
Background on DIET
Plugin Scheduler

Design and Implemention of a
Plugin Scheduler for DIET

March 11, 2005

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Outline

1 Background on DIET
Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

2 Plugin Scheduler
Design
Implementation
Current Status
(Near-)Future Work

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

Outline

1 Background on DIET
Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

2 Plugin Scheduler
Design
Implementation
Current Status
(Near-)Future Work

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

The Computational Grid and DIET

Grid platforms

heterogeneous computational resources
irregular network topologies
dynamic resource performance

DIET philosophy and design principles

server and broker agent model
hierarchical organization
flexible deployment options

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

DIET Overview

DIET hieararchy:

LA1

SeD1 SeD3SeD2

MA

. . .

. . .

Basic progress of a DIET call:

Client requests service from the
Master Agent (MA)
The MA interrogates the DIET
hierarchy
Each Server Daemon (SeD)
responds with an execution time
estimate
Each Local Agent (LA) compiles
and sorts the responses by
execution time
MA returns a list of servers to
the client
Client launches service directly on
SeD

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

DIET Overview

DIET hieararchy:

LA1

SeD1 SeD3SeD2

MA

. . .

. . .

Basic progress of a DIET call:

Client requests service from the
Master Agent (MA)

The MA interrogates the DIET
hierarchy
Each Server Daemon (SeD)
responds with an execution time
estimate
Each Local Agent (LA) compiles
and sorts the responses by
execution time
MA returns a list of servers to
the client
Client launches service directly on
SeD

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

DIET Overview

DIET hieararchy:

LA1

SeD1 SeD3SeD2

MA

. . .

. . .

Basic progress of a DIET call:

Client requests service from the
Master Agent (MA)
The MA interrogates the DIET
hierarchy

Each Server Daemon (SeD)
responds with an execution time
estimate
Each Local Agent (LA) compiles
and sorts the responses by
execution time
MA returns a list of servers to
the client
Client launches service directly on
SeD

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

DIET Overview

DIET hieararchy:

LA1

SeD1 SeD3SeD2

MA

. . .

. . .E1

E2 E3

Basic progress of a DIET call:

Client requests service from the
Master Agent (MA)
The MA interrogates the DIET
hierarchy
Each Server Daemon (SeD)
responds with an execution time
estimate

Each Local Agent (LA) compiles
and sorts the responses by
execution time
MA returns a list of servers to
the client
Client launches service directly on
SeD

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

DIET Overview

DIET hieararchy:

LA1

SeD1 SeD3SeD2

MA

. . .

. . .

E3 E1 E2[]

Basic progress of a DIET call:

Client requests service from the
Master Agent (MA)
The MA interrogates the DIET
hierarchy
Each Server Daemon (SeD)
responds with an execution time
estimate
Each Local Agent (LA) compiles
and sorts the responses by
execution time

MA returns a list of servers to
the client
Client launches service directly on
SeD

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

DIET Overview

DIET hieararchy:

LA1

SeD1 SeD3SeD2

MA

. . .

. . .

E1 E5E3][

Basic progress of a DIET call:

Client requests service from the
Master Agent (MA)
The MA interrogates the DIET
hierarchy
Each Server Daemon (SeD)
responds with an execution time
estimate
Each Local Agent (LA) compiles
and sorts the responses by
execution time
MA returns a list of servers to
the client

Client launches service directly on
SeD

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

DIET Overview

DIET hieararchy:

LA1

SeD1 SeD3SeD2

MA

. . .

. . .

Basic progress of a DIET call:

Client requests service from the
Master Agent (MA)
The MA interrogates the DIET
hierarchy
Each Server Daemon (SeD)
responds with an execution time
estimate
Each Local Agent (LA) compiles
and sorts the responses by
execution time
MA returns a list of servers to
the client
Client launches service directly on
SeD

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

Some Implementation Details

Three primary components of the DIET system:

Agents (MA and LA)
implemented in C++
scope: DIET internal
at runtime, assembled top-down

Servers (SeD)
implemented in either C or C++
scope: application service developer API
hierarchy must exist

Client
implemented in either C or C++
scope: application developer or user
uses services existing at execution time

Communication infrastructure

CORBA-based model

omniORB implementation

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

Some Implementation Details

Three primary components of the DIET system:
Agents (MA and LA)

implemented in C++
scope: DIET internal
at runtime, assembled top-down

Servers (SeD)
implemented in either C or C++
scope: application service developer API
hierarchy must exist

Client
implemented in either C or C++
scope: application developer or user
uses services existing at execution time

