

Grid'5000: Running a Large Instrument for Parallel and Distributed Computing Experiments

F. Desprez

INRIA Grenoble Rhône-Alpes, Corse Team

Joint work with G. Antoniu, Y. Georgiou, D. Glesser, A. Lebre, L. Lefèvre, M. Liroz, D. Margery, L. Nussbaum, C. Perez, L. Pouillioux

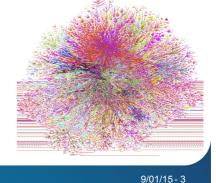
Inría F. Desprez - INRIA/EPFL workshop 2015

Agenda

- Experimental Computer Science
- Overview of GRID'5000
- GRID'5000 Experiments
- Related Platforms
- Conclusions and Open Challenges

9/01/15-1

The discipline of computing: an experimental science


The reality of computer science

- Information
- Computers, networks, algorithms, programs, etc.

Studied objects (hardware, programs, data, protocols, algorithms, networks) are more and more complex

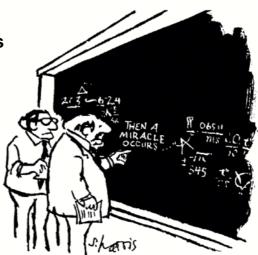
Modern infrastructures

- · Processors have very nice features: caches, hyperthreading, multi-core
- Operating system impacts the performance (process scheduling, socket implementation, etc.)
- The runtime environment plays a role (MPICH ≠ OPENMPI)
- · Middleware have an impact
- Various parallel architectures that can be heterogeneous, hierarchical, distributed, dynamic

nría F. Desprez - INRIA/EPFL workshop 2015

"Good experiments"

A good experiment should fulfill the following properties


- **Reproducibility**: *must* give the same result with the same input
- Extensibility: *must* target possible comparisons with other works and extensions (more/other processors, larger data sets, different architectures)
- **Applicability:** *must* define realistic parameters and *must* allow for an easy calibration
- "Revisability": when an implementation does not perform as expected, must help to identify the reasons

Analytic modeling

Purely analytical (mathematical) models

- Demonstration of properties (theorem)
- Models need to be tractable: oversimplification?
- Good to understand the basic of the problem
- Most of the time ones still perform a experiments (at least for comparison)

"I THINK YOU SHOULD BE MORE EXPLICIT HERE IN STEP TWO."

For a practical impact (especially in distributed computing): analytic study not always possible or not sufficient

Experimental Validation

A good alternative to analytical validation

- Provides a comparison between algorithms and programs
- Provides a validation of the model or helps to define the validity domain of the model

Several methodologies

- Simulation (SimGrid, NS, ...)
- Emulation (MicroGrid, Distem, ...)
- Benchmarking (NAS, SPEC, Linpack,)
- Real-scale (Grid'5000, FutureGrid, OpenCirrus, PlanetLab, ...)

GRID'5000

Testbed for research on distributed systems

- · Born from the observation that we need a better and larger testbed
- · High Performance Computing, Grids, Peer-to-peer systems, Cloud computing
- A complete access to the nodes' hardware in an exclusive mode (from one node to the whole infrastructure): Hardware as a service
- Real Infrastructure as a Service !?
- History, a community effort
 - 2003: Project started (ACI GRID)
 - 2005: Opened to users
- Funding

Inría

- INRIA, CNRS, and many local entities (regions, universities)
- · One rule: only for research on distributed systems
 - \rightarrow no production usage
 - · Free nodes during daytime to prepare experiments
 - · Large-scale experiments during nights and week-ends

Current Status (Sept. 2014 data)

F. Desprez - INRIA/EPFL workshop 2015

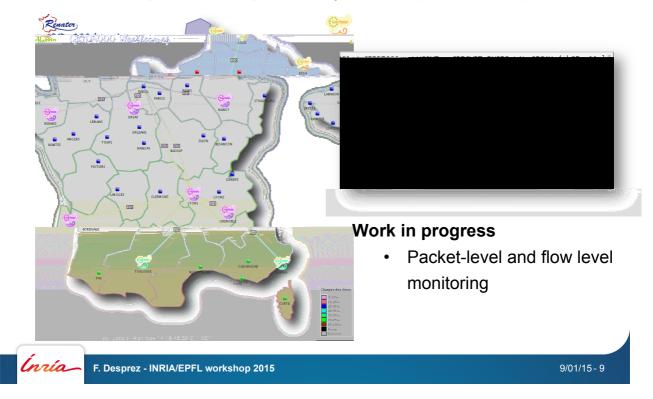
- 10 sites (1 outside France)

