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Les foncteurs logiques � un cadre pour le développement de

composant logiques enfouis et ad-hoc

Résumé : Les applications logicielles de la logique utilisent le plus souvent des logiques ad hoc résultants de
la composition de plusieurs logiques. Ces logiques ad hoc sont aussi souvent enfouies dans les applications en
tant que boîtes noires. Les mettre en oeuvre demande donc de spéci�er une interface bien dé�nie avec des
opérations communes comme l'analyse syntaxique, l'a�chage ou la démonstration de théorèmes. A�n de les
combiner, nous devons aussi dé�nir des lois de compositions, et en déterminer les propriétés. Nous présentons
la théorie des foncteurs logiques et de leur composition pour construire des logiques ad hoc mais consistantes.
Une question importante est de comprendre comment les opérations des di�érentes logiques entrant dans une
composition interfèrent. Nous proposons une formalisation des foncteurs logiques, de leur sémantique, de leur
implémentation, de leurs propriétés vis-à-vis de la démonstration, et de leur composition.

Mots-clés : logique appliquée, composant logiciel
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1 Introduction

We present a framework for building embeddable automatic theorem provers for customized logics. The frame-
work de�nes logic functors as logic components, e.g., propositional logic or intervals. Logic functors can be
composed to form new logics, e.g., propositional logic on intervals.

Each logic functor has its own proof-theory, which can be implemented as a theorem prover. Our goal is that
the proof-theory and theorem prover of a composition of logic functors result from an automatic composition
of the proof-theory and theorem prover of each logic functor.

All logic functors and their compositions implement a common interface. This makes it possible to program
generic applications that can be instantiated with a logic component. Conversely, customized logics built using
the logic functors can be embedded in an application that respects this interface.

In summary, logic functors specify o�-the-shelf software components, the validation of the composition of
which reduces to a form of type-cheking, and their composition automatically results in an automatic theorem
prover. Logic functors can be assembled by laymen, and used routinely in system-level programming: e.g.,
compilers, operating systems, �le-systems, information systems.

This article is organized as follows: Section 2 develops our motivations, Section 3 introduces the notions
of logics and logic functors, and several logic functor properties like completeness and correctness, Section 4
introduces a simple nullary logic functor as an example, and a more sophisticated unary logic functor that
raises important questions on the properties of logics that result from a composition of logic functors, and
Section 5 answers these questions by introducing a new property, called reducedness. In Section 6, we compare
this work with other works, and we conclude this article. Appendix A presents more nullary logic functors, and
Appendix B presents more n-ary logic functors.

2 Motivations

2.1 Logic-based information processing systems

In [FR00b, FR01], we have proposed a Logical Information System that is built on a variant of Formal Concept
Analysis [GW99, FR00a]. The framework is generic in the sense that any logic whose deduction relation forms
a lattice can be plugged-in. However, leaving the logic totally unde�ned sets a too large responsibility on the
end-users, or even on a knowledge-base administrator. It is unlikely they can design such a logical component
themselves. Using the framework developed in this article, one can design a toolbox of logical components, and
only leave the user the responsibility of composing them. The design of this Logical Information System is the
main motivation for this research.

However, we believe the application scope of this research goes beyond our logical information system.
Several information processing domains have a logic-based variant in which logic plays a crucial role: e.g., logic-
based information retrieval [SM83, vRCL98], logic-based diagnosis [Poo88], logic-based programming [Llo87,
MS98], logic-based program analysis [SFRW98, AMSS98, CSS99]. These variants not only model an information
processing domain in logic, but they bring to the front solutions in which logic is the main engine, even at run-
time. This can be illustrated by the di�erence between using a logic of programs and programming in logic.

Even in information processing domains where traditionally logic does not play a crucial role it has been
proposed to embed a logic component in otherwise not logic-based systems. For instance, in [IB96] the authors
propose to model quality of service (QoS) conditions in logic, and to make applications check dynamically that
the platform on which they run enforces the condition for a speci�ed quality of service.

The logic in use in these system is often not de�ned by a single pure deduction system, but rather combines
several logics and concrete domains. The designer of the application will have to make an ad hoc proof of
consistency and an ad hoc implementation (a theorem prover) every time he imagines a new ad hoc logic. Since
these logics are often variants of a more standard logic we call them customized logics.

In order to favour separation of concerns, which is recognized as a good practice in software engineering, it is
important that the application that is based on a logic engine, and the logic engine itself, be designed separately.
So doing, one can assemble an application and a logic engine at will. This implies that the interface of the logic
engine does not depend on the logic itself. This is what we call embeddability of the logical component.

For instance, practical query-answering systems often use a mixture of logic and concrete computations.
Queries are built with logical connectives, and with purely operational constructs like wild-cards. This usually
causes no harm because the query-answering system is not actually a theorem prover, and thus does not actually
implement a logic. Indeed, in most cases a boolean query is used to �lter concrete strings that contain no wild-
cards, and no boolean connectives.
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4 Ferré & Ridoux

However, one can imagine a logic-based query-answering systems in which queries and data actually use the
same language. For instance, one may use the full language with connectives and wild-cards both for describing
entries in an information system, and for querying them (e.g., see [FR00b] and Sections 2.4 and 6.2). Then the
query-answering system must decide something which can be written as description j= query (where j= means
logical consequence of the logic used in descriptions and queries), and it must have the full capacity of a theorem
prover for a logic whose syntax is the description/querying language. The choice of a particular logic depends
on the application, but query-answering is generic and depends solely on the existence of j=.

Designing separately the application and the logical components that it uses raises the question of who really
is to be the developer of an embedded logic component?

2.2 The actors of the development of an information processing system

In this section, we present our views on the Actors of the development on an information processing system.
Note that Actors are not necessarily incarnated in one person each; each Actor gathers several persons possibly
not living at the same time. In short, Actors are roles, rather than persons. Sometimes, Actors may even be
incarnated in computer programs.

What follows is rather standard in the information system (especially data-base) community because it has
adopted organisation standards of industry and administration, but we think it is not widely accepted by the
academic community for other kinds of information processing systems, where it tends to follow more academic
standards in which several Actors are collapsed into one, the Researcher.

The �rst Actor is the Theorist; he invents an abstract framework, like, say relational algebra, lattice theory,
or logic (remember that Actors need not be single persons).

Sometimes the abstract framework �nds applications, and a second Actor, the System Programmer, im-
plements (part of) the theory in a generic system for a range of applications. This results in systems like
data-bases, static analysers, or logic programming systems.

Then the third Actor, the Application Designer, applies the abstract framework to a concrete goal by
instantiating a generic system. This can be done by composing a data-base schema, or a program property, or
a logic program.

Finally, the User, the fourth Actor, maintains and uses an application. He queries a data-base, he analyses
programs, or he runs logic programs. The User is often incarnated in programs.

Certainly, the User could be analysed further in Administrators, End-Users, etc. However, we stop here
because it is the relation between the System Programmer and the Application Designer that interests us; the
�rst one creates a generic system, and the second one instantiates it.

2.3 Genericity and instantiation

Genericity is often achieved by o�ering a language: e.g., a data-base schema language, a lattice operation
language, and a programming language. Symmetrically, instantiation is done by programming and composing:
e.g., drawing a data-base schema, composing an abstract domain for static analysis, or composing a logic
program.

We propose to do the same for logic-based tools. Indeed, the System Programmer is competent for building a
logic subsystem, but he does not know the application; he only knows a range of applications. On the other side
the Application Designer knows the application, but is generally not competent for building a logic subsystem.
In this article, we will act as System Programmers by providing elementary components for safely building a
logic subsystem, and also as Theorists by giving formal results on the composition laws of these components.

More speci�cally, we explore the systematic building of logics using basic components that we call logic
functors. By �construction of a logic� we mean the de�nition of its syntax, its semantics, and its abstract
implementation as a deduction system. All the logic functors we describe in this article have also a concrete
implementation as an actual program. Moreover, a logic composer that takes the description of a customized logic
and builds a concrete logic component is implemented. So, we de�ne a process that goes from the description
of a logic in terms of logic functors to a concrete program that implements it.

2.4 Customized logics

The range of logic functors can be very large. We consider in this article only products and sums of logics, propo-
sitions (on arbitrary formulas), intervals, sets, valued attributes (abstracted w.r.t. values), strings (e.g., �begin
with�, �contains�), and ONL (a modal epistemic logic functor [Lev90]).

INRIA



Logic functors 5

The whole framework development is geared towards manipulating logics as lattices, as in abstract interpre-
tation. So, deduction is considered as a relation between formulas, and we study the conditions under which
this relation is a partial order. This excludes non-monotonic logics though they still can be used as nullary logic
functors. Note that non-monotonicity is seldom a goal in itself, and that notoriously non-monotonic features
have a monotonic rendering; e.g., Closed World Assumption can be re�ected in the monotonic modal logic
ONL. Note that even in our framework not all logics are lattices (nor their deduction relation is a partial
order), but the most interesting ones (to be de�ned) can always be completed in a lattice.

We will consider as a motivating example an application for managing bibliographic entries. Each entry has
a description made of its author name(s), publishing date, etc. The user navigates among a set of entries by
comparing descriptions with queries that are written in the same language. The application answers navigation
queries by lists of entries that match the queries, and lists of subqueries that can complement the current one
to form a more precise query. So doing, we have a logic-based notion of navigation where matching a query is
being in some place, and subqueries are links to other places. For instance, let us assume the following entry
set:

� descr(entry1) =

[author:"Kipling"/ title:"The Jungle Book"/ paper-back/ publisher:"Penguin"/

year: 1985],

� descr(entry2) =

[author:"Kipling"/ title:"The Jungle Book"/ hard-cover/ publisher:"Century Co."/

year: 1908],

� descr(entry3) =

[author:"Kipling"/ title:"Just So Stories"/ hard-cover/ publisher:""/ year: 1902].

An answer to a query title: contains "Jungle" might be
hard-cover publisher:"Penguin" year: 1900..1950

paper-back publisher:"Century Co." year: 1950..2000

because several entries (entry1 and entry2) have a description that entails the query (i.e., they are possible
answers), and the application asks the user to make his query more precise by suggesting some relevant re�ne-
ments. Note that author:"Kipling" is not a relevant re�nement because it is true of all matching entries. For
every possible answer entry we have descr(entry)j=query, and for every relevant re�nement x the following
holds

1. there exists a possible answer e1 such that descr(e1)j=x, and

2. there exists a possible answer e2 such that descr(e2)6j=x.

In other words, a re�nement must restrict the set of possible answers while avoiding to make it empty. We
will not go any further in the description of this application (see [FR00b, FR01]). The essential is to note that

1. descriptions, queries, and answers belong to the same logical language, which combines logical symbols
and concrete expressions like strings, numbers, or intervals, and

2. a similar application with a di�erent logic can be imagined, e.g., for manipulating software components.
So, it is important that all di�erent logics share a common interface for being able to program separately
the navigation system and the logic subsystem it uses.

2.5 Summary

We de�ne tools for building fully automatic theorem provers for customized logics. This is because the User is
not a sophisticated logic actor. Note also that the User may be a program itself: e.g., a mobil agent proving
�quality of service� properties as it tries to execute on some host system [IB96]. This rules out interactive
theorem provers.

