
Parallel programming:
Introduction to GPU architecture

Caroline Collange
Inria Rennes – Bretagne Atlantique

caroline.collange@inria.fr
https://team.inria.fr/pacap/members/collange/

Master 1
PPAR - 2020

Outline of the course

March 3: Introduction to GPU architecture

Parallelism and how to exploit it

Performance models

March 9: GPU programming

The software side

Programming model

March 16: Performance optimization

Possible bottlenecks

Common optimization techniques

4 lab sessions, starting March 17

Labs 1&2: computing log(2) the hard way

Labs 3&4: yet another Conway's Game of Life

5

Graphics processing unit (GPU)

Graphics rendering accelerator for computer games

Mass market: low unit price, amortized R&D

Increasing programmability and flexibility

Inexpensive, high-performance parallel processor

GPUs are everywhere, from cell phones to supercomputers

General-Purpose computation on GPU (GPGPU)

orGPU

GPU

https://team.inria.fr/pacap/members/collange/

 6

GPUs in high-performance computing

2016+ trend:
Heterogeneous multi-core processors influenced by GPUs

#3 Sunway TaihuLight (China)
40,960 × SW26010 (4 big + 256 small cores)

GPU/accelerator share in Top500 supercomputers

In 2010: 2%

In 2018: 22%

#1 Summit (USA)
4,608 × (2 Power9 CPUs + 6 Volta GPUs)

 7

GPUs in the future?

Yesterday (2000-2010)

Homogeneous multi-core

Discrete components
Central

Processing Unit
(CPU)

Graphics
Processing
Unit (GPU)

Latency-
optimized

cores

Throughput-
optimized

cores

Today (2011-...)
Chip-level integration

CPU cores and GPU cores
on the same chip

Still different programming models,
software stacks

Tomorrow
Heterogeneous multi-core

GPUs to blend into
throughput-optimized,
general purpose cores? Heterogeneous multi-core chip

Hardware
accelerators

 8

Outline
GPU, many-core: why, what for?

Technological trends and constraints

From graphics to general purpose

Hardware trends

Forms of parallelism, how to exploit them

Why we need (so much) parallelism: latency and throughput

Sources of parallelism: ILP, TLP, DLP

Uses of parallelism: horizontal, vertical

Let's design a GPU!

Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD

Putting it all together

Architecture of current GPUs: cores, memory

9

The free lunch era... was yesterday
1980's to 2002: Moore's law, Dennard scaling, micro-architecture
improvements

Exponential performance increase

Software compatibility preserved

Hennessy, Patterson. Computer Architecture, a quantitative approach. 5 th Ed. 2010

Do not rewrite software, buy a new machine!

10

Technology evolution

Memory wall

Memory speed does not increase as
fast as computing speed

Harder to hide memory latency

Power wall

Power consumption of transistors does
not decrease as fast as density
increases

Performance is now limited by power
consumption

ILP wall

Law of diminishing returns on
Instruction-Level Parallelism

Pollack rule: cost performance²≃
Cost

Serial performance

Performance

Time

Gap

Compute

Memory

Time

Transistor
density

Transistor
power

Total power

11

Usage changes

New applications demand
parallel processing

Computer games : 3D graphics

Search engines, social networks…
“big data” processing

New computing devices are
power-constrained

Laptops, cell phones, tablets…

Small, light, battery-powered

Datacenters

High power supply
and cooling costs

 12

Latency vs. throughput

Latency: time to solution

Minimize time, at the expense of
power

Metric: time
e.g. seconds

Throughput: quantity of tasks
processed per unit of time

Assumes unlimited parallelism

Minimize energy per operation

Metric: operations / time
e.g. Gflops / s

CPU: optimized for latency

GPU: optimized for throughput

 13

Amdahl's law

Bounds speedup attainable on a parallel machine

S=
1

1−P
P
N

Time to run
sequential portions

Time to run
parallel portions

N (available processors)

S (speedup)

G. Amdahl. Validity of the Single Processor Approach to Achieving Large-Scale
Computing Capabilities. AFIPS 1967.

S Speedup
P Ratio of parallel

portions
N Number of

processors

 14

Why heterogeneous architectures?