- Diverse technologies
 - Intel (65%), AMD (35%)

 - Ethernet 1G, 10G,
 - Infiniband {S, D, Q}DR
 - Two GPU clusters
 - 2 Xeon Phi
 - 2 data clusters (3-5 disks/node)

F. Desprez - INRIA/EPFL workshop 2015

- More than 500 users per year
- Hardware renewed regularly


9/01/15 - 7

- 24 clusters
- 1006 nodes
- 8014 cores
- - CPUs from one to 12 cores

Backbone Network

Dedicated 10 Gbps backbone provided by Renater (french NREN)

Grid'5000 Mission

Support high quality, reproducible experiments on a distributed system testbed

Two areas of work

- Improve trustworthiness
 - Testbed description
 - Experiment description
 - Control of experimental conditions
 - Automate experiments
 - Monitoring & measurement
- Improve scope and scale
 - Handle large number of nodes
 - Automate experiments
 - Handle failures
 - Monitoring and measurements

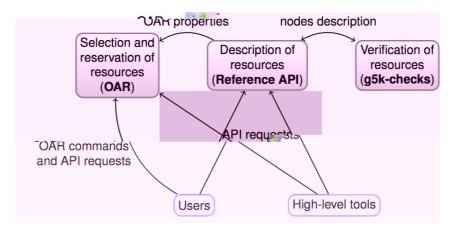
Both goals raise similar challenges

nría

Description of an Experiment over Grid'5000

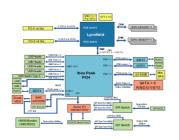
- · Description and verification of the environment
- · Reconfiguring the testbed to meet experimental needs
- · Monitoring experiments, extracting and analyzing data
- · Improving control and description of experiments

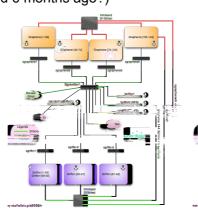
F. Desprez - INRIA/EPFL workshop 2015


Description and verification of the environment

9/01/15 - 11

Typical needs


- · How can I find suitable resources for my experiment?
- How sure can I be that the actual resources will match their description?
- What was the hard drive on the nodes I used six months ago?



Description and selection of resources

Describing resources understand results

- Detailed description on the Grid'5000 wiki
- Machine-parsable format (JSON)
- Archived (State of testbed 6 months ago?)

"processor": {
 "cache_l2": 8388608,
 "cache_l1": null,
 "model": "Intel Xeon",
 "instruction_set": "",
 "other_description": "",
 "version": "X3440",
 "vendor": "Intel",
 "cache_l1d": null,
 "clock_speed": 2530000000.0
},
 "uid": "graphene-1",
 "type": "node",
 "architecture": {
 "platform_type": "x86_64",
 "smf_size": 1
},
 "nain_memory": {
 "ram_size": 17179869184,
 "virtual_size": null
},
 "storage_devices": [
 {
 "model": "Hitachi HDS72103",
 "size": 298023223876.953,
 "driver": "SATA II",
 "rev": "JPFO",
 "device": "sda"
 },
],

9/01/15 - 13

Reconfiguring the testbed

- Typical needs
 - How can I install \$SOFTWARE on my nodes?
 - · How can I add \$PATCH to the kernel running on my nodes?
 - Can I run a custom MPI to test my fault tolerance work?
 - How can I experiment with that Cloud/Grid middleware?
- Likely answer on any production facility: you can't
- On Grid'5000

nría

0

1

2

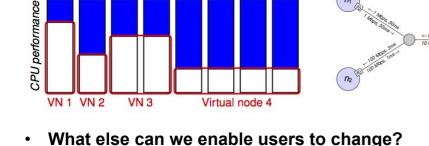
- Operating System reconfiguration with Kadeploy
- Customize networking environment with KaVLAN

