X_{0}\right)+\nabla_{\theta} \log g^{\theta}\left(Y_{0} \mid X_{0}\right)\right. \\
& \left.+\sum_{k=1}^{n}\left(\nabla_{\theta} \log g^{\theta}\left(Y_{k} \mid X_{k}\right)+\nabla_{\theta} \log q^{\theta}\left(X_{k-1}, X_{k}\right)\right) \mid Y_{0: n}\right]
\end{aligned}
$$

What's the trick ? (for a slightly simplified form of (1))
Define the signed measures $w_{n \mid n-1}$ and w_{n} such that

$$
\begin{aligned}
\left\langle w_{n \mid n-1}, \phi\right\rangle & =\mathrm{E}\left[\phi\left(X_{n}\right) \sum_{k=1}^{n} f_{k}\left(X_{k}\right) \mid Y_{0: n-1}\right] \\
\left\langle w_{n}, \phi\right\rangle & =\mathrm{E}\left[\phi\left(X_{n}\right) \sum_{k=1}^{n} f_{k}\left(X_{k}\right) \mid Y_{0: n}\right] \quad \text { so that } A_{n}=\left\langle w_{n \mid n-1}, 1\right\rangle
\end{aligned}
$$

Prediction

$$
\begin{aligned}
\left\langle w_{n+1 \mid n}, \phi\right\rangle= & \mathrm{E}\left[\phi\left(X_{n+1}\right) \sum_{k=0}^{n+1} f_{k}\left(X_{k}\right) \mid Y_{0: n}\right] \\
= & \mathrm{E}\left[\phi\left(X_{n+1}\right) f_{n+1}\left(X_{n+1}\right) \mid Y_{0: n}\right] \\
& +\mathrm{E}[\underbrace{\left.\mathrm{E}\left[\phi\left(X_{n+1}\right) \sum_{k=0}^{n} f_{k}\left(X_{k}\right) \mid X_{0: n}, Y_{0: n}\right] \mid Y_{0: n}\right]}_{(Q \phi)\left(X_{n}\right) \sum_{k=0}^{n} f_{k}\left(X_{k}\right)} \\
= & \left\langle\mu_{n+1 \mid n}, f_{n+1} \phi\right\rangle+\left\langle w_{n}, Q \phi\right\rangle
\end{aligned}
$$

What's the trick ? (cont.)

Bayes

$$
\mathrm{P}\left(d x_{0: n+1} \mid y_{0: n+1}\right)=\frac{g\left(y_{n+1} \mid x_{n+1}\right)}{\int g\left(y_{n+1} \mid x_{n+1}\right) \mathrm{P}\left(d x_{n+1} \mid y_{0: n+1}\right)} \mathrm{P}\left(d x_{0: n+1} \mid y_{0: n}\right)
$$

So that

$$
w_{n+1}=\frac{\psi_{n+1}}{\left\langle\mu_{n+1 \mid n}, \psi_{n+1}\right\rangle} w_{n+1 \mid n}
$$

(same relation as for the predictor to filter update)

In summary,

$$
\begin{aligned}
w_{n+1 \mid n} & =w_{n} Q+f_{n+1} \mu_{n+1 \mid n} \\
w_{n+1} & =\frac{\psi_{n+1}}{\left\langle\mu_{n+1 \mid n}, \psi_{n+1}\right\rangle} w_{n+1 \mid n} \\
& =\frac{\psi_{n+1}}{\left\langle\mu_{n+1 \mid n}, \psi_{n+1}\right\rangle} w_{n} Q+f_{n+1} \mu_{n+1}
\end{aligned}
$$

(prediction)
(Bayes)
to be compared with

$$
\begin{aligned}
\mu_{n+1 \mid n} & =\mu_{n} Q \\
\mu_{n+1} & =\frac{\psi_{n+1}}{\left\langle\mu_{n+1 \mid n}, \psi_{n+1}\right\rangle} \mu_{n+1 \mid n}
\end{aligned}
$$

(recall that $\left.A_{n}=\left\langle w_{m}, 1\right\rangle\right)$

Comments

These recursions can be implemented
For finite state spaces,

$$
w_{n}\left(x_{n}\right)=\sum_{k=1}^{n} \sum_{x_{k}} f_{k}\left(x_{k}\right) \mathrm{P}\left(X_{k}=x_{k}, X_{n}=x_{n} \mid Y_{0: n}\right)
$$