Communication infrastructure

CORBA-based model

omniORB implementation

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

Some Implementation Details

Three primary components of the DIET system:
Agents (MA and LA)

implemented in C++
scope: DIET internal
at runtime, assembled top-down

Servers (SeD)
implemented in either C or C++
scope: application service developer API
hierarchy must exist

Client
implemented in either C or C++
scope: application developer or user
uses services existing at execution time

Communication infrastructure

CORBA-based model

omniORB implementation

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

Some Implementation Details

Three primary components of the DIET system:
Agents (MA and LA)

implemented in C++
scope: DIET internal
at runtime, assembled top-down

Servers (SeD)
implemented in either C or C++
scope: application service developer API
hierarchy must exist

Client
implemented in either C or C++
scope: application developer or user
uses services existing at execution time

Communication infrastructure

CORBA-based model

omniORB implementation

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

Some Implementation Details

Three primary components of the DIET system:
Agents (MA and LA)

implemented in C++
scope: DIET internal
at runtime, assembled top-down

Servers (SeD)
implemented in either C or C++
scope: application service developer API
hierarchy must exist

Client
implemented in either C or C++
scope: application developer or user
uses services existing at execution time

Communication infrastructure

CORBA-based model

omniORB implementation
Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

Advantages and Limitations

Advantages:

scalability: hierarchy enables parallel server interrogation and
distributed scheduling of requests

straighforward interface: just the name and the correct
number of arguments are needed

abstraction: distributed platform details are largely hidden

Limitations:

deployment of appropriate hierarchies for a given grid platform
is non-obvious

limited consideration of inter-task factors

non-standard application-specific performance measures

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

Advantages and Limitations

Advantages:

scalability: hierarchy enables parallel server interrogation and
distributed scheduling of requests

straighforward interface: just the name and the correct
number of arguments are needed

abstraction: distributed platform details are largely hidden

Limitations:

deployment of appropriate hierarchies for a given grid platform
is non-obvious

limited consideration of inter-task factors

non-standard application-specific performance measures

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

Advantages and Limitations

Advantages:

scalability: hierarchy enables parallel server interrogation and
distributed scheduling of requests

straighforward interface: just the name and the correct
number of arguments are needed

abstraction: distributed platform details are largely hidden

Limitations:

deployment of appropriate hierarchies for a given grid platform
is non-obvious

limited consideration of inter-task factors

non-standard application-specific performance measures

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

Application-specific Performance Use Case

DIET hieararchy:

LA1

SeD1 SeD3SeD2

MA

. . .

. . .

Motivation

basic DIET deployment

client application with data
dependencies
“performance” is not well-defined

Possible meanings for performance

existence of data

(GriPPS)

avail. free memory

(MUMPS?)

specific architecture

(TLSE)

previous scheduling decisions
application-specific measures
composite requirements
...

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

Application-specific Performance Use Case

DIET hieararchy:

LA1

SeD1 SeD3SeD2

MA

. . .

. . .

Motivation

basic DIET deployment
client application with data
dependencies

“performance” is not well-defined

Possible meanings for performance

existence of data

(GriPPS)

avail. free memory

(MUMPS?)

specific architecture

(TLSE)

previous scheduling decisions
application-specific measures
composite requirements
...

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

Application-specific Performance Use Case

DIET hieararchy:

LA1

SeD1 SeD3SeD2

MA

. . .

. . .

Motivation

basic DIET deployment
client application with data
dependencies

“performance” is not well-defined

Possible meanings for performance

existence of data

(GriPPS)

avail. free memory

(MUMPS?)

specific architecture

(TLSE)

previous scheduling decisions
application-specific measures
composite requirements
...

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

Application-specific Performance Use Case

DIET hieararchy:

LA1

SeD1 SeD3SeD2

MA

. . .

. . .

Motivation

basic DIET deployment
client application with data
dependencies

“performance” is not well-defined

Possible meanings for performance

existence of data

(GriPPS)

avail. free memory

(MUMPS?)

specific architecture

(TLSE)

previous scheduling decisions
application-specific measures
composite requirements
...

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

Application-specific Performance Use Case

DIET hieararchy:

LA1

SeD1 SeD3SeD2

MA

. . .

. . .? ? ?

Motivation

basic DIET deployment
client application with data
dependencies
“performance” is not well-defined

Possible meanings for performance

existence of data

(GriPPS)

avail. free memory

(MUMPS?)

specific architecture

(TLSE)

previous scheduling decisions
application-specific measures
composite requirements
...

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

Application-specific Performance Use Case

DIET hieararchy:

LA1

SeD1 SeD3SeD2

MA

. . .