Validating a theorem prover built upon our tools must be as simple as possible. Some kind of type-checking
would be ideal. Again, this is because the Application designer, though more sophisticated than the User, is
not a logic actor.

Finally, the resulting theorem provers must have a common interface so that they can be embedded in generic
applications. Deduction is decidable in all the logic components that we de�ne. So, they can be safely embedded
as black-boxes in applications.
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6 Ferré & Ridoux

3 Logics and logic functors

If an Application Designer is to de�ne a customized logic by the means of composing primitive components,
these components should be of a rather high-level so that the resulting logic subsystem can be proven to be
correct. Indeed, if the primitive components are too low-level, proving the correctness of the result is similar
to proving the correctness of a program. So, we decided to de�ne logical components that are very close to be
logics themselves. So doing, we abandon computational expressivity, but we will see that proving correctness is
little more than type-checking (i.e., using a rule like A:�!� B:�

A(B):� ).

Our idea is to consider that a logic interprets its formulas as functions of their atoms. By abstracting atomic
formulas from the language of a logic we obtain what we call a logic functor. A logic functor can be applied to
a logic to form a new logic. For instance, if propositional logic is abstracted over its atomic formulas, we obtain
a logic functor called prop, which we can apply to, say, a logic on intervals interv, to form propositional logic
on intervals, prop(interv).

3.1 Logics

We formally de�ne the class of logics as structures, whose axioms are merely type axioms. Section 4 and
Appendix A present examples of logics.

De�nition 1 A syntax AS is a denumerable set of (abstract syntax tree of) formulas.

A semantics associates to each formula a subset of an interpretation domain where the formula is true of all
elements. This way of treating formulas as unary predicate is akin to description logics [DLNS96].

De�nition 2 Given a syntax AS, a semantics S based on AS is a pair (I; j=), where

� I is the interpretation domain,

� j=2 P(I �AS), (where P(X) denotes the power-set of set X), is a satisfaction relation between interpre-
tations and formulas.

i j= f reads �i is a model of f�. For every formula f 2 AS, M(f) = fi 2 I j i j= fg denotes the set of
all models of formula f . For every formulas f; g 2 AS, an entailment relation is de�ned as �f entails g� i�
M(f) �M(g).

Entailment is never used formally in this article, but we believe it gives a good intuition of our very frequent
usage of the inclusion of sets of models.

The formulas de�ne the logic language, the semantics de�nes its interpretation, and an implementation
de�nes how the logic implements an interface that is common to all logics. This common interface comprises a
deduction relation, a conjunction, a disjunction, a tautology, and a contradiction.

De�nition 3 Given a syntax AS and a symbol 0undef 0 62 AS, an implementation P based on AS is a 5-
tuple (v;u;t;>;?), where

� v 2 P(AS �AS) is the deduction relation,

� u;t 2 AS �AS ! AS [ fundefg are the conjunction and the disjunction,

� >;? 2 AS [ fundefg are the tautology and the contradiction.

Operations v, u, t, >, ? are all de�ned on the syntax of some logic, though they are not necessarily
connectives of the logic, simply because the connectives of a logic may be di�erent from these operations.
Similarly, the syntax and the semantics may de�ne quanti�ers, though they are absent from the interface.

Note that this common interface can be implemented partially (by using undef) if it is convenient. Because
the interface is the same for every logic, generic logic-based systems can be designed easily.

De�nition 4 A logic L is a triple (ASL; SL; PL), where ASL is (the abstract syntax of) a set of formulas, SL
is a semantics based on ASL, and PL is an implementation based on ASL.

When necessary, the satisfaction relation j= of a logic L will be written j=L, the interpretation domain I will
be written IL, the models M(f) will be written ML(f), and each operation op will be written opL.

INRIA
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In object oriented terms, this forms a class L, which comprises a slot for the type of an internal representation,
and several methods for a deduction relation, a conjunction, a disjunction, a tautology, and a contradiction. A
logic L is simply an instance of this class.

De�nition 3 shows that operations u, t can be partially de�ned, and that operations >, ? can be unde�ned.

De�nition 5 A logic is partial if either operations u or t or both are partially de�ned. It is unbounded if
either operations > or ? or both is unde�ned.

In the opposite case, a logic is respectively called total and bounded.
When necessary, we make it precise for which operation a logic is total/partial.

Total logics are usually preferred, because they make applications simpler, since they do no have to test for
undef . Section 4.2 shows that the propositional logic functor applied to a partial logic always constructs a total
logic.

There is no constraint, except for their types, on what v, u, t, >, ? can be. So, we de�ne a notion of
consistency and completeness that relates the semantics and the implementation of a logic. These notions are
de�ned respectively for each operation of an implementation, and only for the de�ned part of them.

De�nition 6 Let L be a logic. An implementation PL is consistent (resp. complete) in opera-
tion op 2 fv;>;?;u;tg w.r.t. a semantics SL i�
for all f; g 2 ASL

� (op = v) f v g =)ML(f) �ML(g) (resp. ML(f) �ML(g) =) f v g),

� (op = >) > is de�ned =) always consistent (resp. ML(>) = I),

� (op = ?) ? is de�ned =)ML(?) = ; (resp. always complete),

� (op = u) f u g is de�ned =)ML(f u g) �ML(f) \ML(g)
(resp. f u g is de�ned =)ML(f u g) �ML(f) \ML(g)),

� (op = t) f t g is de�ned =)ML(f t g) �ML(f) [ML(g)
(resp. f t g is de�ned =)ML(f t g) �ML(f) [ML(g)).

We say that an implementation is consistent (resp. complete) i� it is consistent (resp. complete) in the �ve
operations. We abbreviate �PL is complete/consistent in op w.r.t. SL� in �opL is complete/consistent�.

Note that it is easy to make an implementation consistent and complete for the last four operations u, t,
>, ?, by keeping them unde�ned, but then the implementation is of little use. Note also that a consistent v
can always be extended into a partial order because it is contained in �.

In general, consistent and complete logics are preferred to ensure that expected answers, speci�ed by the
semantics, and actual answers, speci�ed by the implementation, match. So, in these preferred logics deduction
can be extended into a partial order. However, some logics de�ned on concrete domains are de�nitely not
complete. So, an important issue is how to build complete logics with components that are not complete.

To the �ve operations of an implementation, we must add at least a parser and a printer for handling the
concrete syntax of formulas. Indeed, an application may have to input/output formulas in a readable format.
However, we do not consider them further as they do not cause any logical problem. On the contrary, the
�ve logical operations (deduction, conjunction, disjunction, tautology, and contradiction) are at the core of a
constructed logic.

3.2 Logic functors

Logic functors also have a syntax, a semantics, and an implementation, but they are all abstracted over one or
more logics that are considered as formal parameters. We formally de�ne the class of logic functors as structures.
Section 4 and Appendix B presents examples of logic functors.

Given L the class of logics, logic functors are functions of type Ln ! L . In object oriented terms, this de�nes a
template F. For the sake of uniformity, logics are considered as logic functors with arity 0 (a.k.a. atomic functors,
or nullary logic functors).

Assuming the class of all syntaxes is written A S, that of all semantics is written S, and that of all imple-
mentations is written P the syntax of a logic functor is simply a function of the syntaxes of the logics that are
passed to it and returns the syntax of the resulting logic.
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8 Ferré & Ridoux

De�nition 7 Assuming the class of all syntaxes is written A S, that of all semantics is written S, and that of
all implementations is written P, a logic functor F is a triple (ASF ; SF ; PF ) where

� the abstract syntax ASF is a function of type A Sn ! A S, such that ASF (L1;::;Ln) = ASF (ASL1
; ::; ASLn);

� the semantics SF is a function of type Sn! S, such that SF (L1;::;Ln) = SF (SL1
; ::; SLn);

� the implementation PF is a function of type Pn ! P, such that PF (L1;::;Ln) = PF (PL1
; ::; PLn).

A logic functor in itself is neither partial or total, unbounded or bounded, complete or uncomplete, nor
consistent or inconsistent. It is the logics that are built with a logic functor that can be quali�ed this way.
However, it is possible to state that if a logic L has some property, then F (L) has some other property. In the
following, the de�nition of every new logic functor is accompanied with theorems stating under which conditions
the resulting logic is total, consistent, or complete.

These theorems have all the form hypothesis on L ) conclusion on F (L). We consider them as type
assignments, F : hypothesis ! conclusion. Similarly, totality/consistency/completeness properties on logics
are considered as type assignments, L : properties, so that proving that F (L) has some property regarding
totality, consistency, or completeness, is simply to type-check it.

4 Composition of logic functors

We de�ne a nullary logic functor and a propositional unary logic functor, and we observe that completeness
may not propagate well when we compose them. We introduce a new property, called reducedness, that helps
completeness propagate via composition of logic functors. From now on, the de�nitions are de�nitions of
instances of L or F.

4.1 Atoms

One of the most simple logic we can imagine is the logic of unrelated atoms atom. These atoms usually play
the role of atomic formulas in most of known logics: propositional, �rst-order, description, etc.

De�nition 8 ASatom is a set of atom names.

De�nition 9 Satom is (I; j=) where I = P(ASatom) and i j= a i� a 2 i.

The implementation re�ects the fact that the atoms being unrelated they form an anti-chain for the deduction
relation (a set where no pair of elements can be ordered).

De�nition 10 Patom is (v;u;t;>;?) where for every a; b 2 ASatom
� a v b i� a = b

� a u b = a t b =

�
a if a = b
undef otherwise

� > and ? are unde�ned.

Theorem 11 Patom is consistent and complete in v, >, ?, u, t w.r.t. Satom.

Proof: Let a; b be atoms in ASatom.

(deduction) � either a = b: a v b is true, and M(a) �M(b),

� or a 6= b: a v b is false, and fag 2M(a); fag =2M(b) =)M(a) *M(b).

(tautology and contradiction) true because > and ? are unde�ned.

(conjunction and disjunction) If a u b is de�ned,
then a u b = a and a = b =)M(a u b) = M(a) = M(a) \M(b).
Proof for disjunction is similar. �

In summary, Patom is not bounded and is partial in both conjunction and disjunction, but it is consistent
and complete w.r.t. Satom.

INRIA



Logic functors 9

4.2 Propositional logic abstracted over atoms

Let us assume that we use a logic as a description/querying language. Since it is almost always the case that we
want to express conjunction, disjunction, and negation, the choice of propositional logic is natural. For instance,
the / used to separate description �elds in the bibliographical application (see Section 2) can be interpreted as
conjunction. Similarly, disjunction and negation could be used, especially to express information like �published
in 1908 or 1985�. Propositional logic, Prop, is de�ned by taking a set of atoms A, and by forming a set of
propositional formulas Prop(A) by the closure of A for the three boolean connectives, ^, _, and :: the boolean
closure.

Prop is usually considered as a free boolean algebra, since there is no relation between atoms. I.e., they are
all pairwise incomparable for the deduction order. However in applications, atoms are often comparable. For
instance, boolean queries based on string matching use atoms whose meaning is contains s, is s, begins with s,
and ends with s where s is a character string. In this example, the atom is "The Jungle Book" implies
ends with "Jungle Book", which implies contains "Jungle".

