(&:IRISA

Activity Report 2018

Team ARCHWARE

Architecting Software-intensive Systems
and Systems-of-Systems

D4 — Language and Software Engineering

“ 65 | IMY) o) INSH) UB8:) i
- 7 ° UNIVERSITE DE
CentraleSupsiec Y\ pram lrnzia— | m. RENNES 1
2

Eco MnesTeecom /. RENNES

Team ARCHWARE IRISA Activity Report 2018

ii

Team ARCHWARE IRISA Activity Report 2018

Contents
|1 Team composition| 1
|2 Overall objectives| 2
T Overviewl oo 2
2.2 Scientific foundationslo oo 5
2.3 Application domains|o Lo 5
B Scientific achievements| 6
[3.1 The SoS Architecture Description Language (SosADL)| 6
[3.1.1 Enhancing SosADL with support for emergent behavior| 7
[3.1.2 Mission-driven design of SoS architectures described with SosADL| 8
13.1.3 Simulation-driven design of SoS architectures described with |
[DosADIL . . o oo 8
[3.1.4 Enhancing the implementation of SosADL by the automatic |
| transtormation from Fcore metamodels towards Gallina |
| inductive types|o 9
B.1.5 Venfication of Sod architectures described with SosADLI 9
13.1.6 Reference architecture for healthcare SoS and its description |
[with SosADLl . . o o o o oo 10
[3.2 Methods for architecting SoSs| 11
[3.2.1 Method for the evolutionary development of SoSs| 11

13.2.2 Method for involving domain experts in the development of Sods| 11

13.2.3 Method for analyzing security in the development of SoSs in the |

[ToTl. . . 12
4 Software development)| 12
4.1 The Sob Architect Studio for SosADLlo oL 12

4.1.1 The type system in Coq, the type-checker and the proof generator| 12
4.1.2 SosADL2Alloy: Generating Concrete SoS Architectures based |

[on SosADILf Lo 13
4.1.3 SosADL2DEVS: Generating and Simulating Concrete |
[Architectureso 13
4.1.4 SosADL2IoSTS: The SosADL Support for Verification| 13
M.1.5 The SobADL Studiol . . . 0 o 00 0o 13
[6E_Contracts and collaborations| 14

iii

Team ARCHWARE IRISA Activity Report 2018

5.2 Bilateral industry grants| oo 0oL 14
b3 Collaborationsl oo 14
6D Thationl 15
|6.1 Promoting scientific activities| L. 15
6.1.1 Journall 17
[6.1.2 Scientific Expertise|o oo 17
|6.1.3 Laboratory Administration| 18
[6.1.4 Academic Council (CAC)[. 18

6.2 eaching|. L 18
6.2.1 Teaching|. 18

[6.2.2 Teaching Responsibility| 18

iv

Team ARCHWARE IRISA Activity Report 2018

1 Team composition

Researchers and faculty
Flavio Oquendo, Full Professor, PEDR, Université Bretagne Sud (Head)
Isabelle Borne, Full Professor, Université Bretagne Sud
Nicolas Belloir, Assistant Professor, Ecoles de St-Cyr Coétquidan
Jérémy Buisson, Assistant Professor, Ecoles de St-Cyr Coétquidan
Vanea Chiprianov, Assistant Professor, Université Bretagne Sud
Régis Fleurquin, Associate Professor, HDR, Université Bretagne Sud
Elena Leroux, Assistant Professor, Université Bretagne Sud
Salah Sadou, Full Professor, Université Bretagne Sud

Research engineers
Gersan Moguérou, Research Engineer, Université Bretagne Sud

PhD students
Delphine Beaulaton
Raounak Benabidallah
Rymel Benabidallah
Youcef Bouziane
Elyes Cherfa
Imane Cherfa
Lina Garcés
Nan Zhang Messe
Valdemar Neto
Paul Perrotin
Franck Petitdemange
Eduardo Silva

Post-Doc
Armel Esnault

Administrative assistant
Sylviane Boisadan, BIATSS, Université Bretagne Sud

Team ARCHWARE IRISA Activity Report 2018
2 Overall objectives

2.1 Overview

The ArchWare Research Team addresses the scientific and technological challenges
raised by architecting complex software-intensive systems. Beyond large-scale dis-
tributed systems, it addresses in particular an emergent class of evolving software-
intensive systems that is increasingly shaping the future of our software-reliant world,
the so-called Systems-of-Systems (SoS).

Since the dawn of computing, the complexity of software and the complexity of
systems reliant on software have grown at a staggering rate. In particular, software-
intensive systems have been rapidly evolved from being stand-alone systems in the
past, to be part of networked systems in the present, to increasingly become systems-
of-systems in the coming future.

De facto, systems have been independently developed, operated, managed, and
evolved. Progressively, networks made communication and coordination possible among
these autonomous systems, yielding a new kind of complex system, i.e. a system that is
itself composed of systems. These systems-of-systems are evolutionary developed from
systems to achieve missions not possible by each constituent system alone.

Different aspects of our lives and livelihoods have become overly dependent on some
sort of software-intensive system-of-systems. This is the case of systems-of-systems
found in different areas as diverse as aeronautics, automotive, energy, healthcare, man-
ufacturing, and transportation; and applications that addresses societal needs as e.g.
in environmental monitoring, distributed energy grids, emergency coordination, global
traffic control, and smart cities.

Moreover, emergent platforms such as the Internet of Things and the Internet of
Everything and emergent classes of systems-of-systems such as Cyber-Physical Systems
are accelerating the need of constructing rigorous foundations, languages, and tools for
supporting the architecture and engineering of resilient systems-of-systems.

Complexity is intrinsically associated to systems-of-systems by its very nature that
implies emergent behavior: in systems-of-systems, missions are achieved through emer-
gent behavior drawn from the interaction among constituent systems. Hence, complex-
ity poses the need for separation of concerns between architecture and engineering: (i)
architecture focuses on reasoning about interactions of parts and their emergent prop-
erties; (ii) engineering focuses on designing and constructing such parts and integrating
them as architected.

Definitely, Software Architecture forms the backbone for taming the complexity of
critical software-intensive systems, especially in the case of systems-of-systems, where
architecture descriptions provide the framework for designing, constructing, and dynam-
ically evolving such complex systems, in particular when they operate in unpredictable
open-world environments.