. . .? ? ?

Motivation

basic DIET deployment
client application with data
dependencies
“performance” is not well-defined

Possible meanings for performance

existence of data

(GriPPS)

avail. free memory

(MUMPS?)

specific architecture

(TLSE)

previous scheduling decisions
application-specific measures
composite requirements
...

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

Application-specific Performance Use Case

DIET hieararchy:

LA1

SeD1 SeD3SeD2

MA

. . .

. . .? ? ?

Motivation

basic DIET deployment
client application with data
dependencies
“performance” is not well-defined

Possible meanings for performance

existence of data (GriPPS)
avail. free memory (MUMPS?)
specific architecture (TLSE)
previous scheduling decisions
application-specific measures
composite requirements
...

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Design
Implementation
Current Status
(Near-)Future Work

Outline

1 Background on DIET
Computational Grid Computing
DIET Framework
Motivation for Plugin Scheduler

2 Plugin Scheduler
Design
Implementation
Current Status
(Near-)Future Work

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Design
Implementation
Current Status
(Near-)Future Work

Plugin Scheduling

Plugin scheduling facilities to enable

application-specific definitions of appropriate performance
metrics

an extensible measurement system

tunable comparison/aggregation routines for scheduling

Design changes
Component Before After

SeD
automatic performance esti-
mate (FAST/NWS)

chosen/defined by application
programmer

Agents exec. time sorting
“menu” of aggregation meth-
ods

Client CLIENT CODE UNCHANGED

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Design
Implementation
Current Status
(Near-)Future Work

Plugin Scheduling

Plugin scheduling facilities to enable

application-specific definitions of appropriate performance
metrics

an extensible measurement system

tunable comparison/aggregation routines for scheduling

Design changes
Component Before After

SeD
automatic performance esti-
mate (FAST/NWS)

chosen/defined by application
programmer

Agents exec. time sorting
“menu” of aggregation meth-
ods

Client CLIENT CODE UNCHANGED

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Design
Implementation
Current Status
(Near-)Future Work

Plugin Scheduling

Plugin scheduling facilities to enable

application-specific definitions of appropriate performance
metrics

an extensible measurement system

tunable comparison/aggregation routines for scheduling

Design changes
Component Before After

SeD
automatic performance esti-
mate (FAST/NWS)

chosen/defined by application
programmer

Agents exec. time sorting
“menu” of aggregation meth-
ods

Client CLIENT CODE UNCHANGED

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Design
Implementation
Current Status
(Near-)Future Work

Plugin Scheduling

Plugin scheduling facilities to enable

application-specific definitions of appropriate performance
metrics

an extensible measurement system

tunable comparison/aggregation routines for scheduling

Design changes
Component Before After

SeD
automatic performance esti-
mate (FAST/NWS)

chosen/defined by application
programmer

Agents exec. time sorting
“menu” of aggregation meth-
ods

Client CLIENT CODE UNCHANGED

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Design
Implementation
Current Status
(Near-)Future Work

Plugin Scheduling Enhancements

DIET hieararchy:

LA1

SeD1 SeD3SeD2

MA

. . .

. . .

Example: Client request for comparison
operation on blue database

request arrives at SeD level

only positive responses need to be
propagated through the hierarchy

simple example: client gets random
choice of two feasible servers

more realistic: other factors used to
decide

processor speed, memory
database contention
future requests

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Design
Implementation
Current Status
(Near-)Future Work

Plugin Scheduling Enhancements

DIET hieararchy:

LA1

SeD1 SeD3SeD2

MA

. . .

. . .? ? ?

Example: Client request for comparison
operation on blue database

request arrives at SeD level

only positive responses need to be
propagated through the hierarchy

simple example: client gets random
choice of two feasible servers

more realistic: other factors used to
decide

processor speed, memory
database contention
future requests

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Design
Implementation
Current Status
(Near-)Future Work

Plugin Scheduling Enhancements

DIET hieararchy:

LA1

SeD1 SeD3SeD2

MA

. . .

. . .N Y Y

Example: Client request for comparison
operation on blue database

request arrives at SeD level

only positive responses need to be
propagated through the hierarchy

simple example: client gets random
choice of two feasible servers

more realistic: other factors used to
decide

processor speed, memory
database contention
future requests

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Design
Implementation
Current Status
(Near-)Future Work

Plugin Scheduling Enhancements

DIET hieararchy:

[Y Y]

LA1

SeD1 SeD3SeD2

MA

. . .

. . .