- **Changing experimental conditions**
- **Reconfigure experimental conditions with Distem**
 - Introduce heterogeneity in an homogeneous cluster

6

7

n


Emulate complex network topologies

4

CPU cores

3

F. Desprez - INRIA/EPFL workshop 2015

5

- BIOS settings
 - Power management settings
 - CPU features (Hyperthreading, Turbo mode, etc.)
- Cooling system: temperature in the machine room?

http://distem.gforge.inria.fr/

default VLAN routing between Grid'5000 sites

local, isolated VL/

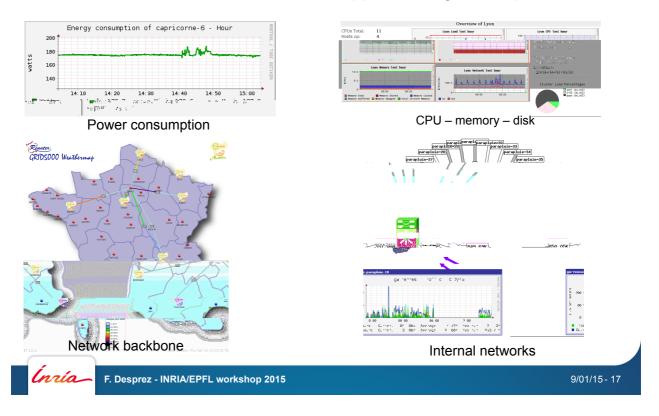
only accessible through a SSH gateway connected to both networks


> routed VLAN separate level 2 network reachable through routing

global VLANs all nodes connected

at level 2, no routing

9/01/15 - 16



Monitoring experiments

Goal: enable users to understand what happens during their experiment

Controlling advanced CPU features

Modern processors have advanced options

- Hyperthreading (SMT): share execution resources of a core between 2 logical processors
- Turboboost: stop some cores to increase frequency of others
- C-states: put cores in different sleep modes
- P-states (aka SpeedStep): Give each core a target performance

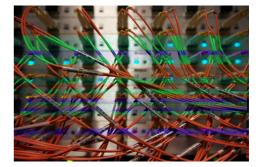
These advanced options are set at a very low level (BIOS or kernel options)

- Do they have an impact on the performance of middleware ?
 - Do publications document this level of experimental setting?
 - Does the community understand the possible impact ?
- How can this be controlled/measured on a shared infrastructure ?

Modern CPU features and Grid'5000

On Grid'5000

- Recent management cards can control low-level features (BIOS options to be short) have their options set through XML descriptions (tested on DELL's IDRAC7)
- Kadeploy inner workings support
 - Booting a deployment environment that can be used to apply changes to BIOS options
 - User control over cmdline options to kernels

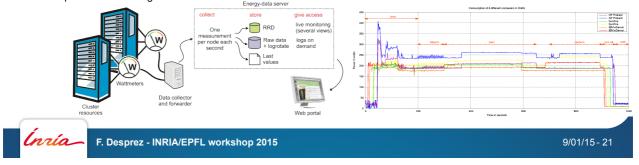

Ongoing work

- Taking BIOS (or UEFI) descriptions as a new parameter at kadeploy3 level
- Restoring and documenting the standard state

F. Desprez - INRIA/EPFL workshop 2015

9/01/15-19

GRID'5000 EXPERIMENTS

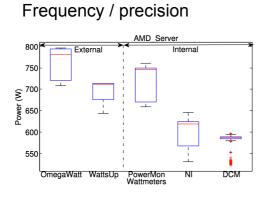


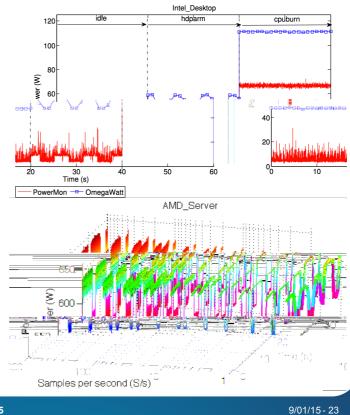
Energy efficiency around Grid'5000

- IT 2-5% of CO2 emissions / 10% electricity
- Green IT → reducing electrical consumption of IT equipments
- Future exascale/datacenters platforms → systems from 20 to 100MW
- How to build such systems and make them (more) energy sustainable/ responsible ? Multi dimension approaches : hardware, software, usage