Therefore, the endeavor of constructing critical systems evolved from engineering
complicated systems in the last century, to architecting critical SoSs in this century.
Critical SoSs, by their very nature, have intrinsic properties that are hard to address.

Team ARCHWARE IRISA Activity Report 2018

Furthermore, the upcoming generation of critical SoSs will operate in environments
that are open in the sense of that they are only partially known at design-time. These
open-world critical systems-of-systems, in opposite to current closed-world systems,
will run on pervasive devices and networks providing services that are dynamically
discovered and used to deliver more complex services, which themselves can be part of
yet more complex services and so on.

Besides, in SoSs, architectures are designed to fulfill specified missions. Indeed, an
important concern in the design of SoSs is the systematic modeling of both global and
individual missions, as well as all relevant mission-related information. Missions play a
key role in the SoS context since they define required capabilities of constituent systems
and the interactions among these systems that lead to emergent behaviors towards the
accomplishment of the global mission of the SoS.

Definitely, the unique characteristics of SoS raise a grand research challenge for the
future of software-reliant systems in our industry and society due to its simultaneous
intrinsic features, which are:

1. Operational independence: the participating systems not only can operate inde-
pendently, they do operate independently. Hence, the challenge is to architect
and construct SoS in a way that enables its operations (acting to fulfill its own
mission) without violating the independence of its constituent systems that are
autonomous, acting to fulfill their own missions.

2. Managerial independence: the participating systems are managed independently,
and may decide to evolve in ways that were not foreseen when they were originally
composed. Hence, the challenge is to architect and construct a SoS in a way that it
is able to evolve itself to cope with independent decisions taken by the constituent
systems and hence be able to continually fulfill its own mission.

3. Distribution of constituent systems: the participating systems are physically de-
coupled. Hence, the challenge is to architect and construct the SoS in a way that
matches the loose-coupled nature of these systems.

4. Fvolutionary development: as a consequence of the independence of the con-
stituent systems, a SoS as a whole may evolve over time to respond to chang-
ing characteristics of its environment, constituent systems or of its own mission.
Hence, the challenge is to architect and construct SoS in a way that it is able to
evolve itself to cope with these three kinds of evolution.

5. Emergent behaviors: from the collaboration of the participating systems may
emerge new behaviors. Furthermore, these behaviors may be ephemeral because
the systems composing the SoS evolve independently, which may impact the avail-
ability of these behaviors. Hence, the challenge is to architect and construct a SoS
in a way that emergent behaviors and their subsequent evolution can be discovered
and controlled.

In the case of an open-world environment, one can add the following characteristics:

Team ARCHWARE IRISA Activity Report 2018

1. Unpredictable environment: the environment in which the open-world SoS op-
erates is only partially known at design-time, i.e. it is too unpredictable to be
summarized within a fixed set of specifications, and thereby there will inevitably
be novel situations to deal with at run-time. Hence, the challenge is to architect
and construct such a system in a way that it can dynamically accommodate to
new situations while acting to fulfill its own mission.

2. Unpredictable constituents: the participating systems are only partially known at
design-time. Hence, the challenge is to architect and construct an open-world
SoS in a way that constituent systems are dynamically discovered, composed,
operated, and evolved in a continuous way at run-time, in particular for achieving
its own mission.

3. Long-lasting: as an open-world SoS is by nature a long-lasting system, re-
architecting must be carried out dynamically. Hence, the challenge is to evo-
lutionarily re-architects and evolves its construction without interrupting it.

The importance of developing novel theories and technologies for architecting and
engineering SoSs is highlighted in several roadmaps.

In France, it is explicitly targeted in the report prepared by the French Ministry of
Economy as one of the key technologies for the period 2015-2025 (étude prospective sur
et des Services du Ministére de I’Economie). In Europe, SoSs are explicitly targeted in
the studies developed by the initiative of the European Commission, i.e. Directions in
Systems-of-Systems Engineering, and different Networks of Excellence (e.g. HiPEAC)
and European Technological Platforms (e.g. ARTEMIS, NESSI). Two roadmaps for
systems-of-systems having been proposed, supported by the European Commission, is-
sued from the CSAs ROAD2SoS (Development of Strategic Research and Engineering
Roadmaps in Systems-of-Systems) and T-Area-SoS (Trans-Atlantic Research and Edu-
cation Agenda in Systems-of-Systems).

All these key actions and the roadmaps show the importance of progressing from
the current situation, where SoSs are basically developed in ad-hoc way, to a scientific
approach providing rigorous theories and technologies for mastering the complexity of
software-intensive systems-of-systems.

Overall, the long-term research challenge raised by SoSs calls for a novel paradigm
and novel trustful approaches for architecting, analyzing, constructing, and assuring the
continuous correctness of systems-of-systems, often deployed in unpredictable environ-
ments, taking into account all together their intrinsic characteristics.

Regarding the state-of-the-art, software-intensive system-of-systems is an emergent
domain in the research community. The systematic mapping of the literature shows
that 75% of the publications related to the architecture of systems-of-systems have
been published in the last 5 years and 90% in the last 10 years. Furthermore, most of
these publications raise open-issues after having experimented existing approaches for
architecting systems-of-systems.

Keywords: Software Architecture, Architecture Description, Architecture
Analysis, Safety Architecture, Cybersecurity Architecture, Mission Specification,
Software-intensive Systems, Software-intensive Systems-of-Systems.

Team ARCHWARE IRISA Activity Report 2018

2.2 Scientific foundations

For addressing the scientific challenge raised for architecting SoS, the targeted break-
through for the ArchWare Research Team is to conceive sound foundations and a
novel holistic approach for architecting open-world critical software-intensive systems-
of-systems, encompassing:

1. Architectural abstractions for formulating the architecture and re-architecture of
SoS;

2. Formalism and underlying computational model to rigorously specify the archi-
tecture and re-architecture of SoS;

3. Mechanisms to construct, manage, and evolve SoSs driven by architecture descrip-
tions, while resiliently enforcing their correctness, effectiveness, and efficiencys;

4. Formalism and mechanisms for ensuring safety and cybersecurity at the architec-
tural level and their transformations towards implementation.