This leads to considering the boolean closure as a logic functor prop. So doing, the atoms can come from
another logic where they have been endowed with a deduction order.

De�nition 12 (Syntax) The syntax ASprop of the logic functor prop maps the syntax ASA of a logic of atoms
A to its syntactic closure by the operators ^, _, and the operator :.

The interpretation of these operators is that of the connectives with the same names. It is de�ned by
induction on the structure of the formulas. For atomic formulas of ASprop(A) (i.e., ASA) the semantics is the
same as in the logic A.

De�nition 13 (Semantics) Sprop is (IA; j=A) 7! (IA; j=) such that

i j= f i�

8>><
>>:

i j=A f if f 2 ASA
i 6j= f1 if f = :f1
i j= f1 and i j= f2 if f = f1 ^ f2
i j= f1 or i j= f2 if f = f1 _ f2:

De�nition 14 Pprop is (vA;uA;tA;>A;?A) 7! (v;u;t;>;?) such that

� f v g is true i� there exists a proof of the sequent ` :f _ g in the sequent calculus of Table 1 (inspired
from leanTAP [BP95, Fit98]).

In the rules, � is always a set of literals (i.e., atomic formulas or negations of atomic formulas), � is
a sequence of propositions, L is a literal, X is a proposition, � is the disjunction of �1 and �2, � is the
conjunction of �1 and �2, and L denotes the negation of L (a := :a and :a := a).

� f u g = f ^ g,

� f t g = f _ g,

� > = a _ :a, for any a 2 ASA,

� ? = a ^ :a, for any a 2 ASA.

Rules >-Axiom, ?-Axiom, v-Axiom, u-Rule, and t-Rule play the role of the ordinary axiom rule. The �rst
two axioms are variants of the third one when either a or b is missing. Rules u-Rule, and t-Rule interpret the
propositional connectives in the logic of atoms.

Note that the logic has a connective : though its implementation has no corresponding operation. However,
the deduction relation takes care of it. This is an example of how more connectives or quanti�ers can be
de�ned in a logic or a logic functor, though the interface does not know them. A logic functor for the predicate
calculus could be de�ned in the same way, but since this theory is not decidable, the resulting logic functor
would be of little use to form embeddable logic components. Instead of the full predicate calculus, it would be
better to de�ne a logic functor for a decidable fragment of it, like the fragments in the family of description
logics [DLNS96].

De�nition 15 A sequent � ` � is called valid in Sprop(A) i� it is true for every interpretation. It is true for
an interpretation i 2 I i� there is an element in � that is false for i, or there is an element in � that is true
for i.
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10 Ferré & Ridoux

>-Axiom: :b;� ` � if >A is de�ned and >A vA b

?-Axiom: a;� ` � if ?A is de�ned and a vA ?A

v -Axiom: a;:b;� ` � if a vA b

u-Rule: a uA b;� ` �
a; b;� ` �

if a uA b is de�ned

t-Rule:
:(a tA b);� ` �
:a;:b;� ` �

if a tA b is de�ned

::-Rule: � ` X;�
� ` ::X;�

literal-Rule:
L;� ` �
� ` L;�

�-Rule: � ` �1; �2;�
� ` �;�

�-Rule: � ` �1;� � ` �2;�
� ` �;�

Table 1: Sequent calculus for deduction in propositional logic.

Lemma 16 A sequent � ` � is valid in Sprop(A) i�
T
�2�M(�) �

S

2�M(
).

Proof: � ` � is valid
() 8i 2 I : (9� 2 � : i 6j= �) _ (9
 2 � : i j= 
) De�nition 15
() 8i 2 I : (8� 2 � : i j= �)) (9
 2 � : i j= 
)
() 8i 2 I : i 2

T
�2�M(�)) i 2

S

2�M(
)

()
T
�2�M(�) �

S

2�M(
). �

4.3 Properties of prop(A)

We present the properties of prop(A) w.r.t. the properties of A.

Theorem 17 (Consistency) Pprop(A) is consistent in v, >, ?, u, t w.r.t. Sprop(A) if PA is consistent in v,
?, t and complete in >, u w.r.t. SA.

Proof:

(deduction) � Let us show that v-Axiom is valid:
a vA b =)MA(a) �MA(b) vA consistent
=)M(a) �M(b) =) 8i 2 I : i j= a) i j= b De�nition 13
=) 8i 2 I : i 6j= a _ i 6j= :b Semantics of negation
=) sequent a;:b;� ` � is valid.

The >-Axiom and ?-Axiom are valid as a corollary: replace a by >A for >-Axiom, and b by ?A for
?-Axiom, along with completeness of >A and consistency of ?A.

� Let us show that the u-Rule preserves validity. Assume that a uA b is de�ned and the sequent
a uA b;� ` � is valid, then for all i 2 I

� either 9X 2 � : i j= X =) the sequent a; b;� ` � is valid

� or 9L 2 � : i 6j= L =) the sequent a; b;� ` � is valid

� or i 6j= a uA b =) i =2M(a uA b) =) i =2MA(a uA b) De�nition 13
=) i =2MA(a) \MA(b) uA complete
=) i =2MA(a) =) i =2M(a) =) i 6j= a
=) the sequent a; b;� ` � is valid.

� Similarly, the t-Rule preserves validity. It is easy to recognize that inference rules ::-Rule, �-Rule,
�-Rule and literal-Rule also preserve validity.

As a consequence, every provable sequent is valid. In particular, if ` X can be proved, it is valid,
and X is a tautology. This proves that vprop(A) is consistent.

(tautology) > is always complete by de�nition.
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Logic functors 11

(contradiction) ? is de�ned and 8a 2 A : M(a ^ :a) = M(a) \M(a) = ;.

(conjunction) u is totally de�ned and 8f; g 2 ASprop(A) : M(f u g) = M(f ^ g) = M(f) \M(g).

(disjunction) t is totally de�ned and 8f; g 2 ASprop(A) : M(f t g) = M(f _ g) = M(f) [M(g). �

There is no such lemma for completeness. In fact, the logic of atoms is not necessarily total, and thus not
all sequent a1; a2;� ` � can be interpreted as a1 uA a2;� ` �. So, there is a risk of incompleteness.

For instance, imagine 3 atoms a1, a2, b such that M(a1) \M(a2) � M(b), and M(ai) 6= ;, M(b) 6= I , and
M(ai) 6�M(b). If the implementation is complete, then the sequent a1; a2;:b ` should be provable. However,
if the logic of atoms is only partial, the conjunction a1 uA a2 may not be de�ned, and rule u-Rule does not
apply. In this case, the sequent would not be provable. One can build a similar example for disjunction.

5 Reducedness

5.1 Formal presentation

We de�ne a property of an atomic logic A, which is distinct from completeness, is relative to the de�nedness of
the logic operations, and helps in ensuring the completeness of prop(A).

De�nition 18 A sequent � ` � is called open in Pprop(A) i� it is the conclusion of no deduction rule, and it
is not an axiom. Otherwise, it is called closed.

An open sequent is a node of a proof tree that cannot be developed further, but is not an axiom. In short,
it is a failure in a branch of a proof search.

Lemma 19 A sequent � ` � is open according to implementation PA i�

� � is empty,

� 8a 2 � : a 6vA ?A (when ?A is de�ned),

� 8:b 2 � : >A 6vA b (when >A is de�ned),

� 8a;:b 2 � : a 6vA b,

� 8a 6= b 2 � : a uA b is unde�ned,

� 8:a 6= :b 2 � : a tA b is unde�ned.

Proof: Case inspection of the sequent calculus de�ned in Table 1. �

So, an open sequent � ` � can be characterized by a pair (A;B), where A � ASA is the set of positive
literals of �, and B � ASA is the set of negative literals of � (let us recall that � is empty). The advantage of
noting open sequents by such a pair is that they are then properly expressed in terms of the logic of atoms.

Incompleteness arises when an open sequent is valid; the proof cannot be developed further though the
semantics tells the sequent is true.

Lemma 20 An open sequent (A;B) is valid in the atom semantics SA i�
T
a2AMA(a) �

S
b2B MA(b).

Proof: The open sequent (A;B) is valid
() A;:B ` is valid
()

T
a2AM(a) \

T
b2B M(:b) � ; Lemma 16

()
T
a2AMA(a) \

S
b2B MA(b) � ;

()
T
a2AMA(a) �

S
b2B MA(b). �

De�nition 21 A family of open sequents ((Ai; Bi))i2I is valid in atom semantics SA i� every open sequen-
t (Ai; Bi) is valid in SA.
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12 Ferré & Ridoux

De�nition 22 An implementation PA is reduced on a set F of open sequent families, w.r.t. a semantics SA,
i� every non-empty family of F is not valid.

Theorem 23 (Completeness) Pprop(A) is complete in v on a subset of pairs of formulas
� � ASprop(A) �ASprop(A), w.r.t. Sprop(A), if uA is consistent and tA is complete, and PA is reduced
on open sequent families of all :f _ g formula proof trees (where (f; g) 2 �) w.r.t. SA. It is also complete in >,
?, u, t w.r.t. Sprop(A).

Proof:

(deduction) � We �rst prove that the backward-chaining interpretation of the above inference system
terminates for all root sequent. For this proof we need a total ordering of sequents. Every for-
mula being either a literal L, a double negation ::X , a conjunction � or a disjunction �, one
de�nes an integral measure m for every formula in ASprop(A) as follows: m(�) = 1 +m(�1) +m(�2),
m(::X) = 1 +m(X), m(�) = 1 +m(�1) +m(�2), and m(L) = 1.

This measure is extended to sequences of propositions �, to sequences of literals �, and to full
sequents � ` � as follows: m(�) =

P
X2�m(X), m(�) =

P
L2�m(L), m(� ` �) = (m(�);m(�)).

Finally, sequents are totally ordered according to a lexicographic ordering < on N2 . We observe that
for every deduction rule Seq1

Seq2
, m(Seq1) < m(Seq2) holds. So, every proof tree is �nite. In other

words, the backward-chaining procedure always terminates.

� Now, one proves that u-Rule preserves non-validity. Let us assume that a uA b;� ` � is not valid .
Then 9i 2 I : (i j= a uA b and 8L 2 � : i j= L and 8X 2 � : i 6j= X)
=) 9i 2 I : (i j= a and i j= b and 8L 2 � : i j= L and 8X 2 � : i 6j= X uA consistent
=) the sequent a; b;� ` � is not valid.

Similarly, the t-Rule preserves non-validity if PA is complete in t. It is easy to check that ::-Rule,
�-Rule, �-Rule and literal-Rule also preserve non-validity.

� Let X = :f _ g where (f; g) is any pair of formulas in �. Let us assume that for every proof tree
of sequent ` X , there is at least an open sequent, this is a non-empty open sequent family. As PA
is reduced on all these families, they are all not valid (De�nition 22). So, in every proof tree of
sequent ` X , there is an open sequent that is not valid. Now, as each rule preserves non-validity, the
root sequent ` X is not valid in all proof trees.

The contrapositive is that if ` X is a valid sequent, then there is a proof tree without open sequent,
this is ` X is a provable sequent. So, if M(f) �M(g) (see Lemma 16) then f v g. In other words,
this proves that vprop(A) is complete on �.