• Several activities around energy management in Grid'5000 since 2007

- 2007: first energy efficiency considerations
- 2008: Launch of Green activities...
 - 1st challenge: finding a First (real) powermeter
 - SME French company Omegawatt
 - Deployment of multiple powermeters: Lyon, Toulouse, Grenoble
 - 2010: Increasing scalability: Lyon Grid5000 site a fully energy monitored site > 150 powermeters in big boxes.


Aggressive ON/OFF is not always

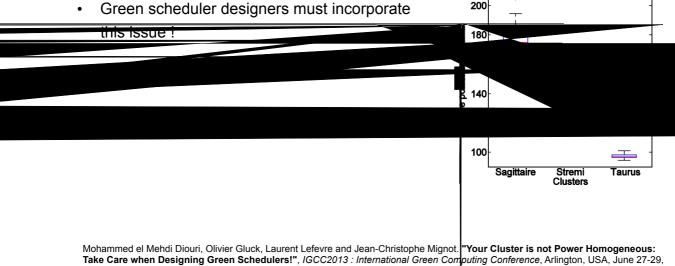


To understand energy measurements : take care of your wattmeters !

240

220

S. Catalan, R. Mayo, E. Quintan-Orti. Solving some Mysteries in Power Monitoring of Servers: Take Care of your Wattmeters!, EE-LSDS 2013 : Energy Efficiency in Large Scale Distributed Systems conference, Vienna, Austria, April 22-24, 2013


M. Diouri, M. Dolz, O. Glück, L. Lefevre, P. Alonso,

Homogeneity (in energy consumption) does not exist !

- Depends on technology •
- Same flops but not same flops per watt
- Idle / static cost .

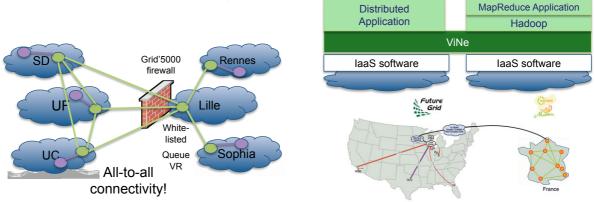
nin

- CPU : main responsible
- Green scheduler designers must incorporate

F. Desprez - INRIA/EPFL workshop 2015 ría

Improving energy mangement with application expertise

- Considered services : resilience & data broadcasting
- 4 steps: Service analysis



GRID'5000, Virtualization and Clouds: Sky computing use-case

Experiments between USA and France

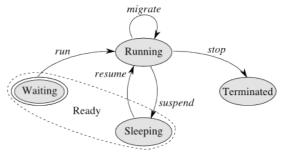
- Nimbus (resource management, contextualization)/ViNe (connectivity)/Hadoop (task distribution, fault-tolerance, dynamicity)
- · FutureGrid (3 sites) and Grid'5000 (3 sites) platforms
- · Optimization of creation and propagation of VMs

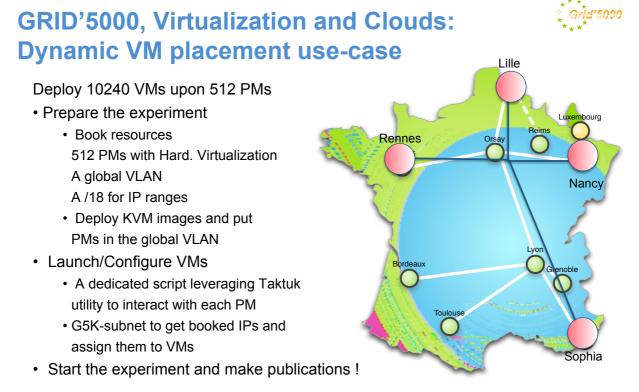
Large-Scale Cloud Computing Research: Sky Computing on FutureGrid and Grid'5000, by Pierre Riteau, Maurício Tsugawa, Andréa Matsunaga, José Fortes and Kate Keahey, ERCIM News 83, Oct. 2010.