Latency-optimized multi-core (CPU)

Low efficiency on parallel portions:
spends too much resources

Throughput-optimized multi-core (GPU)

Low performance on sequential portions

S=
1

1−P
P
N

Heterogeneous multi-core (CPU+GPU)

Use the right tool for the right job

Allows aggressive optimization
for latency or for throughput

Time to run
sequential portions

Time to run
parallel portions

M. Hill, M. Marty. Amdahl's law in the multicore era. IEEE Computer, 2008.

 15

Example: System on Chip for smartphone

Big cores
for applications

Tiny cores
for background activity

GPU

Special-purpose
accelerators

Lots of interfaces

 16

Outline
GPU, many-core: why, what for?

Technological trends and constraints

From graphics to general purpose

Hardware trends

Forms of parallelism, how to exploit them

Why we need (so much) parallelism: latency and throughput

Sources of parallelism: ILP, TLP, DLP

Uses of parallelism: horizontal, vertical

Let's design a GPU!

Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD

Putting it all together

Architecture of current GPUs: cores, memory

 17

Vertices

The (simplest) graphics rendering pipeline

Fragments

Clipping, Rasterization
Attribute interpolation

Z-Compare
Blending

Pixels

Vertex shader

Fragment shader

Primitives
(triangles…)

Framebuffer

Programmable
stage

Parametrizable
stage

Textures

Z-Buffer

 18

How much performance do we need

… to run 3DMark 11 at 50 frames/second?

Element Per frame Per second

Vertices 12.0M 600M

Primitives 12.6M 630M

Fragments 180M 9.0G

Instructions 14.4G 720G

Intel Core i7 2700K: 56 Ginsn/s peak

We need to go 13x faster

Make a special-purpose accelerator

Source: Damien Triolet, Hardware.fr

 20

GPGPU: General-Purpose computation on GPUs

20092004 20072002

7.x 8.0 9.08.1 9.0ca 9.0b 10.0 10.1 11

2000 2001 2003 2005 2006 2008

Microsoft DirectX

NVIDIA

NV10 NV20 NV30 NV40 G70 G80-G90 GT200

ATI/AMD

R100 R200 R300 R400 R500 R600 R700

Programmable
shaders

FP 16 FP 32

FP 24 FP 64

SIMT

CTM CAL

CUDA

GPGPU traction

Dynamic
control flow

2010

GF100

Evergreen

Unified shaders

GPGPU history summary

 21

Today: what do we need GPUs for?

1. 3D graphics rendering for games

Complex texture mapping, lighting
computations…

2. Computer Aided Design workstations

Complex geometry

3. High-performance computing

Complex synchronization,
off-chip data movement, high precision

4. Convolutional neural networks

Complex scheduling of low-precision
linear algebra

One chip to rule them all

Find the common denominator

 22

Outline
GPU, many-core: why, what for?

Technological trends and constraints

From graphics to general purpose

Hardware trends

Forms of parallelism, how to exploit them

Why we need (so much) parallelism: latency and throughput

Sources of parallelism: ILP, TLP, DLP

Uses of parallelism: horizontal, vertical

Let's design a GPU!

Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD

Putting it all together

Architecture of current GPUs: cores, memory

 23

Trends: compute performance

6×

25×

Caveat: only considers desktop CPUs. Gap with server CPUs is “only” 4×!

 24

Trends: memory bandwidth

HBM, GDDR5x, 6

Integrated
mem. controller

10×

5×

10×

 25

Trends: energy efficiency

7×

5×

 26

Outline
GPU, many-core: why, what for?

Technological trends and constraints

From graphics to general purpose

Hardware trends

Forms of parallelism, how to exploit them

Why we need (so much) parallelism: latency and throughput

Sources of parallelism: ILP, TLP, DLP

Uses of parallelism: horizontal, vertical

Let's design a GPU!

Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD

Putting it all together

Architecture of current GPUs: cores, memory

 27

What is parallelism?

Parallelism: independent operations which execution can be overlapped
Operations: memory accesses or computations

How much parallelism do I need?