(tautology) > is de�ned and 8a 2 A : M(a _ :a) = M(a) [M(a) = I .

(contradiction) ? is always complete by de�nition.

(conjunction) u is totally de�ned and 8f; g 2 ASprop(A) : M(f u g) =M(f ^ g) = M(f) \M(g).

(disjunction) t is totally de�ned and 8f; g 2 ASprop(A) : M(f t g) =M(f _ g) = M(f) [M(g). �

Theorem 23 is somewhat complicated to allow the proof of completeness on a subset of prop(A). In some
logics, it is possible to show that every open sequent is not valid. Then every non empty open sequent family
is not valid, and so, atom implementation PA is reduced on every set of open sequent families. In such a case,
we merely say that PA is reduced w.r.t. SA.

5.2 Application to prop(atom)

The following lemma shows that the nullary logic functor atom is reduced. So, the implementation of logic
prop(atom) is complete.

Lemma 24 Patom is reduced w.r.t. Satom.
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Proof: We prove this Lemma by showing that every open sequent is not valid.
Let (A;B) be an open sequent. By Lemma 19, it follows that
8a 2 A; b 2 B : a 6v b =) 8a 2 A; b 2 B : a 6= b =) A \ B = ;.

Now, assume sequent (A;B) is valid
=)

T
a2AM(a) �

S
b2B M(b) Lemma 20

=) 8i 2 I : (8a 2 A : i 2M(a))) (9b 2 B : i 2M(b))
=) 8i 2 I : (8a 2 A : a 2 i)) (9b 2 B : b 2 i) De�nition 9
=) 8i 2 I : A � i) i \ B 6= ;
=) A \ B 6= ; (take i = A). contradiction �

Corollary 25 Pprop(atom) is totally de�ned, and complete and consistent w.r.t. Sprop(atom).

Proof: See De�nition 14, and theorems 17 and 23.

5.3 Discussion

All this leads to the following methodology. Nullary logic functors are de�ned for tackling concrete domains
like intervals and strings. They must be designed carefully, so that they are consistent and complete, and
reduced. More sophisticated logics can also be built using non-nullary logic functors (e.g., see Appendix B).
Then, they can be composed with logic functor prop in order to form a total, consistent and complete logic. The
resulting logic is also reduced because any total, consistent and complete logic is trivially reduced. Furthermore,
its implementation forms a lattice because totality, consistency and completeness make the operations of the
implementation isomorphic to set operations on the models.

At �rst sight, reducedness formalizes a notion of being de�ned enough. So it seems that it is a coherence
relation between the semantics and the implementation, and that a notion of maximaly de�ned implementation
could be de�ned and useful.

De�nition 26 (Maximal de�nedness) An implementation (v;u;t;>;?) is maximally de�ned w.r.t. a se-
mantics (I; j=) i�

� 8f; g : 8h : M(h) =M(f) \M(g)) f u g = h

� 8f; g : 8h : M(h) =M(f) [M(g)) f t g = h

� 8h : M(h) � I ) h w >

� 8h : M(h) � ; ) h v ?

� 8h : M(h) �M(g)) h v g

An implementation obeying this de�nition would be consistent, and complete, and it seems it would be
reduced.

However, it is more subtle than that. Reducedness is more fundamentaly a property of the semantics itself.
One can build atomic logic functors whose semantics is such that no de�nition of its implementation makes it
reduced. In fact, the problem comes when intersection of models can be empty and no formula has an empty
model. For instance, in logic atom no intersection of models can be empty.

We will describe more nullary reduced logic functors in Appendix A, and more n-ary logic functors Ap-
pendix B.

6 Conclusion

We propose logic functors to construct logics that are used very concretely in logic-based applications. This
makes the development of logic-based systems safer and more e�cient because the constructed logic can be
compiled to produce a fully automatic theorem prover. We have listed a number of logic functors, but many
others can be built.
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14 Ferré & Ridoux

6.1 Related works

Our use of the word functor is similar to ML's one for designating parameterized modules [Mac88]. However,
our logic functors are very specialized though ML's are general purpose (in short, we have �xed the signature),
and they carry a semantic component. Both the specialization and the semantic component allow us to express
composition conditions that are out of the scope of ML's functor. We could have implemented logic functors
in a programming language that o�ers ML-like functors, but we did not, mainly for the sake of compatibility
with the rest of our application that was already written in �Prolog. Yet, it could be interesting to implement
a library of logic functors in these languages.

The theory of institutions [GB92] shares our concern for customized logics, and also uses the word functor.
However, the focus and theoretical ground are di�erent. Institutions focus on the relation between notations and
semantics, whereas we focus on the relation between semantics and implementations. In fact, the implementation
class P is necessary for us to enforce embeddability. We consider the notation problem in the printing and
parsing operations of an implementation, but it is marginal in our work. The theory of institutions is developed
using category theory, whence comes their use of the word functor; e.g., there are functors from signatures to
formulas, from signatures to models, or from institutions to institutions. In fact, our logic functors correspond
to parameterized institutions.

An important work which shares our motivations is LeanTap [BP95, BP96]. The authors of LeanTap
have also recognized the need for embedding customized logics in applications, and the need for o�ering the
Application Designer some means to design a correct logic subsystem. To this end, they propose a very concise
style of theorem proving, which they call lean theorem proving, and they claim that a theorem prover written in
this style is so concise that it is very easy to modify it in order to accomodate a di�erent logic. And indeed, they
have proposed a theorem prover for �rst-order logic, and several variants of it for modal logic, etc. Note that
the �rst-order theorem prover is less than 20 clauses of Prolog. We think that their claim does not take into
account the fact that the System Programmer and the Application Designer are really di�erent Actors. There is
no doubt that modifying their �rst-order theorem prover was easy for these authors, but we also think it could
have been undertaken by few others. A hint for this is that it takes a full journal article to revisit and justify
the �rst-order lean theorem prover [Fit98]. So, we think lean theorem proving is an interesting technology, and
we have used it to de�ne logic functor prop, but it does not actually permit the Application Designer to build
a customized logic.

Our main concern is to make sure that logic functors can be composed in a way that preserves their logical
properties. This led us to de�ne technical properties that simply tell us how logic functors behave: total/partial,
consistent/complete, and reduced/unreduced. This concern is complementary to the concern of actually imple-
menting customized logics, e.g., in logical frameworks like Isabelle [Pau94], Edinburgh LF [HHP93], or Open
Mechanized Reasoning Systems [GPT96], or even using a programming language. These frameworks allow
users to implement a customized logic, but do not help users in proving the completeness and consistency of
the resulting theorem prover. Note that one must not be left with the impression that these frameworks do not
help at all. For instance, axiomatic types classes have been introduced in Isabelle [Wen97] in order to permit
automatic admissibility check. Another observation is that these frameworks mostly o�er environments for
interactive theorem proving, which is incompatible with the objective of building fully automatic embeddable
logic components. Note �nally that our implementation is written in �Prolog, which is sometimes considered
as a logical framework.

In essence, our work is more similar to works on static program analysis toolbox (e.g., PAG [AM95]) where
authors assemble known results of lattice theory to combine domain operators like product, sets of, and lists in
order to build abstract domains and derive automatically a �xed-point solver for these domains. The fact that
in the most favourable cases (e.g., prop(A)), our deduction relations form (partial) lattices is another connection
with these works. However, our framework is more �exible because it permits to build lattices from domains
that are not lattices. In particular, logic functor prop acts as a lattice completion operator on every other
reduced logic. Moreover, we believe that non-lattice logics like interval (see Appendix A.1) can be of interest
for program analysis.

Figure 1 summaries our analysis of these related works. The dark shade of System Programmer task
is essentially to implement a Turing-complete programming language (recall that Actors are roles not single
persons). The light shade of System Programmer task is to implement a very speci�c programming language
for one Application Designer task. In this respect, we should have mentionned the studies on Domain Speci�c
Languages (DSL) as related works, but we know no example of a DSL with similar aims. Note also that what
remains of the task of the Application Designer is more rightly called gluing than programming when the System
Programmer has gone far enough in the Application Designer's direction.
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Figure 1: Several related works and the respective tasks of the System Programmer and the Application Designer

6.2 Summary of results and further works

Our logic functors specify logical �components o�-the-shelf� (COTS). As such, the way they behave w.r.t.
composition is de�ned for every logic functor.

The principle of composing logic functors has been implemented in a prototype. It comprises a logic com-
poser that reads logic speci�cations such as sum(prop(atom); prop(interv)) (sums of propositions on atoms and
propositions on intervals) and produces automatically a printer, a parser, and a theorem prover. The theorem
prover is built by instantiating the theorem prover associated to each logic functor at every occurrence where it
is used. The logic composer, each logic functor implementation, and the resulting implementations are written
in �Prolog.

This work suggests a software architecture for logic-based systems, in which the system is generic in the
logic, and the logic component can be de�ned separately, and plugged in when needed. We have realized a
prototype Logical Information System along these lines [FR00b].

Coming back to the bibliography example of the introduction, we construct a dedicated logic with logic
functors de�ned in this article:

prop(aik(prop(sum(atom; valattr(sum(interv; string)))))).

According to results of this article, the composition of these logic functors is such that the generated implemen-
tation is total, bounded, and consistent and complete in all �ve operations of the implementation. It allows to
build descriptions and queries such as

descr(entry1) =
[author: is "Kipling" ^ title: is "The Jungle Book" ^ paper-back ^
publisher: is "Penguin" ^ year: 1985],

query = title: contains "Jungle" ^ year: 1950.. ^ (paper-back _ hard-cover).

Note that entry1 is a possible answer to the query because

descr(entry1) vprop(aik(prop(sum(atom;valattr(sum(interv;string)))))) query,

which is automatically proved using the generated implementation.
We plan to validate the use of logic functors within the Logical Information System. This application will

also motivate the study of other logic functors like, e.g., modalities or taxonomies, since it happens that they
are useful to make queries and answers more precise and compact.

Another possible continuation of this work is to vary the type of logic functors and their composition. In
the present situation, all logic functors have type Ln ! L . It means that the only possibility is to choose the
atomic formulas of a logic. However, one may wish to act on the interpretation domain, or on the quanti�cation
domain. So, one may want to have a class D of domains, and logic functors that take a domain as argument,
e.g., D ! L . At a similar level, one may wish to act on the interface, either to pass new operations through
it, e.g., negation or quanti�cation, or to pass new structures, e.g., speci�c sets of models. The extension to
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16 Ferré & Ridoux

higher-order logic functors, e.g., (L ! L) ! L , would make it possible to de�ne a �xed-point logic functor, �,
with which we could construct a logic as L = �F where F is a unary logic functor.