5. Concepts and formalisms for specifying and operating SoS missions and generating
abstract and concrete SoS architectures.

The research approach we adopt in the ArchWare Research Team for developing the
expected breakthrough is based on well-principled design decisions:

1. To conceive architecture description, analysis, and evolution languages based on
suitable SoS architectural abstractions;

2. To formally ground these SoS-specific architecture languages on well-established
concurrent constraint process calculi and associated logics;

3. To conceptually and technologically ground the construction and management of
SoSs on architecture descriptions defined by executable models;

4. To derive/generate abstract/concrete architectural descriptions from well-defined
mission specifications.

2.3 Application domains

The ArchWare Research Team develops formalisms, languages and software technologies
which are transverse to application domains while providing mechanisms for customiza-
tion to different architectural styles and application areas.

During 2018, addressed applications areas includes:
1. Internet-of-Things (IoT);
2. Fleet of Unmanned Aerial Vehicles (UAVs);

3. Crowd Management SoS;

Team ARCHWARE IRISA Activity Report 2018

4. Smart e-Health;
5. Flood Monitoring SoS;
6. Critical SoSs.

3 Scientific achievements

3.1 The SoS Architecture Description Language (SosADL)

Keywords: Architecture Description Language (ADL), Software-intensive
Systems-of-Systems (SoS).

Participants: Flavio Oquendo, Jérémy Buisson, Elena Leroux, Gersan
Moguérou.

The architecture provides the right abstraction level to address the complexity of
Software-intensive Systems-of-Systems (SoSs). The research challenges raised by SoSs
are fundamentally architectural: they are about how to organize the interactions among
the constituent systems to enable the emergence of SoS-wide behaviors and properties
derived from local behaviors and properties by acting only on their connections, without
being able to act in the constituent systems themselves.

Formal architecture descriptions provide the framework for the design, construction,
and dynamic evolution of SoSs.

From the architectural perspective, in single systems, the controlled characteristics
of components under the authority of the system architect and the stable notion of con-
nectors linking these components, mostly decided at design-time, is very different from
the uncontrolled nature of constituent systems (the SoS architect has no or very limited
authority on systems) and the role of connection among systems (in an SoS, connections
among constituents are the main architectural elements for enabling emergent behavior
to make possible to achieve the mission of an SoS).

The nature of systems architectures (in the sense of architectures of single systems)
and systems-of-systems are very different:

e Systems architectures are described by extension. In the opposite, SoS architec-
tures are described by intention.

e Systems architectures are described at design-time for developing the system based
on design-time components. In the opposite, SoS architectures are defined at run-
time for developing the SoS based on discovered constituents.

e Systems architectures often evolves offline. In the opposite, SoS architectures
always evolves online.

We have continued the development of an Architecture Description Language (ADL)
specially designed for specifying the architecture of Software-intensive Systems-of-
Systems (SoS). It provides a formal ADL, based on a novel concurrent constraint process

Team ARCHWARE IRISA Activity Report 2018

calculus, coping with the challenging requirements of SoSs. Architecture descriptions are
essential artifacts for (i) modeling systems-of-systems, and (ii) mastering the complex-
ity of SoS by supporting reasoning about properties. In SosADL, the main constructs
enable: (i) the specification of constituent systems, (ii) the specification of mediators
among constituent systems, (iii) the specification of coalitions of mediated constituent
systems.

SoS are constituted by systems. A constituent system of an SoS has its own mis-
sion, is operationally independent, is managerially independent, and may independently
evolve. A constituent system interacts with its environment via gates. A gate provides
an interface between a system and its local environment.

Constituent systems of an SoS are specified by system abstractions via gates, be-
havior and their assumed/guaranteed properties. Assumptions are assertions about the
environment in which the system is placed and that are assumed through the speci-
fied gate. Guarantees are assertions derived from the assumptions and the behavior.
Behavior satisfies gate assumptions (including protocols) of all gates.

Mediators mediate the constituent systems of an SoS. A mediator has its own pur-
pose and, in the opposite of constituent systems, is operationally dependent of the SoS,
is managerially dependent of the SoS, and evolves under control of the SoS.

Mediators among constituent systems of an SoS are specified by mediator abstrac-
tions. The SoS has total control on mediators. It creates, evolves or destroys mediators
at runtime. Mediators are only known by the SoS. They enable communication, coor-
dination, cooperation, and collaboration.

Coalitions of mediated constituent systems form SoSs. A coalition has its own
purpose, may be dynamically formed to fulfill a mission through created emergent be-
haviors, controls its mediators

System-of-Systems are specified by SoS abstractions. The SoS is abstractly defined
in terms of coalition abstractions. SoS are concretized and evolve dynamically at run-
time. Laws define the policies for SoS operation and evolution. In SoSs, missions are
achieved through the emergent behavior of coalitions.

In the sequel, the main results of this line of work produced in 2018 are presented.

3.1.1 Enhancing SosADL with support for emergent behavior

Keywords: Emergent Behavior, Architecture Description Language (ADL),
Software-intensive Systems-of-Systems (SoS), SosADL.

A major research challenge for the design of a software-intensive SoSs is the formal
description of its software architecture. The main complicating factor is that an SoS, by
definition, has its architecture designed to produce emergent behavior for fulling mis-
sions. But, by definition, an emergent behavior is an "unexpected" behavior. By "unex-
pected", we mean a behavior of a whole (i.e. the SoS) that cannot be predicted through
analysis only of its parts (i.e. the constituent systems of the SoS), or stated simply: the
behavior of the SoS is other than the sum of the behaviors of its constituent systems.
The oxymoron is thereby: how to formally design and describe the software architecture

Team ARCHWARE IRISA Activity Report 2018

of an SoS to exhibit "expected" (by design) "unexpected" (emergent) behaviors that
stem from the interactions among the constituent systems of the SoS? To address this
oxymoron, this research investigated the notion of emergent behavior for clarifying the
boundaries of this notion for SoS and developed an architectural emergentist framework
to enable the architectural description of emergent behavior of software-intensive SoS
based on the supervenience principle. In our framework, an emergent behavior is a
macro-scale behavior upwardly caused by a set of micro-scale behaviors according to
alternative approaches: (i) endogenous, when the micro-scale behaviors originate from
inside constituent systems of the SoS; (ii)exogenous, when oppositely the micro-scale
behaviors originate from outside constituent systems. For assessing the emergentist
framework, a real application was carried out for architecting a Reconnaissance SoS,
focusing on the flocking behavior of a fleet of Unmanned Aerial Vehicles (UAVs). For
details see: [18] [16].