Little's law in queuing theory

Average customer arrival rate λ

Average time spent W

Average number of customers
L = λ×W

J. Little. A proof for the queuing formula L= λ W. JSTOR 1961.

Units
For memory: B = GB/s × ns
For arithmetic: flops = Gflops/s × ns

← throughput

← latency

← Parallelism = throughput × latency

28

Throughput and latency: CPU vs. GPU

CPU memory: Core i7 4790,
DDR3-1600, 2 channels

224

410 ns

25.6

67 Latency (ns)

Throughput (GB/s)

GPU memory: NVIDIA GeForce GTX 980,
GDDR5-7010 , 256-bit

Latency x6

Throughput x8

Parallelism: ×56

→ Need 56 times more parallelism!

29

Consequence: more parallelism

GPU vs. CPU

8× more parallelism to feed more
units (throughput)

6× more parallelism to hide longer
latency

56× more total parallelism

How to find this parallelism?

Space ×8

×
8

T
im

e

R
eques ts

...

30

Sources of parallelism

ILP: Instruction-Level Parallelism

Between independent instructions
in sequential program

TLP: Thread-Level Parallelism

Between independent execution
contexts: threads

DLP: Data-Level Parallelism

Between elements of a vector:
same operation on several elements

add r3 ← r1, r2
mul r0 ← r0, r1
sub r1 ← r3, r0

Thread 1 Thread 2

Parallel

add mul Parallel

vadd r←a,b
+ + +
a1 a2 a3

b1 b2 b3

r1 r2 r3

31

Example: X ← a×X

In-place scalar-vector product: X ← a×X

Or any combination of the above

Launch n threads:
X[tid] ← a * X[tid]

Threads (TLP)

For i = 0 to n-1 do:
X[i] ← a * X[i]

Sequential (ILP)

X ← a * XVector (DLP)

32

Uses of parallelism

“Horizontal” parallelism
for throughput

More units working in parallel

“Vertical” parallelism
for latency hiding

Pipelining: keep units busy
when waiting for dependencies,
memory

A B C D

throughput

la
te

nc
y

A B C D

A B

A

C

B

A

cycle 1 cycle 2 cycle 3 cycle 4

33

How to extract parallelism?

Horizontal Vertical

ILP Superscalar Pipelined

TLP Multi-core
SMT

Interleaved / switch-on-event
multithreading

DLP SIMD / SIMT Vector / temporal SIMT

We have seen the first row: ILP

We will now review techniques for the next rows: TLP, DLP

 34

Outline
GPU, many-core: why, what for?

Technological trends and constraints

From graphics to general purpose

Hardware trends

Forms of parallelism, how to exploit them

Why we need (so much) parallelism: latency and throughput

Sources of parallelism: ILP, TLP, DLP

Uses of parallelism: horizontal, vertical

Let's design a GPU!

Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD

Putting it all together

Architecture of current GPUs: cores, memory

35

Sequential processor

Focuses on instruction-level parallelism

Exploits ILP: vertically (pipelining) and horizontally (superscalar)

for i = 0 to n-1
X[i] ← a * X[i]

move i ← 0
loop:

load t ← X[i]
mul t ← a×t
store X[i] ← t
add i ← i+1
branch i<n? loop Sequential CPU

add i ← 18

store X[17]

mul

Fetch

Decode

Execute

Memory

Source code

Machine code

Memory

36

The incremental approach: multi-core

Source: Intel

Intel Sandy Bridge

Several processors
on a single chip
sharing one memory space

Area: benefits from Moore's law

Power: extra cores consume little when not in use

e.g. Intel Turbo Boost

37

Homogeneous multi-core

Horizontal use of thread-level parallelism

Improves peak throughput

IF
ID

EX

LSU

F

D

X

Mem

add i ← 18

store X[17]

mul

IF
ID

EX

LSU

F

D

X

Mem

add i ← 50

store X[49]

mul

M
em

ory

T0 T1Threads:

38

Example: Tilera Tile-GX

Grid of (up to) 72 tiles

Each tile: 3-way VLIW processor,
5 pipeline stages, 1.2 GHz

Tile (1,1)

…
Tile (1,2)

Tile (9,1)

Tile (1,8)

Tile (9,8)

…

… …

39

Interleaved multi-threading

mul

mul

add i ← 50

Fetch

Decode

Execute

Memory
load-store
unit

load X[89]

Memory

Vertical use of thread-level parallelism

Hides latency thanks to explicit parallelism
improves achieved throughput

store X[72]
load X[17]

store X[49]

add i ←73

T0 T1 T2 T3Threads:

40

Example: Oracle Sparc T5

16 cores / chip

Core: out-of-order superscalar, 8 threads

15 pipeline stages, 3.6 GHz

Core 1

Thread 1
Thread 2

Thread 8

Core 2 Core 16

…

41

Clustered multi-core

For each
individual unit,
select between

Horizontal replication

Vertical time-multiplexing

Examples

Sun UltraSparc T2, T3

AMD Bulldozer

IBM Power 7, 8, 9

Area-efficient tradeoff

Blurs boundaries between cores

br

mul

add i ← 50

Fetch

Decode

EX

L/S Unitload X[89]

Memory

store X[72]
load X[17]

store X[49]

mul
add i ←73

store

T0 T1 T2 T3

→ Cluster 1 → Cluster 2

42

Implicit SIMD

In NVIDIA-speak

SIMT: Single Instruction, Multiple Threads

Convoy of synchronized threads: warp

Extracts DLP from multi-thread applications

(0-3) store

(0) mul

F

D

X

Mem(0)

M
em

ory

(1) mul (2) mul (3) mul

(1) (2) (3)

(0-3) load

Factorization of fetch/decode, load-store units

Fetch 1 instruction on behalf of several threads

Read 1 memory location and broadcast to several registers

T0

T1

T2

T3

 43

How to exploit common operations?

Multi-threading implementation options:

Horizontal: replication

Different resources, same time

Chip Multi-Processing (CMP)

Vertical: time-multiplexing

Same resource, different times

Multi-Threading (MT)

Factorization

If we have common operations between threads

Same resource, same time

Single-Instruction Multi-Threading (SIMT)

space

space

tim
e

tim
e

T0
T1
T2
T3

T0
T1

T2
T3

T0-T3

space

tim
e

44

Explicit SIMD

Single Instruction Multiple Data

Horizontal use of data level parallelism

Examples

Intel MIC (16-wide)

AMD GCN GPU (16-wide×4-deep)

Most general purpose CPUs (4-wide to 16-wide)

loop:
vload T ← X[i]
vmul T ← a×T
vstore X[i] ← T
add i ← i+4
branch i<n? loop

Machine code

SIMD CPU

add i ← 20

vstore X[16..19

vmul

F

D

X

Mem

M
em

ory

 48

Outline
GPU, many-core: why, what for?

Technological trends and constraints

From graphics to general purpose

Forms of parallelism, how to exploit them

Why we need (so much) parallelism: latency and throughput

Sources of parallelism: ILP, TLP, DLP

Uses of parallelism: horizontal, vertical

Let's design a GPU!

Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD

Putting it all together

Architecture of current GPUs: cores, memory

50

Example CPU: Intel Core i7

Is a wide superscalar, but has also

Multicore

Multi-thread / core

SIMD units

Up to 116 operations/cycle from 8 threads

256-bit
SIMD
units: AVX

Wide superscalar

Simultaneous Multi-Threading:
2 threads

4 CPU cores

 51

Example GPU: NVIDIA GeForce GTX 980

SIMT: warps of 32 threads

16 SMs / chip

4×32 cores / SM, 64 warps / SM

4612 Gflop/s

Up to 32768 threads in flight

Time

C
ore 1

SM16

……

C
ore 2

C
ore 32

C
ore 33

…

C
ore 34

C
ore 64

Warp 5
Warp 1

Warp 60

Warp 6
Warp 2

Warp 61
C

ore 65

…
C

ore 66

C
ore 91

C
ore 92

…

C
ore 93

C
ore 12 7

Warp 7
Warp 3

Warp 62

Warp 8
Warp 4

Warp 63

SM1

52

Taxonomy of parallel architectures

Horizontal Vertical

ILP Superscalar / VLIW Pipelined

TLP Multi-core
SMT

Interleaved / switch-on-
event multithreading

DLP SIMD / SIMT Vector / temporal SIMT

53

Classification: multi-core

Oracle Sparc T5

2

16 8

ILP

TLP

DLP

Horizontal Vertical

Cores Threads

Intel Haswell

8

8

4 2

SIMD
(AVX)

Cores
Hyperthreading

4

10

12 8

IBM Power 8

2

8

16 2

Fujitsu SPARC64 X

General-purpose
multi-cores:
balance ILP, TLP and DLP

Sparc T:
focus on TLP

54

How to read the table

ILP

TLP

DLP

Horizontal Vertical

Given an application with known ILP, TLP, DLP
how much throughput / latency hiding can I expect?