Finally, we plan to develop new logic functors for the purpose of program analysis. For instance, in [RBM99,
RB01] we have proposed to combine the domain of boolean values with the domain of types to form a logic of
positive functions that extends the well-known domain Pos [CSS99]. We called this typed analysis. The neat
result is to compute at the same time the properties of groundness and of properness [O'K90]. Our project is to
de�ne logic functors for every type constructors, and to combine them according to the types inferred/checked
in the programs (e.g., list(list(bool)), where bool is simply ftrue; falseg). This will make it possible to redo
what we have done on typed analysis, but also to explore new static analysis domains by combining the logic
functors for types with other nullary logic functors than bool.
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A More nullary reduced logic functors

Ad-hoc logics are often designed for representing concrete observations on a domain. They serve as a language
to write atomic formulas. In the bibliographical application atomic formulas could be between 1900 and 1910
or contains "Kipling". In order to serve as arguments to the logic functor prop (or other similar boolean logic
functors if available), they must be equipped with a �natural� conjunction and �natural� disjunction, i.e., they
must be consistent and complete (cf. De�nition 6). However, these operations can usually be only partially
de�ned. For instance, the �natural� disjunction of two intervals is only de�ned if the intervals overlap.

By de�nition, applying the logic functor prop to such an atomic logic produces a logic that is always total
and bounded (De�nition 14). It also provides a consistent and complete implementation if the atom logic also
has a consistent, complete, and reduced implementation (Lemmas 17 and 23).

So, for every nullary logic functor presented in this section, we prove that its implementation is consistent,
complete, and reduced w.r.t. its semantics.

A.1 Intervals

Intervals are often used to express incomplete knowledge either in the data-base or in the queries. For instance,
in the bibliographical application, year: 1900..1910may express an interval of dates between 1900 and 1910.
We can also express open intervals such that year: ..1910, which means �before 1910�.

De�nition 27 ASinterval = f[x; y] j x; y 2 R ] f�;+gg.

The symbol � denotes the negative in�nity (smaller than any real number), and the symbol + denotes the
positive in�nity (greater than any real number). So, R ] f�;+g is a totally ordered set bounded by � and +.

De�nition 28 Sinterval is (I; j=) where I = R and i j= [x; y] () x � i � y.
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18 Ferré & Ridoux

For simplifying further proofs it should be noted that models of interval formulas are intervals of the real
numbers. In particular, Minterval([+;�]) = ;.

Property 29 Minterval(f) = interval f (recall that formulas are only syntax, so �interval f� is the interval
ordinarily written f).

Proof: Minterval([x; y]) = fi j x � i ^ i � yg = interval f �

De�nition 30 Pinterval is (v;u;t;>;?)
where for every [x1; y1]; [x2; y2] 2 ASinterval

� [x1; y1] v [x2; y2] i� x2 � x1 and y1 � y2,

� [x1; y1] u [x2; y2] = [max(x1; x2);min(y1; y2)],

� [x1; y1] t [x2; y2] =

�
[min(x1; x2);max(y1; y2)] if x2 � y1 and x1 � y2
undef otherwise

,

� > = [�;+],

� ? = [+;�].

Note that conjunction is de�ned for every pair of intervals, but disjunction is only de�ned for pairs of
overlapping intervals.

Theorem 31 Pinterval is consistent and complete in v, >, ?, u, t w.r.t. Sinterval.

Proof: Let [x1; y1]; [x2; y2] 2 ASinterval.

(deduction) [x1; y1] v [x2; y2]
() x2 � x1 and y1 � y2 De�nition 30
() M([x1; y1]) �M([x2; y2]) Property 29

(conjunction) u is always de�ned and
M([x1; y1] u [x2; y2]) =M([max(x1; x2);min(y1; y2)]) De�nition 30
= [max(x1; x2);min(y1; y2)] Property 29
= [x1; y � 1] \ [x2; y2] = M([x1; y1]) \M([x2; y2]) Property 29

(disjunction) If [x1; y1] t [x2; y2] is de�ned, then x2 � y1 and x1 � y2 and
M([x1; y1] t [x2; y2]) =M([min(x1; x2);max(y1; y2)]) De�nition 30
= [min(x1; x2);max(y1; y2)] Property 29
= [x1; y1] [ [x2; y2] = M([x1; y1]) [M([x2; y2]) Property 29

(tautology) > is de�ned by [�;+], and M([�;+]) = fi 2 I j � � i � +g = I .

(contradiction) ? is de�ned by [+;�], and M([+;�]) = fi 2 I j + � i � �g = ;. �

Pinterval is partial in disjunction, but it is consistent and complete. Furthermore, the following lemma shows
that it is reduced, and so, it can serve as argument of the logic functor prop.

Lemma 32 Pinterval is reduced w.r.t. Sinterval.

Proof: We show that every open sequent is not valid.
Let (A;B) be an open sequent, and let B = f[x1; y1]; : : : ; [xn; yn]g, then (1), (2) and (3) hold

(1) 81 � i < j � n : [xi; yi] t [xj ; yj ] is unde�ned Lemma 19
=) 81 � i < j � n : yi < xj or yj < xi De�nition 30
=) 81 � i < j � n : M([xi; yi]) \M([xj ; yj ]) = ; (i.e., the intervals do not overlap),
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(2) 8[xi; yi] 2 B : [�;+] 6v [xi; yi] Lemma 19
=) 8[xi; yi] 2 B : xi 6= � or yi 6= + De�nition 30

(3) 8[x; y] 2 A; [xi; yi] 2 B : [x; y] 6v [xi; yi] Lemma 19
8[x; y] 2 A; [xi; yi] 2 B : x < xi or y > yi De�nition 30

As the conjunction is always de�ned, we have

� either A = ; =)
T

[x;y]2AM([x; y]) = I

but (2) and the fact that intervals in B do not overlap
=)

S
[xi;yi]2B

M([xi; yi]) 6= I

=)
T

[x;y]2AM([x; y]) 6�
S

[xi;yi]2B
M([xi; yi]),

� or A = f[x; y]g: (2) and (3) and the fact that intervals in B do not overlap
=) 9z 2M([x; y]) : 81 � i � n : z =2M([xi; yi])
=) 9z 2 I : z 2

T
a2AM(a) and z =2

S
b2B M(b)

=)
T
a2AM(a) *

S
b2B M(b).

Hence, the open sequent (A;B) is not valid. �

A.2 Strings

Often, descriptions and queries contain string speci�cations, like is, start with and contains. Moreover, these
speci�cation can be ordered by an entailment relation. For instance, the atom is "The Jungle Book" entails
ends with "Jungle Book", which entails contains "Jungle".

De�nition 33 ASstring = ^0j1��$0j1 ] f#g, where � is some (in�nite) signature such that f ;̂ $;#g \ � = ;.

The optional symbol ^denotes the beginning of a string; it is the left bound of a string. The optional symbol $
denotes the end of a string; it is the right bound of a string. So, �contains s� is written s, �starts with s� is
written ŝ, and is s is written ŝ$. The symbol # denotes the empty language (matched by no string).

De�nition 34 Sstring is (I; j=) where I = ^��$ and i j= f () i = �f�.

So, models are made of complete strings. More precisely,

Property 35 Mstring(f) is ^��f��$ if f is not bounded, f��$ if f is only left-bounded, ^��f if f is only
right-bounded, and f if f is bounded.

Proof: Inspection of the four cases. �

Note also that only formula # has an empty model.

De�nition 36 Pstring is (v;u;t;>;?) where for every f; g 2 ASstring

� f v g i� f = �g�,

� f u g =

8>>>><
>>>>:

f if f v g
g if g v f
# if f 6v g and g 6v f and both f and g are

either left-bounded or right-bounded, or one of them is bounded
undef otherwise

� t is unde�ned,

� > = �,

� ? = #.

Theorem 37 Pstring is consistent and complete in v, >, ?, u, and t w.r.t. Sstring.
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Proof: Let f; g 2 ASstring .

(deduction) f v g
() f = �g� De�nition 36
() 8i 2 I : i = �0f�0 ) i = �0�g��0

() M(f) �M(g). De�nition 34

(conjunction) if f u g is de�ned, then

� either f v g =)M(f) �M(g) v consistent
hence M(f u g) =M(f) = M(f) \M(g),

� or g v f =)M(g) �M(f) v consistent
hence M(f u g) =M(g) = M(f) \M(g),

� or f 6v g and g 6v f and both f and g are either left-bounded or right-bounded, or one of them is
bounded
=)M(f) \M(g) = ; (by inspection of each case) v complete
=)M(f u g) = M(#) = ; = M(f) \M(g).

(disjunction) t is never de�ned.

(tautology) > is de�ned as �, and M(�) = fi 2 I j i = ���g = I .

(contradiction) ? is de�ned as #, and M(#) = ;. De�nition 34 �

Pstring is partial, but it is consistent and complete. Furthermore, the following lemma shows that it is
reduced, and so, the composition prop(string) is also consistent and complete.

Lemma 38 Pstring is reduced w.r.t. Sstring.

Proof: We show that every open sequent is not valid.
Let (A;B) be an open sequent, then 8a 2 A : a 6v # and 8b 2 B : � 6v b and 8a 2 A; b 2 B : a 6v b
and 8a1 6= a2 2 A : a1 u a2 is unde�ned De�nition 18
=) # =2 A and � =2 B and 8a 2 A; b 2 B : a 6= �b� and 8a1 6= a2 2 A : a1 6= �; a2 6= � De�nition 36
=) A can take 3 forms, and we prove for each of them that (A;B) is not valid, that is

T
a2AM(a) 6�

S
b2B M(b):

1. A = f�g: let c 2 � a character that does not appear in B and i = ĉ$, then
i 2
T
a2AM(a) = M(�) = I and i =2

S
b2B M(b) (because � 62 B),

2. A = f̂ �$g: let i = �̂$, then
T
a2AM(a) = M (̂ �$) = fig

now suppose that i 2
S
b2B M(b)

=) 9b 2 B : fig �M(b) =) 9b 2 B : M (̂ �$) �M(b)
=) 9a 2 A; b 2 B : a v b with completeness of v, which leads to a contradiction,

3. A = f̂ �1; �2; : : : ; �n�1; �n$g: let c 2 � a character that does not appear in B
and i = �̂1c�2c : : : c�n�1c�n$, then i 2

T
a2AM(a).

Now suppose that i 2
S
b2B M(b) =) 9b 2 B : i 2M(b)

=) 9a 2 A; b 2 B : a = �b� because c does not appear in B
=) 9a 2 A; b 2 B : a v b, which leads to a contradiction.

Hence, the open sequent (A;B) is not valid. �

B More n-ary logic functors

We present in this appendix more n-ary logic functors. Some of them produce reduced logics that are not
necessarily total. In this case, partialness is not a problem, since it is enough to wrap them in logic functor
prop. A few others produce logics that are not reduced, but that are total. They are useful anyway, but only
as the outermost logic functor of a composition. Using them in, say, the logic functor prop would produce an
incomplete logic, which is seldom desired, and di�cult to repair.

In each case, we present the syntax, the semantics, the implementation and results about consistency and
completeness, and reducedness.
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B.1 Complete knowledge

The logic �All I Know� [Lev90] represents knowledge judgements in a modal way, instead of by an extra-logical
rule as with closed world assumption. Note also that it is a monotonous logic.

De�nition 39 ASaik is the optional wrapping of the syntax of some logic by the All I Know modality. We will
use square brackets [ and ] as a concrete syntax.

The syntax of aik operates on descriptions expressed as logical formulas. For any description fd, [fd]
represents its closure in a complete description (fd is all that is true), fd represents a positive fact, and if aik
is composed with prop, :fd represents a negative fact.