3.1.2 Mission-driven design of SoS architectures described with SosADL

Keywords: Mission Modeling, Semi-Automated Architecture Design, Software
Architecture, Systems-of-Systems, SosADL.

The formulation of missions is the starting point to the development of SoSs, being
used as a basis for the specification, verification and validation of SoS architectures.
Specifying, verifying and validating architectural models for SoS are complex tasks
compared to usual systems, the inner complexity of SoS relying specially on emergent
behaviors, i.e. features that emerge from the interactions among constituent parts of
the SoS which cannot be predicted even if all the behaviors of all parts are completely
known. In this research, we addressed the synergetic relationship between missions and
architectures of software-intensive SoS, giving a special attention to emergent behaviors
which are created for achieving formulated missions. We developed a design approach
for the architectural modeling of SoS driven by the mission models. In our proposal,
the mission model is used to both derive, verify and validate SoS architectures. As first
step, we define a formalized mission model, then we generate the structure of the SoS
architecture by applying model transformations. Later, when the architect specifies
the behavioral aspects of the SoS, we generate concrete SoS architectures that will
be verified and validated using simulation-based approaches, in particular regarding
emergent behaviors. The verification uses statistical model checking to verify whether
specified properties are satisfied, within a degree of confidence. The formalization in
terms of a temporal logic and statistical model checking are the formal foundations
of the developed approach. A toolset that implements the whole approach was also
developed and experimented. For details see: [2].

3.1.3 Simulation-driven design of SoS architectures described with SosADL

Keywords: Simulation, Model-Based Engineering, Software Architecture,
Systems-of-Systems, SosADL.

Correct SoS operations depend on a precise specification of the SoS structure and

Team ARCHWARE IRISA Activity Report 2018

a rigorous assessment of its behaviors. However, besides limitations on languages to
jointly capture SoS structure and behavior, predictions on the SoS emergent behaviors
rely on constituent systems not totally known at design-time. To address this issue,
in this research we developed solutions founded on a formal architectural description
language to support an early evaluation of SoS behaviors regarding its inherent SoS
structure and dynamics through simulations. The outcomes of this research comprises
(i) a model transformation approach for automatically producing simulation models
from SoS software architecture descriptions, combining SoS structure and behavior de-
scription in a same solution, (ii) an SoS software architecture evaluation method for
SoS operation prediction considering the inherent changes that can occur, (iii) envi-
ronment modeling and automatic generation of stimuli generators to sustain the SoS
simulation, delivering data to feed such simulation, and (iv) a method for the automatic
synchronization between the runtime descriptive architecture (changed at runtime due
to dynamic architecture) and its original prescriptive architecture based on model dis-
covery and recovery mechanisms and a backward model transformation. We conducted
case studies to assess the proposed approach using Flood Monitoring SoS and Space
SoS. The assessment showed a high accuracy to (i) produce fault-free and operational
simulations for SoS software architectures, (ii) support a reliable evaluation and pre-
diction of SoS operation at design-time, (iii) automatically generate stimuli generators
to sustain and feed the simulation execution, and (iv) maintain the synchronization
between descriptive and prescriptive versions of the SoS architecture. For details see:
[3, 12].

3.1.4 Enhancing the implementation of SosADL by the automatic trans-
formation from Ecore metamodels towards Gallina inductive types

Keywords: Model Transformation, QVT, Ecore, Xtext, Coq, SosADL.

When engineering a language (and its compiler), it is convenient to use widespread
and easy-to-use Model-Driven Engineering frameworks like Xtext that automatically
generate a compiler infrastructure, and even a full-featured Integrated Development
Environment (IDE). At the same time, a formal workbench such as a proof assistant is
helpful to ensure the language specification is sound. Unfortunately, the two technical
spaces hardly integrate. In this research, we developed a transformation from Ecore’s
metametamodel to Coq’s language named Gallina/Vernacular. The structural fragment
of Ecore is fully handled. At the cost of not being bijective, our transformation has
relaxed constraints over the input metamodel, in comparison to previous state of the
art. To validate, we have used the proposed transformation to implement a proof-
carrying code type checker for the SosADL language. For details see: [8].

3.1.5 Verification of SoS architectures described with SosADL

Keywords: Testing, Model Checking, Software Architecture,
Systems-of-Systems, SosADL.

There are at least three important aspects that should be addressed while testing

Team ARCHWARE IRISA Activity Report 2018

SoS: unit testing of the constituent systems, integration and regression testing of SoS.
This research addresses the integration testing under two assumptions: (1) final SoS
is a two-layer system, and (2) each individual (constituent) system reflects the quality
expectations towards the SoS (have been already tested individually). A major challenge
of this research is to determine how to design a test suite that will check that the SoS
mission is achieved. One of the ways is to derive a model (graph, transition system,
etc.) from the formal description of the SoS mission. Based on this model and using one
of the known, adapted or newly proposed test generation technique, we will obtain a
set of abstract test cases accompanied by test verdicts. Finally, each abstract test cases
should be transformed into sequences of stimuli, understandable by the SoS under test,
which will guide SoS thought the test. Complementary to testing, to ensure that an
SoS architecture is well-behaved, this research also investigates the application of model
checking with UPPAAL. SosADL is already supported by a semantical model expressed
as input-output Symbolic Transitions Systems (i0STS). The set of i0ST'S representing an
SoS architecture is transformed into a set of Timed Automata (TA) that communicate
using input, output actions and that exchange their data through global variables. This
set of TA forms a Network of Timed Automata (NTA) which will be further developed
to support formal verification by model checking.

3.1.6 Reference architecture for healthcare SoS and its description with
SosADL

Keywords: Reference Architecture, Healthcare Supportive SoS, Software
Architecture, System-of-Systems, SosADL.