Ínría

F. Desprez - INRIA/EPFL workshop 2015

Crédits: Pierre Riteau 9/01/15-27


GRID'5000, Virtualization and Clouds: Dynamic VM placement use-case


2012 - Investigate issues related to preemptive scheduling of VMs

• Can a system handle VMs across a distributed infrastructure like OSes manipulate processes on local nodes ?

- · Several proposals in the literature, but
 - Few real experiments (simulation based results)
 - · Scalability is usually a concern

 Can we perform several migrations between several nodes at the same time? What is the amount of time, the impact on the VMs/on the network?

F. Quesnel, D. Balouek, and A. Lebre. **Deploying and Scheduling Thousands of Virtual Machines on Hundreds of Nodes Distributed Geographically**. In IEEE International Scalable Computing Challenge (SCALE 2013) (colocated with CCGRID 2013), Netherlands, May 2013

F. Desprez - INRIA/EPFL workshop 2015

GRID'5000, Virtualization and Clouds

- More than 198 publications
- Three times finalist of the IEEE Scale challenge (2nd prize winner in 2013)
- Tomorrow Virtualization of network functions (Software Defined Network)
 - Go one step ahead of KaVLAN to guarantee for instance bandwidth expectations HiperCal, Emulab approaches
 - Network virtualisation is performed by daemons running on dedicated nodes
 - \Rightarrow Do not bring additional capabilities (close to the Distem project)
 - By reconfiguring routers/switches on demand
 - \Rightarrow Required specific devices (OpenFlow compliant)
 - Which features should be exported to the end-users ?
 - Are there any security concerns ?

Grid'5000

9/01/15 - 29

nría F.C

Riplay: A Tool to Replay HPC Workloads

RJMS : Ressource and Job Management System

- It manages resources and schedule jobs on High-Performance Clusters
- Most famous ones : Maui/Moab, OAR, PBS, SLURM

• Riplay

- · Replay traces on a real RJMS in an emulated environment
- 2 RJMS supported (OAR and SLURM)
- · Jobs replaced by sleep commands
- · Can replay a full or an interval of a workload

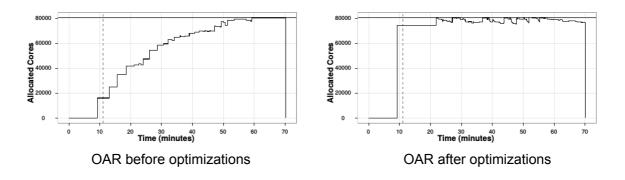
• On Grid'5000

nría

• 630 emulated cores need 1 physical core to run

Curie (rank 26th on last Top500, 80640 cores)

• Curie's RJMS can be ran on 128 Grid'5000 cores


F. Desprez - INRIA/EPFL workshop 2015

Riplay: A Tool to Replay HPC Workloads

9/01/15 - 31

- Test RJMS scalability
 - Without the need of the actual cluster.
 - Test a huge cluster fully loaded on a RJMS in minutes.

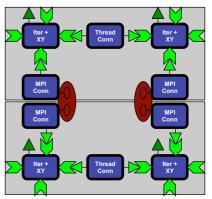
Large Scale Experimentation Methodology for Resource and Job Management Systems on HPC Clusters, Joseph Emeras, David Glesser, Yiannis Georgiou and Olivier Richard

F. Desprez - INRIA/EPFL workshop 2015

https://forge.imag.fr/projects/evalys-tools/

HPC Component Model: From Grid'5000 to Curie **SuperComputer**

Issues


- Improve code re-use of HPC applications
- Simplify application portability

Objective

 Validate L2C, a low level HPC component model Jacobi¹ and 3D FFT² kernels

Roadmap

- Low scale validation on Grid'5000
 - Overhead wrt "classical" HPC models (Threads, MPI)
- Study of the impact of various node architecture •
- Large scale validation on Curie
 - Up to 2000 nodes, 8192 cores

1: J.Bigot, Z. Hou, C. Pérez, V. Pichon. A Low Level Component Model Easing Performance Portability of HPC Applications. Computing, page 1–16, 2013, Springer Vienna 2: On going work.