Warning: Computing w_{n} is $O\left(\# X^{2} \times n\right)$ but there are many such statistics of interest: $\mathbb{I}_{\{i\}}\left(x_{s}\right)(\# X-1$ of them $), \mathbb{I}_{\{i\}}\left(x_{s-1}\right) \mathbb{I}_{\{j\}}\left(x_{s}\right)$ ($\# X \times(\# X-1)$ of these $) \ldots$

In the Gaussian case, with quadratic f_{k}

Since $w_{n}, w_{n \mid n-1} \ll \mu_{n}, \mu_{n \mid n-1}$ it is natural to approximate $w_{n \mid n-1}$ by $1 / p \sum_{i=1}^{p} \rho_{n}^{i} \delta_{\xi_{n \mid n-1}^{i}}$ when $\mu_{n \mid n-1}$ is approximated as $1 / p \sum_{i=1}^{p} \delta_{\xi_{n \mid n-1}^{i}}$
Proposed algorithm:

Prediction

1. $\tau_{n+1 \mid n}^{1}, \ldots, \tau_{n+1 \mid n}^{p} \sim \operatorname{Mult}\left(w_{n}^{1}, \ldots, w_{n}^{p}\right)$
2. $\xi_{n+1 \mid n}^{1}, \ldots, \xi_{n+1 \mid n}^{p}$ indep. $\sim Q\left(\xi_{n \mid n-1}^{\tau_{n+1 \mid n}^{1}}, \cdot\right), \ldots, Q\left(\xi_{n \mid n-1}^{\tau_{n+1 \mid n}^{p}}, \cdot\right)$
3. $\rho_{n+1}^{i}=\rho_{n}^{\tau_{n+1 \mid n}^{i}}+f_{n+1}\left(\xi_{n+1 \mid n}^{i}\right)$ for $i=1, \ldots, p$

Correction

$$
\omega_{n+1}^{i}=\frac{\psi_{n+1}\left(\xi_{n+1 \mid n}^{i}\right)}{\sum_{j=1}^{p} \psi_{n+1}\left(\xi_{n+1 \mid n}^{j}\right)}
$$

for $i=1, \ldots, p$

Conditionally on $\mathcal{F}_{n}=\sigma\left\{\left(Y_{k}\right)_{k \geq 0},\left(\xi_{k \mid k-1}^{1: p}\right)_{0 \leq k \leq n},\left(\omega_{k}^{1: p}\right)_{0 \leq k \leq n}\right\}$, $\left(\xi_{n+1 \mid n}^{i}, \rho_{n+1}^{i}\right)$ for $i=1, \ldots, p$ are iid and satisfy

$$
\begin{aligned}
\mathrm{E}\left[\rho_{n+1}^{i} \phi\left(\xi_{n+1 \mid n}^{i}\right) \mid \mathcal{F}_{n}\right]= & \sum_{i=1}^{p}\left[\rho_{n}^{i} \omega_{n}^{i}(Q \phi)\left(\xi_{n \mid n-1}^{i}\right)+\omega_{n}^{i}\left(Q f_{n+1} \phi\right)\left(\xi_{n \mid n-1}^{i}\right)\right] \\
= & \left\langle Q^{*}\left(\sum_{i=1}^{p} \rho_{n}^{i} \omega_{n}^{i} \delta_{\xi_{n \mid n-1}^{i}}\right), \phi\right\rangle \\
& +\left\langle f_{n+1} Q^{*}\left(\sum_{i=1}^{p} \omega_{n}^{i} \delta_{\xi_{n \mid n-1}^{i}}\right), \phi\right\rangle
\end{aligned}
$$

Different types of applications

1. Cumulative sums (EM, gradient of log-likelihood...)
2. Fixed point smoothing ($f_{k}=0$ for $\left.k \geq l\right)$
3. Not in the form shown in (11) (increment, tangent filter...)

Type 1: Gradient of the log-likelihood

Figure 1: Box and whiskers plots summarizing 200 independent runs of the proposed algorithm compared with exact computations (triangles): $1 / n \nabla_{\theta} \log p^{\theta}\left(Y_{1: n}\right)$ for different combination of p and T (ie. n).

