
Measurement-Based Worst-Case Execution Time Analysis using
Automatic Test-Data Generation ∗

Raimund Kirner, Peter Puschner, Ingomar Wenzel
Institut für Technische Informatik

Technische Universität Wien
Treitlstraße 3/182/1

A-1040 Wien, Austria
{raimund,peter,ingo}@vmars.tuwien.ac.at

Abstract

Traditional worst-case execution time (WCET)
analysis methods based on static program analysis re-
quire a precise timing model of a target processor. The
construction of such a timing model is expensive and
time consuming.

In this paper we present a hybrid WCET analy-
sis framework using runtime measurements together
with static program analysis. The novel aspect of
this framework is that it uses automatic generation of
test data to derive the instruction timing of code se-
quences. Program paths are decomposed into subpaths
to make execution-time analysis based on runtime mea-
surements feasible.

1 Introduction

The current situation on WCET analysis is not sat-
isfying, because widely used industrial-strength WCET
analysis tools are still missing [7].

One challenge of WCET analysis is the variable in-
struction timing of processors. Complex processors
have performance increasing features like caches or
pipelines that maintain an internal state that depends
on the execution history. Precisely modeling these fea-
tures is problematic as on the one side it becomes quite
complex and on the other side, exact information of
the previous instruction stream cannot be calculated
in general. A further problem is that the vendor’s doc-
umentation of a processor’s instruction timing is often

∗This work has been supported by the FIT-IT research
project “Model-Based Development of distributed Embedded
Control Systems (MoDECS)”.

a very rough approximation of reality. Problems aris-
ing on WCET analysis using static hardware modeling
are described in [5].

A further problem of static WCET analysis is that
it is very time consuming to model features of com-
plex processors and furthermore, it has to be done for
each processor for which WCET analysis is required.
The alternative is to use measurement-based WCET
analysis. However, simply performing exhaustive end-
to-end measurements is not feasible for real-size pro-
grams. Therefore, measurement-based WCET analysis
is used in combination with static analysis techniques.
Approaches to hybrid WCET analysis do already ex-
ist [4, 1] but research in this area is just at the be-
ginning. The path analysis problem of static WCET
analysis is currently shifted to the problem of generat-
ing test data for measurement-based approaches. The
current approaches require the user to provide test data
or simply use random testing. In addition to runtime
measurements, Ernst and Ye propose to switch back
to traditional static WCET analysis techniques in case
that the test data provided by the user did not cover
all program blocks [4].

In this paper we present a measurement-based
WCET analysis framework with automatic generation
of test data. The problem of automatically generating
the test data is tackled by standard program analysis
techniques like model checking [2, 9] or constraint-based
analysis [10]. The approach is based on decomposition
of program paths into subpaths of program segments.
A static WCET calculation method is used after the in-
struction timing of subpaths of program segments has
been assessed by runtime measurements.

The paper is structured as follows: Section 2 gives a
discussion about demands from industry for the use of
WCET analysis tools. The measurement-based WCET



analysis framework is described in Section 3. Section 4
discusses technical aspects of the framework. Finally,
Section 5 concludes this paper.

2 Requirements for an Industrial-
Strength WCET Analysis Tool

Before describing our new WCET analysis method,
we give a motivation for its development by describing
the industrial needs on a WCET analysis method. Pre-
viously proposed WCET analysis methods often only
demonstrate several analysis capabilities without show-
ing their applicability in an industrial environment. To
be more precise, the following list gives demands for a
WCET analysis tool raised by people working in indus-
try. This list also contains aspects regarding the use
of modeling tools like Matlab/Simulink, as they are
increasingly used in industrial software development.

1. The tool must work with minimal user interac-
tion. In particular, it cannot be expected that
users of the tool provide manual code annotations
about possible and impossible execution paths of
the code. For example, when using a modeling
tool like Matlab/Simulink, the WCET analysis
tool must be able to extract this information by
analyzing the code generated by the code genera-
tor of Matlab/Simulink.

2. The method must integrate into the development
tool chain of customers without modification of
tools from the tool chain (e.g., components of
Matlab/Simulink, code generator, C compiler).

However, it may be possible to use the tool chain
in a restrictive manner to enable the application of
a certain WCET analysis method. For example,
the available application development features of
a modeling tool like Matlab/Simulink may be re-
stricted or certain compiler optimizations may be
deactivated.

3. The method must be easily adaptable to new re-
leases of software components of the tool chain.
Expensive adaptations of the WCET method to
new releases of software components have to be
avoided.

The situation that a development tool of the tool
chain explicitly supports a specific WCET analysis
methods is currently very rare. For example, it
can be possible that a compiler provides certain
support to perform WCET analysis [6]. But such
tools are typically in a prototype state without
commercial support. Therefore, the best current

strategy for developing a WCET analysis tool is
to adapt to existing COTS software development
tools.