Population ageing has been taking place all over the world, being estimated that
2.1 billion people will be aged 60 or over in 2050. Healthcare Supportive Home (HSH)
SoSs have been proposed to overcome the high demand of remote home care for assist-
ing an increasing number of elderly people living alone. Since a heterogeneous team
of healthcare professionals need to collaborate to continually monitor health status of
chronic patients, a cooperation of pre-existing e-Health systems, both outside and inside
home, is required. However, current HSH solutions are proprietary, monolithic, high
coupled, and expensive, and most of them do not consider their interoperation neither
with distributed and external e-Health systems, nor with systems running inside the
home (e.g., companion robots or activity monitors). These systems are sometimes de-
signed based on local legislations, specific health system configurations (e.g., public,
private or mixed), care plan protocols, and technological settings available; therefore,
their reusability in other contexts is sometimes limited. As a consequence, these sys-
tems provide a limited view of patient health status, are difficult to evolve regarding the
evolution of patient’s health profile, do not allow continuous patients monitoring, and
present limitations to support the self-management of multiple chronic conditions. To
contribute to solve the aforementioned challenges, this research establishes a reference
architecture for supporting the development of quality HSH SoSs. Indeed, we consider
HSH as SoS instead of a large monolith, which achieve their missions (e.g., improvement
of patients’ quality of life) through the behavior that emerges as result of collaborations
among their constituents. To establish this reference architecture, a systematic process

10

Team ARCHWARE IRISA Activity Report 2018

was adopted. As a result, this reference architecture comprises domain knowledge and
architectural solutions (i.e., architectural patterns and tactics) described using concep-
tual, mission, and quality architectural viewpoints. To assess the proposed reference
architecture, a case study was performed by instantiating it to design the software archi-
tecture of a HSH SoS to assist at home patients suffering of diabetes mellitus. Results
evidenced the the developed reference architecture is viable as well as enables to guide
the development of reusable, interoperable, reliable, secure, and adaptive HSH SoSs.
For details see: [3].

3.2 Methods for architecting SoSs

Keywords: Cybersecurity, Secure Architecture Design, Architecture Description,
Software-intensive Systems-of-Systems (SoS).

Participants: Nicolas Belloir, Isabelle Borne, Vanea Chiprianov, Régis
Fleurquin, Salah Sadou.

With the growing complexity of SoS architectures, the needs for developing methods
for architecting SoSs has increased. In the sequel, the main results of this line of work
produced in 2018 are presented.

3.2.1 Method for the evolutionary development of SoSs

Keywords: Dynamic Reconfiguration, Reconfiguration Pattern, SoS
Architecture, Systems-of-Systems.

SoSs are mostly concurrent, widely distributed, and inherently composed of indepen-
dent systems. SoSs evolve in unpredictable environments and are constantly integrating
newly identified systems. In this research, we deal with the problem of the evolutionary
development of an SoS by using dynamic reconfiguration. We defined a process for
developing configuration models and a reconfiguration design process incorporating the
concept of reconfiguration pattern. For assessing the validity and feasibility of the de-
veloped approach, we have conducted an experimental framework based on a real case
study of a French emergency service. For details see: [5].

3.2.2 Method for involving domain experts in the development of SoSs

Keywords: SoS Requirements, SoS Architecture, Requirements-to-Architecture,
Systems-of-Systems.

An operational environment of an SoS is in perpetual evolution thus forcing a re-
current adaptation of the concerned SoS. This yet worst in case of poor communication
between the requirement definition phase and the design phase. In this research, we de-
veloped a method for addressing SoS engineering using the concepts Mission and Role.
The former allows the definition of the SoS behavior, while the later allows to abstract

11

Team ARCHWARE IRISA Activity Report 2018

this definition with respect to the constituent systems that may actually exist in the
environment. This definition is translated into an abstract architecture, which serves as
a guide and controller of the choices proposed by the system architect during the design
and evolution phases. With our approach we have correctly defined an SoS concerning
crowd management during a sport event. For details see: [9].

3.2.3 Method for analyzing security in the development of SoSs in the IoT

Keywords: Cybersecurity, Internet-of-Things, SoS Architecture,
Systems-of-Systems.

The control and protection of user data is a key aspect in the design and deployment
of SoSs in the IoT. In this research, we developed a security-based modelling language
for IoT SoSs, which explicitly represents data access controls. The language leverages
the analysis of potential security failures resulting from a series of interactions between
heterogeneous constituents of an SoS. We implemented a tool that automatically trans-
forms IoT models into BIP models, which can then be simulated and analyzed for
security guarantees. We illustrate the features of our language with a use-case inspired
by an industrial scenario. For details see: [7].

4 Software development

4.1 The SoS Architect Studio for SosADL
Participants: Gersan Moguérou, Jérémy Buisson, Elena Leroux, Flavio Oquendo.

SosADL Studio, the SosADL Architecture Development Environment, is a novel en-
vironment for description, verification, simulation, and compilation/execution of SoS
architectures. With SosADL Studio, SoS architectures are described using SosADL,
an Architecture Description Language based on process algebra with concurrent con-
straints, and on a meta-model defining SoS concepts. Because constituents of an SoS
are not known at design time, SosADL promotes a declarative approach of architecture
families. At runtime, the SoS evolves within such a family depending on the discov-
ery of concrete constituents. In particular, SosADL Studio enables to guarantee the
correctness of SoS architectures. For details see: [I5].

At the end of 2018, the SosADL Studio includes the following modules.

4.1.1 The type system in Coq, the type-checker and the proof generator
Participants: Jérémy Buisson.
The type-checker is based on the SosADL type system written in Coq, which covers 2/3

of the SoOSADL language. Coq proofs are generated after each successful type checking,
enabling the verification of the type-checker according to the type system.

12

Team ARCHWARE IRISA Activity Report 2018

4.1.2 SosADL2Alloy: Generating Concrete SoS Architectures based on
SosADL

Participants: Milena Guessi, Flavio Oquendo, Gersan Moguérou,.

The concrete architecture generator (SosADL2Alloy) module automatically transforms
an abstract SoS architecture into an abstract architecture in Alloy, and generates a Java
class to launch a SAT solver through the Alloy Analyzer. The solutions are concrete
SoS architectures. During the integration of this module into the SosADL Studio, we
have improved the quality of the generated concrete SoS architectures.