De�nition 40 Saik is (Id; j=d) 7! (I; j=) such that

I = P(Id) n f;g and

�
i j= fd i� i �Md(fd)
i j= [fd] i� i =Md(fd)

De�nition 41 Paik is (vd;ud;td;>d;?d) 7! (v;u;t;>;?) such that

� the deduction v is de�ned according to Table 2

� f u g =

8>>>><
>>>>:

fd ud gd if f = fd and g = gd
f if f v g
g if g v f
? if f = [fd] 6v g
? if g = [gd] 6v f

� f t g = undef

� > = >d

� ? = ?d.

v gd [gd]
fd fd vd gd fd vd ?d

[fd] fd vd gd fd �d gd or fd vd ?d

Table 2: De�nition of logical deduction in logic functor aik.

Theorem 42 Paik has the following completeness and consistence properties:
The tautology, >, is de�ned (resp. complete) if the description tautology, >d, is de�ned (resp. complete).

The case of the contradiction, ?, is similar w.r.t. to consistency.
Conjunction u is consistent and complete if the description conjunction ud is consistent and complete.

Disjunction t is always consistent and complete because it is unde�ned.
The deduction v is consistent and complete if the description deduction vd is consistent and complete, and

no formula in ASLd has only 1 model (which is usually the case).

Proof:

(tautology) Assume >d is de�ned and complete, i 2 I and id 2 i, then id j=d >d =) i j= >d =)M(>d) = I

(contradiction) Assume ?d is de�ned and consistent, id 2 Id, if id 2 Id, then id 6j=d ?d (1)
Assume i j= ? then i j= ?d ) 8id 2 i : id j=d ?d

) 9id 2 i : id j=d ?d, because ; 62 I , contradiction with (1)
so M(?) = ;

(conjunction) Assume f u g is de�ned, then either
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� f = fd and g = gd

=) i j= f u g =) i j= fd ud gd =) 8id 2 i : id j=d fd ud gd
=) 8id 2 i : id j=d fd and id j=d gd ud consistent and complete
=) 8id 2 i : id j=d fd and 8id 2 i : id j=d gd
=) i j= fd and i j= gd =) i j= f and i j= g
hence, M(f u g) =M(f) \M(g)

� f v g (or symetrically g v f)

=)M(f) �M(g) =)M(f) \M(g) = M(f) =M(f \ g)

� f = [fd] and f 6v g (or symetrically g = [gd] and g 6v f)

=)M(f) = fMd(fd)g and M(f) 6�M(g)
=)Md(fd) 62M(g) =)M(f) \M(g) = ; =M(?)

(deduction) Case analysis of the four cases of table 2:

(fd v gd) () Md(fd) �Md(gd) vd is consistent and complete
() Md(fd) �Md(gd)
() P(Md(fd)) � P(Md(fd))
() P(Md(fd)) n f;g � P(Md(fd)) n f;g
() M(fd) �M(gd)

(fd v [gd]) () M(fd) vM([gd])
() P(Md(fd)) n f;g � fMd([gd])g n f;g
() Md(fd) = ;, because Ld has no formula with a single model in Id,
() fd vp ?d

([fd] v gd) () M([fd]) �M(gd)
() fMd(fd)g n f;g � P(Md(gd)) n f;g
() Md(fd) 2 P(Md(gd))g n f;g if Md(fd) 6= ;,
or Md(fd) = ;
() Md(fd) 2 P(Md(gd))g n f;g
() Md(fd) �Md(gd)
() fd vd gd

([fd] v [gd]) () M([fd]) �M([gd])
() P(Md(fd)) n f;g � P(Md(gd)) n f;g
() Md(fd) = ; or Md(fd) =Md(gd)
() fd vd ?d or fd �d gd �

Lemma 43 Paik(Ld) is reduced for open sequent families included in S = f(A;B) j A � ASaik(Ld); B � Ldg,
if vd is consistent and complete, >d is de�ned and complete, ?d is de�ned and consistent, and ud is totally
de�ned.

Proof: We prove this lemma by showing that every open sequent (A;B) 2 S is not valid. If ud is totally
de�ned, A is a singleton fag or the empty set ;.
In the case where A = ;,

T
a2AM(a) = I = M(>), if >d is de�ned and complete. So, in any case, A = fag

where a 2 ASaik(Ld), that is it exists ad 2 ASd such that either a = ad, or a = [ad].
First, suppose Md(ad) = ;,

then M(ad) = ; and M([ad]) = ; De�nition 40
=)M(a) = ; =) a v ?, if ?d is de�ned and consistent, and v is complete
! contradicts that (A;B) is an open sequent. So, Md(ad) 6= ;.

Second, suppose Md(ad) 2
S
b2B M(b),

then Md(ad) 2
S
b2B(P(Md(b)) n ;) because B � Ld

=) 9b 2 B : Md(ad) �Md(b)
=) 9b 2 B : ad vd b if vd is complete
=) 9b 2 B : ad v b and [ad] v b De�nition 41
=) 9b 2 B : a v b, which contradicts that (A;B) is an open sequent.
So, Md(ad) =2

S
b2B M(b).
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Hence, fMd(ad)g 6�
S
b2B M(b) and P(Md(ad)) n ; 6�

S
b2B M(b)

=)M(a) 6�
S
b2B M(b) De�nition 41

=)
T
a2AM(a) 6�

S
b2B M(b) =) (A;B) is not valid. �

To summarize, logic functor prop can be applied to a logic aik(Ld) if >d is de�ned and complete, ?d is
de�ned and consistent, vd and ud are consistent, complete, and total for ud. In this case, vprop(aik(Ld)) is
consistent and complete when the right argument has no closed formula [gd] among its atoms. This is satisfying
when used in a logical information system, because closed formulas appear only in object descriptions, and so
as left argument of deduction v.

B.2 Valued attributes

Valued attributes are useful for attaching several properties to objects. For instance, a bibliographical reference
has several attributes, like author, year, or title, each of which has a value. We want to express some
conditions on these values, and for this, we consider a logic LV , whose semantics is in fact the domain of values
for the attributes. Attributes themselves are taken in an in�nite set Attr of distinct symbols. Thus, a logic
of valued attributes is built with the logic functor valattr, whose argument is the logic of values, and that is
de�ned as follows:

De�nition 44 (Syntax) Given a set Attr of attribute name, ASvalattr is the product of Attr with the syntax
of some logic:

ASvalattr(L) = fa : f j f 2 L ^ a 2 Attrg

De�nition 45 (Semantics) Svalattr is (IV ; j=V ) 7! (I; j=) such that I = A! IV ] fundefg and i j= a : v i�
i(a) 6= undef and i(a) j=V v.

De�nition 46 (Implementation) Pvalattr is
(vV ;uV ;tV ;>V ;?V ) 7! (v;u;t;>;?) such that

� a : v v b : w i� v vV w and (a = b or v vV ?V ),

� a : v u b : w =

8<
:

a : (v uV w) if a = b
a : ?V if v vV ?V or w vV ?V

undef otherwise
,

� a : v t b : w =

8>><
>>:

a : (v tV w) if a = b
a : v if w vV ?V

b : w if v vV ?V

undef otherwise

,

� > and ? are unde�ned.

Theorem 47 Pvalattr(V ) is consistent and complete in v, >, ?, u, t w.r.t. Svalattr(V ) if PV is consistent and
complete w.r.t. SV .

Proof: Let a : v; b : w 2 ASvalattr(LV ).

(deduction) If a : v v b : w is true, then v vV w and (a = b or v vV ?V ) De�nition 46
=)MV (v) �MV (w) vV consistent
=) 8iV 2 IV : iV 2MV (v)) iV 2MV (w)
=) 8x 2 Attr : 8i 2 I : i(x) 2MV (v)) i(x) 2MV (w).
We have

� either a = b =) 8i 2 I : i(a) 2MV (v)) i(b) 2MV (w)
=)M(a : v) �M(b : w),

� or v vV ?V =)MV (v) = ; =)M(a : v) = ; =)M(a : v) �M(b : w).

If a : v v b : w is false, then
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� either v 6vV w =)MV (v) 6�MV (w) vV complete
=) 9iV 2 IV : iV 2MV (v) and iV =2MV (w)
=) 9i 2 I : i(a) 2MV (v) and i(b) =2MV (w) (i is de�ned such that i(a) = i(b) = iV )
=)M(a : v) 6�M(b : w) De�nition 45

� or a 6= b and v 6vV ?V

=)MV (v) 6= ; vV complete
=) 9iv 2 IV : iv 2MV (v)
=) 9i 2 I : i(a) 2MV (v) and i(b) =2MV (w) (i is de�ned such that i(a) = iv and i(b) = undef)
=) 9i 2 I : i(a) 2MV (v) and i(b) =2MV (w)
=)M(a : v) 6�M(b : w) De�nition 45

(tautology) true because > is unde�ned.

(contradiction) true because ? is unde�ned.

(conjunction) If a : v u b : w is de�ned, then

� either a = b (and v uV w is de�ned):
i 2M(a : v u b : w) () i 2M(a : (v uV w))
() i(a) 2MV (v uV w) De�nition 45
() i(a) 2MV (v) \MV (w) uV consistent and complete
() i(a) 2MV (v) and i(b) 2MV (w) a = b
() i 2M(a : v) \M(b : w) De�nition 45

� or v vV ?V (and ?V is de�ned) =)MV (v) = ; vV ;?V consistent
=)M(a : v) = ; De�nition 45
Now, M(a : v u b : w) = M(a : ?V ) = ; = M(a : v) \M(b : w) ?V consistent,

� or w vV ?V (and ?V is de�ned): idem.

(disjunction) If a : v t b : w is de�ned, then

� either a = b (and v tV w is de�ned):
i 2M(a : v t b : w) () i 2M(a : (v tV w))
() i(a) 2MV (v tV w) De�nition 45
() i(a) 2MV (v) [MV (w) tV consistent and complete
() i(a) 2MV (v) or i(b) 2MV (w) a = b
() i 2M(a : v) [M(b : w) De�nition 45

� or w vV ?V (and ?V is de�ned) =)MV (w) = ; vV , ?V consistent
=)M(b : w) = ; De�nition 45
Now, i 2M(a : v t b : w) =) i 2M(a : v) =) i 2M(a : v) [M(b : w),

� or v vV ?V (and ?V is de�ned): idem. �

Pvalattr is partially de�ned in both conjunction and disjunction, but it is consistent and complete provided
that its implementation argument is. Furthermore, the following lemma shows that Pvalattr(V ) is reduced
provided that its argument is. So, the logic functor prop can be applied to logic functor valattr to form a
complete and consistent logic.

Lemma 48 Pvalattr(V ) is reduced w.r.t. Svalattr(V ) if PV is reduced w.r.t. SV .

Proof: Let (A;B) an open sequent for Pvalattr(V ). From Lemma 19, we have

(1) 8a1 : v1; a2 : v2 2 A : a1 : v1 u a2 : v2 is unde�ned,

(2) 8b1 : w1; b2 : w2 2 B : b1 : w1 t b2 : w2 is unde�ned,

(3) 8a : v 2 A; b : w 2 B : a : v 6v b : w.

Now, consider any attribute x 2 Attr, and the following notations:

� A(x) = fv 2 ASLV j x : v 2 Ag,
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� B(x) = fw 2 ASLV j x : w 2 Bg.