4. The WCET analysis method must be easy to
retarget to different hardware settings, i.e., the
implementation or configuration effort must be
small enough for an economic useability of the
WCET analysis method. Depending on the con-
crete WCET analysis method, there are in prin-
ciple two different possibilities for retargetability.
First, it can be required to order further imple-
mentation effort from the WCET tool provider.
Second, it may be possible that the tool is flex-
ible enough so that the customer can adapt the
tool by himself. The latter approach is applicable
for adequate measurement-based WCET analysis
methods.

The adaption of a WCET analysis method to new
hardware configurations can be kept easy when the
WCET analysis method is based on measurements on
the real hardware. Because in this case the WCET
analysis method does not have to provide a so-called
exec-time model, which describes the execution times
for given code sequences. In measurement-based ap-
proaches the exec-time model is substituted by mea-
surements on the real target hardware. There exist also
measurement-based WCET analysis approaches that
use hardware simulation instead of measurements on
the real hardware [3, 4]. Such approaches rely on the
existence of a cycle-accurate hardware simulator which
is often not available.

In the following section a new WCET analysis
method is presented that is able to fulfill the require-
ments from industry as given above. This WCET anal-
ysis method will be applied to program code automat-
ically generated from Matlab/Simulink models be-
cause there is additional information available about
the structure of the generated code.

3 The WCET Analysis Framework

A new WCET analysis approach is needed to ful-
fill the requirements from industry listed in Section 2.
Traditional methods based only on static code analysis
are not flexible enough to retarget them with reason-
able effort to new target processors. Though often used
in practice, end-to-end runtime measurements are not
an alternative, due to the exploding number of possible
execution paths in real-size programs.

The WCET analysis method we describe in this pa-
per is a hybrid approach of static and dynamic analy-
sis methods. The dynamic part is performed by run-



time measurements on the real hardware platform. If
available for the particular platform, the measurements
could be also performed by a cycle-accurate simulator.

Test Data

Runtime Measurement

Measured Exec−Times

WCET Calculation

Test Data Generation

aux. Path Information

WCET Bound

Test Data Specification

Source Code

Object Code

Compiler (COTS)

Static Code Analysis

Figure 1. Components of the WCET Analysis
Framework

The basic components of our WCET analysis frame-
work are shown in Figure 1. The framework takes the
program as input in both the source code and the ob-
ject representation. The translation from source code
to object code is done by a COTS compiler.

The static code analysis phase analyzes the source
code with the goal to derive information about which
test data should be generated for the runtime measure-
ment and to derive path information that will be used
by the final WCET calculation step:

Runtime Measurement is used to derive the instruc-
tion timing of paths through program segments. A
program segment is a subgraph of a program’s control
flow graph with a unique start node such that only the
start node has incoming edges from external nodes and
all outgoing edges lead to the same external node.

The measurement of a specific execution path is en-
forced by generating input data that enforce the execu-
tion of this path. A coverage criterion has to be defined
that describes the required runtime measurements. As
already discussed, exhaustive execution path measure-
ments of programs are not possible for real-size pro-
grams.

Having defined a coverage criterion, semantic code
analysis is used to calculate the required test data.
This analysis does not have to be implemented from
scratch. Instead, the idea is to transform the program

into a formal description of its program semantics that
can be directly used by an existing analysis tool to
generate the needed test data. The concrete analysis
technique for test data generation has to be selected
after evaluating its scalability regarding program size.
Typical techniques that are interesting for this task are
model checking [2, 9] or constraint-based analysis [10].
Program slicing [11] can be used to reduce the semantic
models of the program by selecting only those parts of
the code that influence the execution of a certain execu-
tion paths. Stepwise test data calculation can be used
to further reduce the number of required test data. The
idea is to calculate which further code locations will be
also executed once input data for a specific code loca-
tion have been selected. The measurements are done
using a highly retargetable measurement framework.

To keep the test suite small, a hybrid approach con-
sisting of static and dynamic WCET analysis is used.
The WCET Calculation stage uses the execution time
of each feasible path through program segments to-
gether with additional path information to calculate
the WCET bound. The relevant path information in-
cludes iteration bounds for each loop, also called loop
bounds. Depending on the code complexity, such loop
bounds may be calculated automatically. If a loop
bound cannot be calculated automatically, additional
information has to be provided by the user. When
analyzing code automatically generated from model-
ing tools like Matlab/Simulink, additional knowledge
about the structure of the code is known. As a re-
sult, most of the loop bounds in the generated code
are typically hard coded and therefore can be derived
automatically.

The WCET Calculation based on implicit path enu-
meration is done after performing the runtime mea-
surements of the program segments [8].

The challenges of this WCET analysis framework
are the automatic generation of test data and the ex-
traction of control flow information from the program
code. Both tasks cannot be done fully automatically
for arbitrary program code. Therefore, user annota-
tions respective restrictions on the code structure have
to be used.