Model: $\operatorname{AR}(1): \mu=0.9, \gamma=0.95, \sigma^{2}=0.01$

+ noise: $\eta^{2}=0.02=\left(\sigma^{2} /\left(1-\gamma^{2}\right)\right) / 5$

Type 2: Histogram of smoothed initial distribution If $f_{1}\left(x_{1}, x_{0}, y_{1}\right)=\mathbb{I}_{(a, b]}\left(x_{0}\right)$,
ρ_{n}^{i} equals 1 if "ancestor" of the i th particle $\xi_{n \mid n-1}^{i}$ is in $(a, b], \mathbf{0}$ otherwise
\hat{A}_{n} Number of particle whose ancestor is in ($\left.a, b\right]$

Predictive densities and evolution of the ancestor tree

Predictive densities and evolution of the ancestor tree

For $k \geq 0$,

$$
w_{n+1}=\frac{\psi_{n+1}}{\left\langle\mu_{n+1 \mid n}, \psi_{n+1}\right\rangle} w_{n} Q
$$

and thus $w_{n} /\left\langle w_{n}, 1\right\rangle$ satisfies the same recursion as μ_{n}. More precisely,

$$
\begin{aligned}
\left\langle w_{n}, \phi\right\rangle= & \mathrm{E}\left[f\left(X_{0}\right) \phi\left(X_{n}\right) \mid Y_{0: n}\right] \\
= & \mathrm{E}\left[\mathrm{E}\left[f\left(X_{0}\right) \mid X_{n}, Y_{0: n}\right] \phi\left(X_{n}\right) \mid Y_{0: n}\right] \\
= & \mathrm{E}\left[f\left(X_{0}\right) \mid Y_{0: n}\right] \mathrm{E}\left[\phi\left(X_{n}\right) \mid Y_{0: n}\right] \\
& +\mathrm{E}[\underbrace{\left(\mathrm{E}\left[f\left(X_{0}\right) \mid X_{n}, Y_{0: n}\right]-\mathrm{E}\left[f\left(X_{0}\right) \mid Y_{0: n}\right]\right)}_{|\cdot| \leq \mid f f \| \rho^{n}} \phi\left(X_{n}\right) \mid Y_{0: n}]
\end{aligned}
$$

where $\rho=1-\epsilon^{2}$ assuming that $\epsilon \pi \leq Q(x, \cdot) \leq \epsilon^{-1} \pi$
Thus for large $n, w_{n} \approx A_{n} \mu_{n}$

Suggestion

When updating from n to $n+1$ use a resampling scheme which compromises between $\hat{\mu}_{n}=\sum_{i=1}^{p} \omega_{n}^{i} \xi_{n \mid n-1}^{i}$ and $\hat{w}_{n}=\sum_{i=1}^{p} \rho_{n}^{i} \omega_{n}^{i} \xi_{n \mid n-1}^{i}$

For example

$$
\tilde{\omega}_{i}=\frac{1}{2}\left(\omega_{n}^{i}+\frac{\rho_{n}^{i}}{\sum_{j=1}^{p} \rho_{n}^{j}}\right)
$$

and use Bayesian importance sampling correction for $\omega_{n+1}^{1: p}$ and $\rho_{n+1}^{1: p}$

Filtering densities and evolution of the ancestor tree

Figure 2: Box and whiskers plots (500 draws) with, left, $p=50$ and, right, $p=500$ particles (top: original smoother, bottom: modified one)

Conclusions

Suggestions made during the workshop:

- $A_{n}=\mathrm{E}\left[\sum_{k=0}^{n} f_{k}\left(X_{k}\right) \mid Y_{0: n}\right]$ is the most general form since the state of the system may be chosen as $\left(X_{n-1}, X_{n}, Y_{n}\right)$
- The proposed particle estimator is equivalent to

$$
\sum_{i=1}^{p} \omega_{i}\left(\sum_{k=0}^{n} f_{k}\left(\xi_{n \mid n-1, k}^{i}\right)\right)
$$

where $\xi_{n \mid n-1,0: n}^{i}$ is the path associated with the i th particle at time n