For each cell, take minimum of existing parallelism
and hardware capability

The column-wise product gives throughput / latency hiding

min(8, 1)=1

min(8, 10) =8

min(4, 1)=1 2

Sequential code
no TLP, no DLP

10

1

1

Max throughput = 8×1×1
for this application
Peak throughput = 8×4×8
that can be achieved
→Can only hope for ~3% of peak performance!

55

Classification: GPU and many small-core

Intel MIC Nvidia Kepler AMD GCN

16

2

60 4

ILP

TLP

DLP 32

2

16×4 32

16

20×4

4

40

SIMD Cores SIMT Multi-
threading

Cores
×units

Kalray MPPA-256

5

17×16

Tilera Tile-GX

3

72

GPU: focus on DLP, TLP
horizontal and vertical

Many small-core:
focus on horizontal TLP

Horizontal Vertical

56

Takeaway

Parallelism for throughput and latency hiding

Types of parallelism: ILP, TLP, DLP

All modern processors exploit the 3 kinds of parallelism

GPUs focus on Thread-level and Data-level parallelism

 57

Outline
GPU, many-core: why, what for?

Technological trends and constraints

From graphics to general purpose

Forms of parallelism, how to exploit them

Why we need (so much) parallelism: latency and throughput

Sources of parallelism: ILP, TLP, DLP

Uses of parallelism: horizontal, vertical

Let's design a GPU!

Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD

Putting it all together

Architecture of current GPUs: cores, memory

 58

What is inside a graphics card?

NVIDIA Volta V100 GPU. Artist rendering!

59

External memory: discrete GPU

Classical CPU-GPU model

Split memory spaces

Need to transfer data
explicitly

Highest bandwidth from
GPU memory

Transfers to main memory
are slower

CPU GPU

Main memory Graphics memory

PCI
Express

16GB/s

26GB/s 224GB/s

Example configuration:
Intel Core i7 4790, Nvidia GeForce GTX 980

16 GB 4 GB

Motherboard Graphics card

60

Discrete GPU memory technology

GDDR5, GDDR5x

Qualitatively like regular DDR

Optimized for high frequency at the expense of latency and cost

e.g. Nvidia Titan X: 12 chip pairs x 32-bit bus × 10 GHz →480 GB/s

High-Bandwidth Memory (HBM)

On-package stacked memory on silicon interposer

Shorter traces, wider bus, lower frequency: more energy-efficient

Limited capacity and high cost

e.g. AMD R9 Fury X: 4× 4-high stack × 1024-bit × 1 GHz→512 GB/s

62

External memory: embedded GPU

Most GPUs today are integrated

Same physical memory

May support memory coherence

GPU can read directly from CPU
caches

More contention on external
memory

CPU GPU

Main memory

26GB/s

8 GB

Cache

System on Chip

63

GPU high-level organization

Processing units

Streaming Multiprocessors (SM)
in Nvidia jargon

Compute Unit (CU) in AMD's

Closest equivalent to a CPU core

Today: from 1 to 20 SMs in a GPU

Memory system: caches

Keep frequently-accessed data

Reduce throughput demand on
main memory

Managed by hardware (L1, L2) or
software (Shared Memory)

SM

L1
SMem

L2 L2 L2

Crossbar

SM

L1
SMem

SM

L1
Smem

Global memory

290 GB/s

~2 TB/s

6 MB

1 MB

GPU chip

Graphics card

(aggregate)

64

GPU processing unit organization
Each SM is a highly-multithreaded processor

Today: 24 to 48 warps of 32 threads each
→ ~1K threads on each SM, ~10K threads on a GPU

Shared
memory

Execution units

Registers

Warp

Thread

SM 1 SM 2

...

L1
cache

To L2 cache /
external memory

 65

Outline
GPU, many-core: why, what for?