We show that for every x 2 Attr, (A(x); B(x)) is an open sequent for PV , using Lemma 19.

� Suppose that 9v1 6= v2 2 A(x) : v1 uV v2 is de�ned
=) 9x : v1 6= x : v2 2 A : x : v1 u x : v2 is de�ned, which contradicts the fact that (A;B) is an open
sequent Lemma 19
Hence, 8v1 6= v2 2 A(x) : v1 uV v2 is unde�ned,

� Similarly, 8w1 6= w2 2 B(x) : w1 tV w2 is unde�ned,

� (3) =) 8a : v 2 A : v 6vV ?V =) 8v 2 A(x) : v 6vV ?V ,

� (3) =) 8b : w 2 B : >V 6vV b : w =) 8w 2 B(x) : >V 6vV w,

� (3) =) 8a : v 2 A; b : w 2 B : a 6= b or v 6vV w
=) 8v 2 A(x); w 2 B(x) : v 6vV w.

Now, because PV is reduced w.r.t. SV , the open sequent (A(x); B(x)) is not valid for every x 2 Attr
=)

T
v2A(x)MV (v) 6�

S
w2B(x)MV (w)

=)
T
v2A(x)MV (v) n

S
w2B(x)MV (w) 6= ; Lemma 20

So, we can �nd an interpretation i 2 I such that
8x 2 Attr : i(x) 2

T
v2A(x)MV (v) n

S
w2B(x)MV (w)

=) 8a : v 2 A : i(a) 2MV (v) and 8b : w 2 B : i(b) =2MV (w)
=) i 2

T
a:v2AM(a : v) and i =2

S
b:w2BM(b : w)

=)
T
a:v2AM(a : v) 6�

S
b:w2B M(b : w)

=) (A;B) is not valid. Therefore, Pvalattr(V ) is reduced w.r.t. Svalattr(V ). �

B.3 Sums of logics

The sum of two logics allows one to form descriptions/queries about objects that belong to di�erent domains.
Objects from one domain are described by formulas of a logic L1, while other objects use logic L2. A special
element `?' represents the absence of information, and the element `#' represents a contradiction. For instance,
the bibliographical application may be part of a larger knowledge base whose other parts are described by
completely di�erent formulas. Even inside the bibliographical part, journal articles use facets that are not
relevant to conference article (and vice-versa).

We write sum the logic functor used for constructing the sum of 2 logics. Note that sum could easily be
generalized to arbitrary arities.

De�nition 49 ASsum forms the disjoint union of two logics plus formulas ? and #.

De�nition 50 Ssum is (IL1
; j=L1

); (IL2
; j=L2

) 7! (I; j=) such that

I = IL1
] IL2

and i j= f =

8>><
>>:

i j=L1
f if i 2 IL1

; f 2 ASL1

i j=L2
f if i 2 IL2

; f 2 ASL2

true if f =?
false otherwise

We will prove that Psum(L1;L2) is reduced w.r.t. Ssum(L1;L2) if PL1
and PL2

are reduced w.r.t. SL1
and SL2

,
making the logic functor sum usable inside the logic functor prop. The development of this logic functor is
rather complex but we could not �nd simpler but reduced de�nitions for sum.

De�nition 51 Psum is (vL1
;uL1

;tL1
;>L1

;?L1
); (vL2

;uL2
;tL2

;>L2
;?L2

) 7! (v;u;t;>;?) such that

� f v g =

8>><
>>:

f vL1
g if f; g 2 ASL1

f vL2
g if f; g 2 ASL2

true if f vL1
?L1

or f vL2
?L2

or f = # or g =?
false otherwise
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� f u g =

8>>>><
>>>>:

f uL1
g if f; g 2 ASL1

f uL2
g if f; g 2 ASL2

f if g =?
g if f =?
# otherwise

� f t g =

8>>>>>>>>>><
>>>>>>>>>>:

f tL1
g if f; g 2 ASL1

f tL2
g if f; g 2 ASL2

g if f = # or f vL1
?L1

or f vL2
?L2

f if g = # or g vL1
?L1

or g vL2
?L2

? if f =? or g =?
? if f 2 ASL1

; g 2 ASL2
and >L1

vL1
f and >L2

vL2
g

? if f 2 ASL2
; g 2 ASL1

and >L1
vL1

g and >L2
vL2

f
undef otherwise

� > = ? ? = #

Theorem 52 Psum(L1;L2) is consistent and complete in v, >, ?, u, t w.r.t. Ssum(L1;L2) if PL1
and PL2

are
consistent and complete w.r.t. SL1

and SL2
.

Proof: Let f; g be formulas in ASsum(L1;L2).

(deduction) according to De�nition 51, we have the following cases

� f; g 2 ASL1
: f v g () f vL1

g () ML1
(f) � ML1

(g) (if vL1
is consistent () part) and

complete (( part)),
() M(f) �M(g) De�nition 50

� f; g 2 ASL2
: similarly, f v g () M(f) � M(g) (if vL2

is consistent () part) and complete
(( part)),

� f vL1
?L1

or f vL2
?L2

or f = # or g =?: f v g is true, and M(f) �M(g) is also true,

� otherwise: f v g is false, and it can be veri�ed that M(f) �M(g) is also false.

(tautology) > is always de�ned, and M(>) = M(?) = I De�nition 50

(contradiction) ? is always de�ned, and M(?) = M(#) = ; De�nition 50

(conjunction) If f u g is de�ned, then

� either f; g 2 ASL1
and f uL1

g is de�ned
=)M(f) \M(g) = ML1

(f) \ML1
(g) =ML1

(f uL1
g) uL1

consistent and complete
=)M(f) \M(g) = M(f uL1

g),

� or f; g 2 ASL2
and f uL2

g is de�ned: idem,

� or f =? =)M(f) \M(g) = I \M(g) = M(g),

� or g =?: idem,

� or f = # =)M(f) \M(g) = ; \M(g) = ; =M(#),

� or g = #: idem,

� or f 2 ASL1
; g 2 ASL2

=)M(f) = ML1
(f) � IL1

and M(g) = ML2
(g) � IL2

=)M(f) \M(g) = ; = M(#) (because IL1
\ IL2

= ;),

� or f 2 ASL2
; g 2 ASLL1 : idem.

(disjunction) If f t g is de�ned, then

� either f; g 2 ASL1
and f tL1

g is de�ned
=)M(f) [M(g) = ML1

(f) [ML1
(g) =ML1

(f tL1
g) tL1

consistent and complete
=)M(f) [M(g) = M(f tL1

g),

� or f; g 2 ASL2
and f tL2

g is de�ned: idem,

� or f = # or f vL1
?L1

or f vL2
?L2

: M(f) [M(g) = ; [M(g) = M(g),
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� or g = # or g vL1
?L1

or g vL2
?L2

: idem,

� or f =?: M(f) [M(g) = I [M(g) = I =M(?),

� or g =?: idem,

� or f 2 ASL1
; g 2 ASL2

and >L1
vL1

f >L2
vL2

g: M(f) [M(g) = IL1
[ IL2

= I = M(?),

� or f 2 ASL2
; g 2 ASL1

and >L1
vL1

g >L2
vL2

f : M(f) [M(g) = IL2
[ IL1

= I = M(?). �

Lemma 53 Psum(L1;L2) is reduced w.r.t. Ssum(L1;L2) if PL1
and PL2

are reduced and consistent in >;?
w.r.t. SL1

and SL2
.

Proof: Let (A;B) an open sequent for Psum(L1;L2). From Lemma 19, it follows that

(1) # =2 A and 8a 2 A \ ASL1
: a 6vL1

?L1
and 8a 2 A \ ASL2

: a 6vL2
?L2

,

(2) ? =2 B,

(3) 8a 2 A; b 2 B : a 6v b,

(4) 8a1; a2 2 A : a1 u a2 is unde�ned,

(5) 8b1; b2 2 B : b1 t b2 is unde�ned.

With (1), (4), and de�nition of u, we can say that A has one of the following forms: A = ;, A = f?g,
; ( A � ASL1

, or ; ( A � ASL2
.

With (2), (5), and de�nition of t, we can say that B has one of the following forms: B = f#g, or B = B1]B2

where B1 � ASL1
and B2 � ASL2

.
We show that each form of A and B satis�es

T
a2AM(a) 6�

S
b2B M(b):

� A = ; or A = f?g:
T
a2AM(a) = I >sum consistent

� B = f#g:
S
b2B M(b) = ; ?sum consistent,

� B = B1 ] B2: with (2), (5), and Lemma 19
we have that (;; B1) and (;; B2) are open sequents for PL1

and PL2
respectively

=) (;; B1) and (;; B2) are not valid open sequents because PL1
and PL2

are reduced
=) IL1

6�
S
b2B1

ML1
(b) and IL2

6�
S
b2B2

ML2
(b) Lemma 20

=)
S
b2BM(b) 6= I De�nition 50

� ; ( A � ASL1
: �rst,

T
a2AM(a) � IL1

;
second, (A; ;) is an open sequent because of (1), (4), and Lemma 19
=) (A; ;) is not a valid open sequent PL1

reduced
=)

T
a2AML1

(a) 6� ; =)
T
a2AM(a) 6= ;.

� B = f#g:
S
b2B M(b) = ; ?sum consistent,

� B = B1 ] B2: (A;B1) is an open sequent for PL1
because of (1), (2), (3), (4), (5), and Lemma 19

=) (A;B1) is not valid PL1
reduced

=)
T
a2AML1

(a) 6�
S
b2B1

ML1
(b)

=)
T
a2AM(a) 6�

S
b2B M(b) (IL1

\ IL2
= ;),

� ; ( A � ASL1
: idem.

Hence, the open sequent (A;B) is not valid Lemma 20 �

RR ° 4457



28 Ferré & Ridoux

B.4 An alternative de�nition of sums of logics

The sum of logics considered in this section is the same as in Section B.3 for the syntax ASsum (De�nition 49)
and semantics Ssum (De�nition 50). What is changed is its simpler implementation of t. As a consequence,
this implementation is not reduced, but it is total.

De�nition 54 P 0
sum is the same as in De�nition 51 except for the de�nition of t which is:

f t g =

8>>>><
>>>>:

f tL1
g if f; g 2 ASL1

f tL2
g if f; g 2 ASL2

f if g = # or g vL1
?L1

or g vL2
?L2

g if f = # or f vL1
?L1

or f vL2
?L2

? otherwise

Theorem 55 P 0
sum(P1;P2)

is consistent and complete in v, >, ?, u, and complete but not consistent in t.

Proof: Let f; g be formulas in ASsum(L1;L2).

(deduction) according to De�nition 54, we have the following cases

� f; g 2 ASL1
: f v g () f vL1

g () ML1
(f) � ML1

(g) (if vL1
is consistent () part) and

complete (( part)),
() M(f) �M(g) De�nition 50

� f; g 2 ASL2
: similarly, f v g () M(f) � M(g) (if vL2

is consistent () part) and complete
(( part),

� f vL1
?L1

or f vL2
?L2

or f = # or g =?: f v g is true,
and M(f) �M(g) is also true,

� otherwise: f v g is false, and it can be veri�ed that M(f) �M(g) is also false.