F. Desprez - INRIA/EPFL workshop 2015

HPC Component Model: From Grid'5000 to Curie **SuperComputer**

9/01/15 - 33

Ns/#iter/elem חחר כונו 10 C 512MB 1GB 2GB 4GB 2cores 4cores 8cores 2cores 4cores 8cores 2nodes 4nodes 8nodes 8 x 2 8 x 4 8 x 8 **3D FFT** Execution time (ms) Execution time (ms)0.1 0.1FFTW 2DECOMP 2DECOMP L2C_1DH_2t_yz_blk L2C_2D_3t $0.01 \stackrel{{\scriptscriptstyle {
m L}}}{256}$ 16 32 64 128 256 512 1,024 2,048 4,096 8.192 8 Cores Cores1024³ FFT, 2D decomp., Curie (Thin node) 2563 FFT, 1D decomp., Edel+Genepi Cluster (G5K) F. Desprez - INRIA/EPFL workshop 2015

9/01/15 - 34

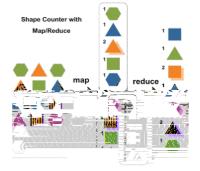
Jacobi: No L2C overhead in any version

Big Data Management

9/01/15 - 35

Grid'5000

- Growing demand from our institutes and users
- · Grid'5000 has to evolve to be able to cope with such experiments
- Current status
 - home quotas has grown from 2GB to 25GB by default (and can be extended up to 200 GB)
 - For larger datasets, users should leverage storage5K (persistent dataset imported into Grid'5000 between experiments)
 - DFS5K, deploy on demand CephFS
- What's next
 - Current challenge: upload datasets (from internet to G5K) / deployment of data from the archive storage system to the working nodes
 - New storage devices: SSD / NVRAM / ...
 - New booking approaches
 - Allow end-users to book node partitions for longer period than the usual reservations



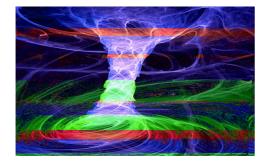
F. Desprez - INRIA/EPFL workshop 2015

Scalable Map-Reduce Processing

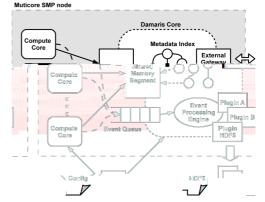
Goal: High-performance Map-Reduce processing through concurrency-optimized data processing

- Some results
 - Versioning-based concurrency management for increased data throughput (BlobSeer approach)
 - Efficient intermediate data storage in pipelines
 - Substantial improvements with respect to Hadoop
 - Application to efficient VM deployment
- Intensive, long-run experiments done on Grid'5000
 - Up to 300 nodes/500 cores
 - Plans: validation within the IBM environment with IBM MapReduce Benchmarks

- ANR Project Map-Reduce (ARPEGE, 2010-2014)
- Partners: Inria (teams : KerData leader, AVALON, Grand Large), Argonne National Lab, UIUC, JLPC, IBM, IBCP

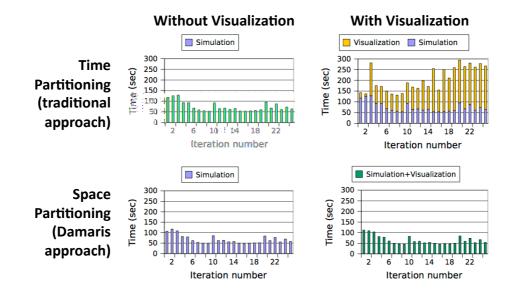

mapreduce.inria.fr

Damaris: A Middleware-Level Approach to I/O on Multicore HPC Systems


 Idea : one dedicated I/O core per multicore node
 Originality : shared memory, asynchronous processing
 Implementation: software library
 Applications: climate simulations (Blue Waters)