Technological trends and constraints

From graphics to general purpose

Forms of parallelism, how to exploit them

Why we need (so much) parallelism: latency and throughput

Sources of parallelism: ILP, TLP, DLP

Uses of parallelism: horizontal, vertical

Let's design a GPU!

Ingredients: Sequential core, Multi-core, Multi-threaded core, SIMD

Putting it all together

Architecture of current GPUs: cores, memory

High-level performance modeling

66

First-order performance model

Questions you should ask yourself,
before starting to code or optimize

Will my code run faster on the GPU?

Is my existing code running as fast as it should?

Is performance limited by computations or memory bandwidth?

Pen-and-pencil calculations can (often) answer such questions

67

Performance: metrics and definitions

Optimistic evaluation: upper bound on performance

Assume perfect overlap of computations and memory accesses

Memory accesses: bytes

Only external memory,
not caches or registers

Computations: flops

Only “useful” computations (usually floating-point)
not address calculations, loop iterators..

Arithmetic intensity: flops / bytes
= computations / memory accesses

Property of the code

Arithmetic throughput: flops / s

Property of code + architecture

71

The roofline model

How much performance can I get for a given arithmetic intensity?

Upper bound on arithmetic throughput, as a function of arithmetic intensity

Property of the architecture

Arithmetic intensity
(flops/byte)

Arithmetic throughput
(Gflops/s)

Compute-boundMemory-bound

S. Williams, A. Waterman, D. Patterson. Roofline: an insightful visual performance model
for multicore architectures. Communications of the ACM, 2009

72

Building the machine model

Compute or measure:

Peak memory throughput

Ideal arithmetic intensity = peak compute throughput / mem throughput

Achievable peaks may be lower than theoretical peaks

Lower curves when adding realistic constraints

Arithmetic intensity
(flop/byte)

Arithmetic throughput
(Gflop/s)

4612 Gflops

GTX 980: 224 GB/s

GTX 980: 4612 (Gflop/s) / 224 (GB/s) = 20.6 flop/B
× 4 (B/flop) = 82 (dimensionless)

20.6 flop/B

Beware of units:
float=4B, double=8B !

73

Using the model

Compute arithmetic intensity, measure performance of program

Identify bottleneck: memory or computation

Take optimization decision

Arithmetic intensity
(flop/byte)

Arithmetic throughput
(Gflop/s)

Measured
performance

O
pt

im
iz

e
co

m
pu

ta
tio

n

Reuse data

O
pt

im
iz

e
m

em
or

y
ac

ce
ss

es

74

Example: dot product

How many computations?

How many memory accesses?

Arithmetic intensity?

Compute-bound or memory-bound?

How many Gflop/s on a GTX 980 GPU?

With data in GPU memory?

With data in CPU memory?

How many Gflop/s on an i7 4790 CPU?

for i = 1 to n
r += a[i] * b[i]

GTX 980: 4612 Gflop/s, 224 GB/s
i7 4790: 460 Gflop/s, 25.6 GB/s
PCIe link: 16 GB/s

75

Example: dot product

How many computations? → 2 n flops

How many memory accesses? → 2 n words

Arithmetic intensity? → 1 flop/word = 0.25 flop/B

Compute-bound or memory-bound? →Highly memory-bound

How many Gflop/s on a GTX 980 GPU?

With data in GPU memory? 224 GB/s × 0.25 flop/B → 56 Gflop/s

With data in CPU memory? 16 GB/s × 0.25 flop/B → 4 Gflop/s

How many Gflop/s on an i7 4790 CPU?
25.6 GB/s × 0.25 flop/B → 6.4 Gflop/s
Conclusion: don't bother porting to GPU!

for i = 1 to n
r += a[i] * b[i]

GTX 980: 4612 Gflop/s, 224 GB/s
i7 4790: 460 Gflop/s, 25.6 GB/s
PCIe link: 16 GB/s

76

Takeaway

Result of many tradeoffs

Between locality and parallelism

Between core complexity and interconnect complexity

GPU optimized for throughput

Exploits primarily DLP, TLP

Energy-efficient on parallel applications with regular behavior

CPU optimized for latency

Exploits primarily ILP

Can use TLP and DLP when available

Performance models

Back-of-the-envelope calculations and common sense can save time

Next time: GPU programming in CUDA

	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 48
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76