4.1.3 SosADL2DEVS: Generating and Simulating Concrete Architectures
Participants: Valdemar Neto, Wallace Manzano, Gersan Moguérou.

The SosADL2DEVS generator takes one concrete architecture as input and generates
a DEVS program, which can be simulated using the MS4ME simulation tool. The sim-
ulations generate traces. A client-server link between MS4ME and Plasmal.ab enables
Statistical Model Checking, by reusing traces of the simulation. The SosADL2DEVS
module now generates DEVS programs, which can evolve dynamically during a simu-
lation inside MS4ME.

Although some problems remain in this module to be perfectly generic and well
integrated in the SosADL Studio, this module is now available in the SosADL Studio. As
this module is written in Xtend/Java under Xtext/Eclipse, it can run on any platform.
Regarding DEVS, in 2018, only the Windows version of MS4AME was available.

4.1.4 SosADL2IoSTS: The SosADL Support for Verification
Participants: Elena Leroux, Gersan Moguérou.
The SosADL2IoSTS generator takes one concrete SoS architecture, and generates an

i0STS model in order to verify functional properties of SoS. The development of the
translator from i0STS to Uppaal NTA is ongoing work.

4.1.5 The SoSADL Studio

Participants: Gersan Moguérou, Jérémy Buisson, Elena Leroux, Milena Guessi,
Valdemar Neto, Flavio Oquendo.

The SoSADL Studio provides an Integrated Development Environment (IDE), a simu-
lator, a model-checker, and a statistical model-checker.

The SosADL Studio is developed under Xtext/Eclipse. It integrates the above mod-
ules into an IDE, which provides a syntactical editor to define an abstract SoS archi-
tecture, and then enable the following workflow:

e The type-checker validates the abstract SoS architecture written in SosADL, and

13

Team ARCHWARE IRISA Activity Report 2018

generates a Coq proof. This proof can be verified using the Coq proof assistant,
according to the SosADL type system written in Coq.

e The concrete SoS architectures are then generated, using the SosADL2Alloy mod-
ule.

e Each concrete SoS architecture can be transformed into a DEVS program, using
the SosADL2DEVS module, and simulated using the MS4ME tool. The traces of
the simulation enable Statistical Model Checking in PlasmaLab.

e Each concrete architectures can be transformed into i0STS, and then into an
Uppaal program, in order to verify functional properties by Model Checking.

5 Contracts and collaborations

5.1 National Initiatives

e Public-private collaboration on the cybersecurity of large public events between
UBS, ENGIE and other companies in the domain of the cybersecurity of systems-
of-systems. This ongoing collaboration aims to support the design and operation
of large-scale sociotechnical systems-of-systems in open environments. It, in par-
ticular, aims to support the 2024 Summer Olympics in Paris. The ARCHWARE
team brings to this joint R&D project its expertise on security by design for
mastering emergent behaviors in sociotechnical systems-of-systems architectures.

e Coordination of the GT SoS at GDR GPL (Groupement de Recherche Génie de
la Programmation et du Logiciel (INS2I): GT Systems-of-Systems composed of
16 research-teams (ACADIE, ARCHWARE, CPR, DIVERSE, ESTASYS, ISC,
MACAO, MAREL, MODALIS, MOVIES, RSD, SARA, SOC, SPADES, SPI-
RALS, TEA) from 8 UMRs (CRISTAL, I3S, IRISA, IRIT, LIRIS, LIRMM, LIX et
VERIMAG), 1 UPR (LAAS), and 3 INRIA centers (Rennes Bretagne Atlantique,
Lille Nord Europe, Grenoble Rhone-Alpes), the LabEx M2ST, the IRT SystemX
as well as 9 engineering companies developing SoSs (AIRBUS, CAP GEMINI,
CS, Naval Group, SEGULA, THALES Group, THALES Alenia Space, THALES
Communications et Sécurité, THALES Recherche & Technologie) and the french
association of systems engineering AFIS.

5.2 Bilateral industry grants

e SEGULA Technologies: CIFRE Scholarship
5.3 Collaborations
National Collaborations with Joint Publications:

e Flavio Oquendo has a collaboration on systems-of-systems with Khalil Drira
(LAAS-CNRS)

14

Team ARCHWARE IRISA Activity Report 2018

e Salah Sadou has a collaboration on reuse of architectural constraints with Chouki
Tibermancine and Christophe Dony (LIRMM)

International Collaborations with Joint PhD Supervision:

e Flavio Oquendo:

— USP - University of Sao Paulo - ICMC Research Institute, Sao Carlos, Brazil
(Elisa Nakagawa)

— UFRN - Federal University of Rio Grande do Norte, Natal, Brazil (Thais
Batista)

e Salah Sadou:

— University of Science and Technology of Houari Boumedienne, Alger, Algeria
(Mohamed Ahmed Nacer)

e Isabelle Borne:

— LISCO, University Badji Mokhtar Annaba, Algeria (Djamel Meslati)
Local Collaborations:

e Nicolas Belloir collaborates with IMT Atlantique (PASS research-team) and the
Chaire de Cyberdefence des Systemes Naval;

e Salah Sadou leads a project on Cybersecurity with 6 Post-Docs funded by the
Brittany council and the UBS. The Post-Docs are allocated in 5 laboratories of
the UBS in different related disciplines.