(tautology) > is always de�ned, and M(>) = M(?) = I De�nition 50

(contradiction) ? is always de�ned, and M(?) = M(#) = ; De�nition 50

(conjunction) If f u g is de�ned, then

� either f; g 2 ASL1
and f uL1

g is de�ned
=)M(f) \M(g) = ML1

(f) \ML1
(g) =ML1

(f uL1
g) uL1

consistent and complete
=)M(f) \M(g) = M(f uL1

g),

� or f; g 2 ASL2
and f uL2

g is de�ned: idem,

� or f =? =)M(f) \M(g) = I \M(g) = M(g),

� or g =?: idem,

� or f = # =)M(f) \M(g) = ; \M(g) = ; =M(#),

� or g = #: idem,

� or f 2 ASL1
; g 2 ASL2

=)M(f) = ML1
(f) � IL1

and M(g) = ML2
(g) � IL2

=)M(f) \M(g) = ; = M(#) (because IL1
\ IL2

= ;),

� or f 2 ASL2
; g 2 ASLL1 : idem.

(disjunction) If f t g is de�ned, then

� either f; g 2 ASL1
and f tL1

g is de�ned
=)M(f) [M(g) = ML1

(f) [ML1
(g) �ML1

(f tL1
g) tL1

complete
=)M(f) [M(g) �M(f tL1

g),

� or f; g 2 ASL2
and f tL2

g is de�ned: idem,

� or f = # or f vL1
?L1

or f vL2
?L2

: M(f) [M(g) = ; [M(g) = M(g),

� or g = # or g vL1
?L1

or g vL2
?L2

: idem,

� otherwise: M(?) = I �M(f) [M(g). �

The de�nition of P 0
sum shows that Psum(L1;L2) is total i� implementations PL1

and PL2
are also total.
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B.5 Product of logics

The product of two logics allows one to form descriptions or queries that are faceted. Each facet corresponds to
a dimension of the domain considered in an application. For instance, in the bibliographical information system,
titles, lists of authors, publication dates, etc., are facets. Each facet brings its own syntax and semantics.

We note prod the logic functor used for constructing the product of 2 logics. This arity of 2 is chosen for
simplicity, but prod could easily be generalized to arbitrary arities.

De�nition 56 (Syntax) The logic functor ASprod is the cartesian product of two logics.

De�nition 57 (Semantics) Sprod is (IL1
; j=L1

); (IL2
; j=L2

) 7! (I; j=) such that
I = IL1

� IL2
and (iL1

; iL2
) j= (f1; f2) i� i1 j=1 f1 and iL2

j=L2
f2.

De�nition 58 Pprod is (vL1
;uL1

;tL1
;>L1

;?L1
); (vL2

;uL2
;tL2

;>L2
;?L2

) 7! (v;u;t;>;?) such that

� (f1; f2) v (g1; g2) i� f1 vL1
g1 and f2 vL2

g2, or f1 vL1
?L1

, or f2 vL2
?L2

,

� (f1; f2) u (g1; g2) = (f1 uL1
g1; f2 uL2

g2) (undef if one conjunction is),

� (f1; f2) t (g1; g2) = (f1 tL1
g1; f2 tL2

g2) (undef if one disjunction is),

� > = (f1; f2) such that >L1
vL1

f1 and >L2
vL2

f2,

� ? = (f1; f2) such that f1 vL1
?L1

or f2 vL2
?L2

.

Note that (f1; f2) is ? as soon as one of the fi is. This is in accordance with the semantics of De�nition 57,
because it simply says that the semantics is a cartesian product, so that the product by an empty set is always
empty.

Theorem 59 Pprod(L1;L2) is consistent and complete in operations v, >, ?, u and only complete in t w.r.t.
Sprod(L1;L2) if PL1

and PL2
are consistent and complete w.r.t. SL1

and SL2
.

Proof: Let f1; g1 be formulas of ASL1
, and f2; g2 be formulas of ASL2

.

(deduction) (f1; f2) v (g1; g2) () f1 vL1
g1 and f2 vL2

g2, or f1 vL1
?L1

, or f2 vL2
?L2

De�nition 58
() ML1

(f1) �ML1
(g1) and ML2

(f2) �ML2
(g2),

or ML1
(f1) �ML1

(?L1
) = ;, or ML2

(f2) �ML2
(?L2

) = ; (vL1
and vL2

are consistent () part) and
complete (( part))
() ML1

(f1)�ML2
(f2) �ML1

(g1)�ML2
(g2) () M(f1; f2) �M(g1; g2).

(tautology) If > is de�ned, then both >L1
and >L2

are de�ned
=)ML1

(>L1
) = IL1

and ML2
(>L2

) = IL2
>L1

, >L2
complete

=)M((>L1
;>L2

)) = IL1
� IL2

= I .

(contradiction) If ? is de�ned, then either ?L1
or ?L2

is de�ned. Without loss of generality, we suppose that
?L1

is de�ned:
=)ML1

(?L1
) = ; ?L1

consistent
=) 8f2 2 ASL2

: M((?L1
; f2)) = ML1

(?L1
)�ML2

(f2) = ;.

(conjunction) If (f1; f2) u (g1; g2) is de�ned, then f1 uL1
g1 and f2 u2 g2 are also de�ned:

=)ML1
(f1 uL1

g1) = ML1
(f1) \ML1

(g1)
and ML2

(f2 uL2
g2) =ML2

(f2) \ML2
(g2) uL1

, uL2
consistent and complete

=)M((f1 uL1
g1; f2 uL2

g2)) =ML1
(f1 uL1

g1)�ML2
(f2 uL2

g2)
= (ML1

(f1) \ML1
(g1))� (ML2

(f2) \ML2
(g2))

= (ML1
(f1)�ML2

(f2)) \ (ML1
(g1)�ML2

(g2))
= M((f1; f2)) \M((g1; g2)).

(disjunction) If (f1; f2) t (g1; g2) is de�ned, then f1 tL1
g1 and f2 t2 g2 are also de�ned:

=)ML1
(f1 tL1

g1) �ML1
(f1) [ML1

(g1)
and ML2

(f2 t2 g2) �ML2
(f2) [ML2

(g2) tL1
, tL2

complete
=)ML1

(f1 tL1
g1)�ML2

(f2 tL2
g2) � (ML1

(f1)�ML2
(f2)) [ (ML1

(g1)�ML2
(g2))

=)M((f1 tL1
g1; f2 tL2

g2)) �M((f1; f2)) [M((g1; g2)). �
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The de�nition of Pprod shows that Pprod(L1;L2) is total i� PL1
and PL2

are also total. It is bounded in > if PL1

and PL2
are; it is bounded in ? if PL1

or PL2
is (indeed, M(f1; f2) =ML1

(f1)�ML2
(f2)). Theorem 59 shows

that if PL1
and PL2

are consistent and complete, then the conjunction of the product logic is consistent and
complete, but the disjunction is not consistent in general. So, one must be cautious when combining customized
logics.

Example 60 Let L1 be a logic of sets of letters interpreted as themselves with inclusion as deduction relation.
Let L2 be a logic of sets of digits under the same conditions. These logics are consistent in disjunction (note
that tL1

= tL2
= [).

However, Mprod(L1;L2)((fag; f1g)t (fbg; f2g))
Def 58
=

Mprod(L1;L2)(fag tL1
fbg; f1g tL2

f2g) = fa; bg � f1; 2g is not included in
Mprod(LL1 ;L2)((fag; f1g))[Mprod(LL1 ;L2)((fbg; f2g)) = f(a; 1); (b; 2)g.
This shows that Pprod(L1;L2) does not satisfy De�nition 6 on consistency in t.

B.6 Sets of models

The logic functor set is useful to describe for instance sets of authors or keywords. Each item is speci�ed by a
formula of the logic argument of set. Models of sets of subformulas are sets of models of subformulas.

De�nition 61 ASset is the set of �nite subsets of formulas of a logic.

De�nition 62 Sset is (Ie; j=e) 7! (I; j=) such that

I = P(Ie) and i j= f () 8fe 2 f : i \Me(fe) 6= ;:

De�nition 63 Pset is (ve;ue;te;>e;?e)! (v;u;t;>;?) such that for all f; g 2 ASset(e)

� f v g () 8ge 2 g : 9fe 2 f : fe ve ge

� f u g = (f [ g)

� f t g = ffe te ge j fe 2 f; ge 2 g; fe te ge de�nedg

� > = ;

� ? = f?eg, if ?e is de�ned

Theorem 64 The deduction v is consistent (resp. complete) if deduction on elements ve is also consistent
(resp. complete). The tautology > is always de�ned and complete. The contradiction ? is de�ned (resp.
consistent) if the element contradiction ?e is also de�ned (resp. consistent). The conjunction u is always totally
de�ned, consistent and complete. The disjuction t is totally de�ned, complete if the element disjunction te is
also complete, but not consistent in general.

Proof: Let f; g 2 ASset(e).

(deduction) � if f v g is true, then 8ge 2 g : 9fe 2 f : fe ve ge
=) 8ge 2 g : 9fe 2 f : Me(fe) �e Me(ge) ve consistent
Moreover, for all i 2M(f), 8fe 2 f : i \Me(fe) 6= ; De�nition 62
This results in 8ge 2 g : 9fe 2 f : i \Me(ge) 6= ;
=) 8ge 2 g : i \Me(ge) 6= ;
=) i 2M(g). De�nition 62
Hence M(f) �M(g).

� if f v g is false, then 9ge 2 g : 8fe 2 f : fe 6ve ge
=) 9ge 2 g : 8fe 2 f : 9ie 2Me(fe) : ie =2Me(ge) ve complete
Then, it exists i 2 I such that 8fe 2 f : i \Me(fe) 6= ; and 9ge 2 g : i \Me(ge) = ;
=) 9i 2M(f) : i =2M(g) De�nition 62
=)M(f) 6�M(g).

(tautology) M(>) =M(;) = fi 2 I j 8fe 2 f : i \Me(fe) 6= ;g = I .
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(contradiction) If ?e is de�ned, then
M(?) =M(f?eg) = fi 2 I j i \Me(?e) 6= ;g De�nition 62
= fi 2 I j i \ ; 6= ;g ?e consistent
= ;.

(conjunction) u is totally de�ned, and for all i 2 I
i 2M(f u g) () i 2M(f [ g)
() 8e 2 f [ g : i \Me(e) 6= ; De�nition 62
() 8e 2 f : i \Me(e) 6= ; and 8e 2 g : i \Me(e) 6= ;
() i 2M(f) and i 2M(g) () i 2M(f) \M(g).

(disjunction) for all i 2 I
i 2M(f) [M(g) () i 2M(f) or i 2M(g)
=) 8fe 2 f : i \Me(fe) 6= ; or 8ge 2 g : i \Me(ge) 6= ; De�nition 62
=) 8fe 2 f; ge 2 g : i \ (Me(fe) [Me(ge)) 6= ;
=) 8fe 2 f; ge 2 g : fe te ge de�ned) i \Me(fe te ge) 6= ; te complete
=) i 2M(ffe te ge j fe 2 f; ge 2 g; fe te ge de�nedg)
=) i 2M(f t g). �
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