Example: Client request for comparison
operation on blue database

request arrives at SeD level

only positive responses need to be
propagated through the hierarchy

simple example: client gets random
choice of two feasible servers

more realistic: other factors used to
decide

processor speed, memory
database contention
future requests

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Design
Implementation
Current Status
(Near-)Future Work

Plugin Scheduling Enhancements

DIET hieararchy:

[Y Y]

LA1

SeD1 SeD3SeD2

MA

. . .

. . .

Example: Client request for comparison
operation on blue database

request arrives at SeD level

only positive responses need to be
propagated through the hierarchy

simple example: client gets random
choice of two feasible servers

more realistic: other factors used to
decide

processor speed, memory
database contention
future requests

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Design
Implementation
Current Status
(Near-)Future Work

Implementation Mechanisms

What mechanisms are needed to implement this framework?

SeD-level (response to client request)

interrogate the system performance
store selected performance metrics

Agent-level (aggregation of server responses)

collect server responses and extract stored performance
estimates
order responses from children, based on provided metrics
forward ordered responses to next higher level

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Design
Implementation
Current Status
(Near-)Future Work

SeD-level Interface

Estimation Vector

Dynamic array of estimation values:

tag (byte) + value (float)
estVector t new estVector()
int estVector addEstimation(estVector t,
diet est tag t, double)

Tags and access functions for existing performance metrics

FAST/NWS (e.g, int diet estimate fast(estVector t, const diet profile t*))
SeD execution timestamp (to approximate Round-robin
scheduling)

User-defined tags

Equivalent CORBA object and marshalling function

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Design
Implementation
Current Status
(Near-)Future Work

SeD-level Interface

Estimation Vector

Dynamic array of estimation values:

tag (byte) + value (float)
estVector t new estVector()
int estVector addEstimation(estVector t,
diet est tag t, double)

Tags and access functions for existing performance metrics

FAST/NWS (e.g, int diet estimate fast(estVector t, const diet profile t*))
SeD execution timestamp (to approximate Round-robin
scheduling)

User-defined tags

Equivalent CORBA object and marshalling function

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Design
Implementation
Current Status
(Near-)Future Work

SeD-level Interface

Estimation Vector

Dynamic array of estimation values:

tag (byte) + value (float)
estVector t new estVector()
int estVector addEstimation(estVector t,
diet est tag t, double)

Tags and access functions for existing performance metrics

FAST/NWS (e.g, int diet estimate fast(estVector t, const diet profile t*))
SeD execution timestamp (to approximate Round-robin
scheduling)

User-defined tags

Equivalent CORBA object and marshalling function

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Design
Implementation
Current Status
(Near-)Future Work

SeD-level Interface

Estimation Vector

Dynamic array of estimation values:

tag (byte) + value (float)
estVector t new estVector()
int estVector addEstimation(estVector t,
diet est tag t, double)

Tags and access functions for existing performance metrics

FAST/NWS (e.g, int diet estimate fast(estVector t, const diet profile t*))
SeD execution timestamp (to approximate Round-robin
scheduling)

User-defined tags

Equivalent CORBA object and marshalling function

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Design
Implementation
Current Status
(Near-)Future Work

Agent-level Interface

New Profile Parameters

New dynamic array of prioritized optimization directives:

tag: basis for comparison
semantics: maximize, minimize, etc.

At service registration time, directives are fixed

At runtime, directives used to order server responses

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Design
Implementation
Current Status
(Near-)Future Work

Modules’ Status

Estimation Vector

Fully functional API for storage of raw values

Basic library of standard estimators

Interface for user-defined metrics to be redesigned

DIET Profile Enhancements

Existing scheduling strategy (i.e., preference for FAST)
re-implemented using estimation vector

User-defined metrics currently ignored

Providing access to DIET agent hiearchy not previously
supported

Design and Implemention of a Plugin Scheduler for DIET

Background on DIET
Plugin Scheduler

Design
Implementation
Current Status
(Near-)Future Work

Work in Progress

Near-term Milestones

Profile parameter extension to support priority optimization

New performance estimator routines

alternative performance measurement systems (e.g., ganglia)
emerging DIET functionality (e.g., SeD-level queues)

Initial plugin scheduler: DIET release 2.0

Open Issues

Enforcement of optimization strategy over entire hiearchy

Evaluate need for more expressive aggregation methods

Incorporate runtime scheduling preferences

Design and Implemention of a Plugin Scheduler for DIET

	Background on DIET
	Computational Grid Computing
	DIET Framework
	Motivation for Plugin Scheduler

	Plugin Scheduler
	Design
	Implementation
	Current Status
	(Near-)Future Work