6 Dissemination
6.1 Promoting scientific activities
Research and Doctoral Supervizing Awards (PEDR)

e Flavio Oquendo: PEDR (2016-2020)

Chair/Member of Conference Steering Committees

e Flavio Oquendo:

— European Conference on Software Architecture - ECSA (Steering Committee

Chair)

— IEEE International Conference on Software Architecture - ICSA (Steering
Committee Member)

15

Team ARCHWARE IRISA Activity Report 2018

— Conférence francophone sur les architectures logicielles - CAL (Steering Com-
mittee Member)

— IEEE International Conference on Collaboration Technologies and Infras-
tructures - WETICE (Steering Committee Member)

— ACM International Workshop on Software Engineering for Systems-of-
Systems (technically co-sponsored by ACM SIGSOFT and ACM SIGPLAN)
- SESOS (Steering Committee Chair)

— Workshop on Distributed Development of Software, KEcosystems and
Systems-of-Systems - WDES (Steering Committee Member)

e Salah Sadou:

— CIEL: French Conference on Software Engineering (Steering Committee
Member)

Chair/Member of Conference Program Committees

e Nicolas Belloir:
— AICCSA: ACS/IEEE International Conference on Computer Systems and
Applications, Conference Track on Software Engineering, 2018

— ICAASE: International Conference on Advanced Aspects of Software Engi-
neering, 2018

Isabelle Borne:

— SESOS: ACM/IEEE ICSE International Workshop on Software Engineering
for Systems-of-Systems, 2018

Jérémy Buisson:

— ICCS: International Conference on Computational Science, 2018

Reégis Fleurquin

— AICCSA: ACS/IEEE International Conference on Computer Systems and
Applications, Conference Track on Software Engineering, 2018

Flavio Oquendo:
— SOSE: IEEE International Conference on System-of-Systems Engineering,
2018 (PC Chair of Special track on Software-intensive Systems-of-Systems)

— ISIVC: International Symposium on Signal, Image, Video and Communica-
tions, 2018 (PC Chair)

— SISOS: ACM International Symposium On Applied Computing Program,
Conference Track on Software Software-intensive Systems-of-Systems, 2018
(PC Chair)

— SESOS: ACM/IEEE ICSE International Workshop on Software Engineering
for Systems-of-Systems, 2018 (PC Chair)

16

Team ARCHWARE IRISA Activity Report 2018

— ICSA: IEEE International Conference on Software Architecture, 2018
— ECSA: European Conference on Software Architecture, 2018
— CPSIOT: International Conference on Cyber Physical Systems and IoT, 2018

— CYBER: International Conference on Cyber-Technologies and Cyber-
Systems, 2018

— ICSEA: International Conference on Software Engineering Advances, 2018

— SOFTENG: International Conference on Advances and Trends in Software
Engineering, 2018

— ICSOFT: International Conference on Software and Data Technologies, 2018

— ICAS: International Conference on Autonomic and Autonomous Systems,
2018

— ICONS: International Conference on Systems, 2018
— COMPLEXIS: International Conference on Complexity, 2018

— ICT4140: IEEE ISCC International Workshop on Information and Commu-
nication Technologies for Industry 4.0, 2018

— SEET: ICSE Track on Software Engineering Education and Training, 2018
— CAL: French Conference on Software Architecture, 2018
— SBES: Brazilian Symposium on Software Engineering, 2018

— GE: ACM/IEEE ICSE Workshop on Gender Equality in Software Engineer-
ing, 2018

e Salah Sadou:

— SESOS: ACM/IEEE ICSE International Workshop on Software Engineering
for Systems-of-Systems, 2018

6.1.1 Journal
Member of the Editorial Boards

e Flavio Oquendo:

— Springer Journal of Software Engineering Research and Development (Mem-
ber of the Editorial Board)

6.1.2 Scientific Expertise

e Flavio Oquendo:

— Scientific Expert acting as reviewer and evaluator of R&D Projects for the
European Commission (Horizon H2020)

— Expert acting as evaluator of R&D Projects for the ANR (Agence Nationale
de la Recherche) on Software Sciences and Technologies

— Expert acting as evaluator of R&D Projects for the FWO (Research Foun-
dation Flanders, Belgium) on Trustworthy Software-intensive Systems

17

Team ARCHWARE IRISA Activity Report 2018

6.1.3 Laboratory Administration

e Isabelle Borne: Responsible of the Site of Vannes for IRISA

6.1.4 Academic Council (CAC)

e Salah Sadou: Member of the CAC (Commission recherche du conseil académique)

of UBS

6.2 Teaching
6.2.1 Teaching

e Academics of ARCHWARE teach at the Research Master on Computer Science
of Université Bretagne Sud

6.2.2 Teaching Responsibility

e Salah Sadou: Head of the Engineering Degree on Software Cybersecurity of EN-
SIBS School of Engineering

e Flavio Oquendo: Head of the Research Master Degree on Computing of Université
Bretagne Sud (part of the regional research master in Computer Science headed
by Université de Rennes 1)

Books and Monographs

[1] Proceedings of the 6th ACM/IEEE International Workshop on Software Engineering
for Systems-of-Systems (SESoS 2018) at the 40th International Conference on Soft-
ware Engineering (ICSE 2018), Gothenburg, Sweden, ACM, May 2018, https://hal.
archives-ouvertes.fr/hal-02570260.

Doctoral dissertations and “Habilitation’ theses

[2] E. FERREIRA SILVA, Mission-driven Software-intensive System-of-Systems Architecture
Design, Theses, Université de Bretagne Sud ; Universidade federal do Rio Grande do Norte
(Natal, Breésil), December 2018, https://tel.archives-ouvertes.fr/tel-02372206.

[3] L. M. GARCES RODRIGUEZ, A reference architecture for healthcare supportive home
systems from a systems-of-systems perspective, Theses, Université de Bretagne Sud ;
Universidade de Sao Paulo (Brésil), May 2018, https://tel.archives-ouvertes.fr/
tel-02089352.

[4] V. V. GraciaNO NETO, A simulation-driven model-based approach for designing soft-
wareintensive systems-of-systems architectures, Theses, Université de Bretagne Sud ; Uni-
versidade de Sdo Paulo (Brésil), March 2018, https://tel.archives-ouvertes.fr/
tel-02146340.

18

Team ARCHWARE IRISA Activity Report 2018

[5] F. PETITDEMANGE, FEvolutionary development of systems of systems with a dynamic
reconfiguration pattern approach, Theses, Université de Bretagne Sud, December 2018,
https://tel.archives-ouvertes.fr/tel-02073913.

Publications in Conferences and Workshops

[6] T. Barista, F. OQUENDO, J. LEITE, “Modeling and Executing Software Architec-
ture Using SysADL”, in: 2018 IEEE International Conference on Software Architec-
ture Companion (ICSA-C), IEEE, Seattle, United States, April 2018, https://hal.
archives-ouvertes.fr/hal-02132141.