3.1 Decomposition of Execution Traces

To keep the number of required test data for runtime
measurements within a feasible quantity, it is necessary
to decompose the program paths into smaller parts and
combine the obtained results to get the overall WCET
bound. The choice of the right length of program sub-
paths for runtime measurement is based on a trade-off
between complexity and precision. Complexity is given



by the number of required runtime measurements. In
case of complex processors having an internal state that
influences the execution time of instructions, measure-
ment precision is better when measuring longer sub-
paths of the program.

One important aspect for the decomposition of exe-
cution traces is the demanded coverage criteria for the
measurements. The coverage criteria will be defined at
the level of program segments. For using this frame-
work to obtain safe WCET bounds on a given hard-
ware platform it has to analyzed what is the possible
overestimation for particular coverage criteria.

4 Discussion

The design criteria of the measurement-based
WCET analysis framework described in Section 3
are motivated by the requirements for an industrial-
strength WCET analysis tool as summarized in Sec-
tion 2. The decision of performing the program anal-
ysis at source code level is due to the requirement of
high retargetability of the framework to new hardware
platforms. However, for certain application domains
it may be more important to have the analysis done
after the code compilation at object code level. For
example, it could be required to verify the path cov-
erage calculated for source code level at object code
level in case of critical code optimizations done by the
compiler. In this case, the concept of the measurement-
based WCET analysis using on automatic generation
of test data is the same, but the implementation would
be more hardware-dependent as it is also required to
have a parser for the object code.

Technical realizations like inserting instrumentation
code to measure the execution time of program seg-
ments are not discussed in this paper.

5 Summary and Conclusion

This paper describes a novel WCET analysis frame-
work based on runtime measurements. The require-
ments for the framework are high portability to new
target processors and an easy integration into COTS
software development tool chains. We described a hy-
brid approach using static and dynamic timing analysis
techniques. The central idea is to decompose the pro-
gram paths into smaller subpaths and use formal meth-
ods to automatically derive the required test data to
measure the execution time of the subpaths. Programs
are structured into program segments to decompose
program paths into smaller subpaths. After measuring
the execution time of subpaths, a static WCET calcu-
lation is used to obtain the WCET bound.

Future work will focus on the assessment and selec-
tion of concrete formal program analysis techniques to
generate the test data.

References

[1] G. Bernat, A. Colin, and S. M. Petters. WCET anal-
ysis of probabilistic hard real-time systems. In Proc.
23rd Real-Time Systems Symposium, pages 279–288,
Austin, Texas, USA, Dec. 2002.

[2] A. Chlipala, T. Henzinger, R. Jhala, and R. Majum-
dar. Generating tests from counterexamples. In Pro-
ceedings of the International Conference on Software
Engineering, Edinburgh, Scotland, UK, 2004.

[3] J. Engblom and A. Ermedahl. Pipeline timing analysis
using a trace-driven simulator. In Proc. 6th Interna-
tional Conference on Real-Time Computing Systems
and Applications, Hong Kong, Dec. 1999.

[4] R. Ernst and W. Ye. Embedded program timing analy-
sis based on path clustering and architecture classifica-
tion. In Proc. International Conference on Computer-
Aided Design (ICCAD ’97), San Jose, USA, 1997.

[5] R. Heckmann, M. Langenbach, S. Thesing, and
R. Wilhelm. The influence of processor architecture
on the design and results of wcet tools. Proceedings of
the IEEE, 91(7):1038–1054, Jul. 2003.

[6] R. Kirner and P. Puschner. Timing analysis of opti-
mised code. In Proc. 8th IEEE International Work-
shop on Object-oriented Real-time Dependable Systems
(WORDS 2003), pages 100–105, Guadalajara, Mex-
ico, Jan. 2003.

[7] P. Puschner. Is worst-case execution-time analysis
a non-problem? – towards new software and hard-
ware architectures. In Proc. 2nd Euromicro Interna-
tional Workshop on WCET Analysis, Technical Re-
port, York YO10 5DD, United Kingdom, June 2002.
Department of Computer Science, University of York.

[8] P. Puschner and A. V. Schedl. Computing Maximum
Task Execution Times – A Graph-Based Approach.
The Journal of Real-Time Systems, 13:67–91, 1997.

[9] S. Rayadurgam and M. P. E. Heimdahl. Coverage
based test-case generation using model checkers. In
Proc. 8th IEEE International Conference and Work-
shop on the Engineering of Computer Based Systems
(ECBS ’01), Washington DC, USA, Apr. 2001.

[10] N. T. Sy and Y. Deville. Consistency techniques for
interprocedural test data generation. In Proc. Joint
9th European Software Engineering Conference and
11th ACM SIGSOFT Symposium on the Foundation of
Software Engineering (ESEC/FSE03), Helsinki, Fin-
land, 2003.

[11] F. Tip. A survey of program slicing techniques. Jour-
nal of Programming Languages, 3(3):121–189, 1995.