Preliminary experiments on Grid'5000

F3Desprez - INRIA/EPFL workshop 2015



http://damaris.gforge.inria.fr/

9/01/15

Damaris: Leveraging dedicated cores for in situ visualization

Experiments on Grid'5000 with Nek5000 (912 cores)

Using Damaris completely hides the performance impact of in situ visualization

nría

Related Platforms

- PlanetLab
 - 1074 nodes over 496 sites world-wide, slices allocation: virtual machines.
 - Designed for experiments Internet-wide: new protocols for Internet, overlay networks (file-sharing, routing algorithm, multi-cast, ...)
- Emulab
 - Network emulation testbed. Mono-site, mono-cluster. Emulation. Integrated approach
- Open Cloud
 - 480 cores distributed in four locations, interoperability across clouds using open API
- Open Cirrus
 - Federation of heterogeneous data centers, test-bed for cloud computing
- DAS-1..4-5
 - Federation of 4-6 cluster in Netherland, ~200 nodes, specific target experiment for each generation
- NECTAR
 - Federated Australian Research Cloud over 8 sites
 - Futuregrid (ended Sept. 30th)
 - 4 years project within XCEDE with similar approach as Grid'5000
 - · Federation of data centers, bare hardware reconfiguration
- 2 new projects awarded by NSF last August
 - Chameleon: a large-scale, reconfigurable experimental environment for cloud research, co-located at the University of Chicago and The University of Texas at Austin
 - CloudLab: a large-scale distributed infrastructure based at the University of Utah, Clemson University and the University of Wisconsin

F. Desprez - INRIA/EPFL workshop 2015

9/01/15 - 39

Conclusion and Open Challenges

- · Computer-Science is also an experimental science
- There are different and complementary approaches for doing experiments in computer-science
- ٠

What Have We Learned?

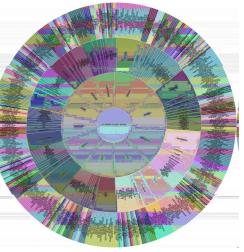
9/01/15 - 41

d'5000

Building such a platform was a real challenge !

- No on-the-shelf software available
- Need to have a team of highly motivated and highly trained engineers and researchers
- Strong help and deep understanding of involved institutions!

From our experience, experimental platforms should feature


- Experiment isolation
- Capability to reproduce experimental conditions
- Flexibility through high degree of reconfiguration
- The strong control of experiment preparation and running
- Precise measurement methodology
- Tools to help users prepare and run their experiments
- Deep on-line monitoring (essential to help observations understanding)
- Capability to inject real life (real time) experimental conditions (real Internet traffic, faults)

F. Desprez - INRIA/EPFL workshop 2015

Conclusion and Open Challenges, cont

- · Testbeds optimized for experimental capabilities, not performance
- · Access to the modern architectures / technologies
 - Not necessarily the fastest CPUs
 - But still expensive → funding!
- Ability to **trust** results
 - Regular checks of testbed for bugs
- · Ability to understand results
 - Documentation of the infrastructure
 - Instrumentation & monitoring tools
 - network, energy consumption
 - Evolution of the testbed
 - maintenance logs, configuration history
- Empower users to perform complex experiments[®]
 - Facilitate access to advanced software tools
- Paving the way to Open Science of HPC and Cloud long term goals
 - Fully automated execution of experiments
 - Automated tracking + archiving of experiments and associated data

QUESTIONS ?

Special thanks to G. Antoniu, Y. Georgiou, D. Glesser, A. Lebre, L. Lefèvre, M. Liroz, D. Margery, L. Nussbaum, C. Perez, L. Pouillioux and the Grid'5000 technical team

www.grid5000.fr

Some people thick are tout.	
(Europsa)	* : .*
When doing experiments. But they're way more likely to say	
Bollocks! (on smt!) (F*ck1)	
Arse! (Stupid piece- -of- crap machine!) (I hate	
twiteduller com	
in the second	