[7] D. BEAULATON, N. BEN SAID, I. CRISTESCU, R. FLEURQUIN, A. LEGAY, J. QUILBEUF,
S. SApou, “A Language for Analyzing Security of IOT Systems”, in: SoSE 2018 - 13th
Annual Conference on System of Systems Engineering, IEEE, p. 37-44, Paris, France,
June 2018, https://hal.inria.fr/hal-01960860.

[8] J. BuissoN, S. REHAB, “Automatic Transformation from Ecore Metamodels towards
Gallina Inductive Types”, in: MODELSWARD 2018, Santa Cruz, Portugal, January
2018, https://hal.archives-ouvertes.fr/hal-01693939.

[9] I. CHERFA, S. Sapou, N. BELLOIR, R. FLEURQUIN, D. BENNOUAR, “Involving the
Application Domain Expert in the Construction of Systems of Systems”, in: IEFE —
13th System of Systems Engineering Conference (SoSE 2018), Paris, France, June 2018,
https://hal.archives-ouvertes.fr/hal-01978238.

[10] K. DRrIRA, F. OQUENDO, A. LEGAY, T. BATISTA, “Editorial Message Track on Software-
intensive Systems-of-Systems (SiSoS) of the 33rd ACM/SIGAPP Symposium On Applied
Computing (SAC 2018)”, in: SAC 2018 - The 33rd ACM/SIGAPP Symposium On Applied
Computing, p. 1-3, Pau, France, April 2018, https://hal.laas.fr/hal-01666389.

[11] L. Garcks, F. OQUENDO, E. Y. NakKAGAwA, “Towards a Taxonomy of Software Me-
diators for Systems-of-Systems”, in: The VII Brazilian Symposium on Software Compo-
nents, Architectures, and Reuse, ACM Press, p. 5362, Sao Carlos, Brazil, September
2018, https://hal.archives-ouvertes.fr/hal-02132149.

[12] V. V. GraciaNo NETO, L. Garcks, M. Guessi, C. E. . B. Pags, F. OQUENDO,
W. ManzanoO, E. Y. NAKAGAWA, “ASAS: An Approach to Support Simulation of
Smart Systems”, in: Hawaii International Conference on System Sciences (HICSS 2018),
Waikoloa, Hawaii, United States, January 2018, https://hal.archives-ouvertes.fr/
hal-02570228.

[13] M. L. KErbpoupi, M. L. KErDOUDI, C. TIBERMACINE, S. SADOU, “Spotlighting Use
Case Specific Architectures”, in: ECSA: European Conference on Software Architecture,
LNCS, 11048, p. 236244, Madrid, Spain, September 2018, https://hal-lirmm.ccsd.
cnrs.fr/lirmm-02124337.

[14] J. LeITE, T. BaTIsTA, F. OQUENDO, E. Siva, L. SaANTOS, V. CORTEZ, “Designing
and Executing Software Architectures Models Using SysADL Studio”, in: 2018 IEEE
International Conference on Software Architecture Companion (ICSA-C), IEEE, Seattle,
United States, April 2018, https://hal.archives-ouvertes.fr/hal-02132146.

[15] F. OQuENDO, J. BuissoN, E. LErROUX, G. MOGUEROU, “A Formal Approach for
Architecting Software-intensive Systems-of-Systems with Guarantees”, in: 13th Annual
Conference on System of Systems Engineering (SoSE), Paris, France, July 2018, https:
//hal.archives-ouvertes.fr/hal-01999617.

19

Team ARCHWARE IRISA Activity Report 2018

[16] F. OQUENDO, “Exogenously Describing Architectural Emergent Behaviors of Systems-
of-Systems with SosADL”, in: 2018 13th Annual Conference on System of Systems
Engineering (SoSE), IEEE, p. 268-275, Paris, France, June 2018, https://hal.
archives-ouvertes.fr/hal-02132153.

[17] F. OQUENDO, “Formally Describing Self-organizing Architectures for Systems-of-Systems
on the Internet-of-Things”, in: 12th FEuropean Conference on Software Architecture,
ECSA 2018, Springer, p. 20-36, Madrid, Spain, September 2018, https://hal.
archives-ouvertes.fr/hal-02132137.

[18] F. OQUENDO, “On the Emergent Behavior Oxymoron of System-of-Systems Architecture
Description”, in: 2018 18th Annual Conference on System of Systems Engineering (SoSE),
IEEE, p. 417-424, Paris, France, June 2018, https://hal.archives-ouvertes.fr/
hal-02132155.

[19] F. PETITDEMANGE, I. BORNE, J. BuUissoN, “Modeling System of Systems configura-
tions”, in: 2018 13th Annual Conference on System of Systems Engineering (SoSE),
IEEE, p. 392-399, Paris, France, June 2018, https://hal.archives-ouvertes.fr/
hal-02021350.

20

	Team composition
	Overall objectives
	Overview
	Scientific foundations
	Application domains

	Scientific achievements
	The SoS Architecture Description Language (SosADL)
	Enhancing SosADL with support for emergent behavior
	Mission-driven design of SoS architectures described with SosADL
	Simulation-driven design of SoS architectures described with SosADL
	Enhancing the implementation of SosADL by the automatic transformation from Ecore metamodels towards Gallina inductive types
	Verification of SoS architectures described with SosADL
	Reference architecture for healthcare SoS and its description with SosADL

	Methods for architecting SoSs
	Method for the evolutionary development of SoSs
	Method for involving domain experts in the development of SoSs
	Method for analyzing security in the development of SoSs in the IoT

	Software development
	The SoS Architect Studio for SosADL
	The type system in Coq, the type-checker and the proof generator
	SosADL2Alloy: Generating Concrete SoS Architectures based on SosADL
	SosADL2DEVS: Generating and Simulating Concrete Architectures
	SosADL2IoSTS: The SosADL Support for Verification
	The SoSADL Studio

	Contracts and collaborations
	National Initiatives
	Bilateral industry grants
	Collaborations

	Dissemination
	Promoting scientific activities
	Journal
	Scientific Expertise
	Laboratory Administration
	Academic Council (CAC)

	Teaching
	Teaching
	Teaching Responsibility

