Optimizing JVM Object Operations to Improve WCET Predictability

Angelo Corsaro!, Corrado Santoro?

"'Washington University
Department of Computer Science and Engineering
1 Brookings Drive, BOX 1045, St. Louis, 63130
Missouri, USA
EMail: corsaroQcse.wustl.edu

Abstract

This paper describes the optimizations introduced in
Juice, a J2MFE virtual machine for embedded systems.
These optimizations are designed to make possible the
determination of the WCET of the JVM bytecodes re-
lated to object and array management. The solution
proposed, which is based on subdividing the heap in a
set of chunks of fized size, allows to execute those byte-
codes either in a constant time or in a linear time with
an upper bound that can be determined.

1 Introduction

In real-time systems, determination of the worst-
case execution time (WCET) plays a fundamental role
in task feasibility analysis and scheduling. Frameworks
for WCET analysis [1] are based on determining the ex-
pected execution time of each instruction of the given
task. In a real-time Java environment, this implies
to obtain the WCET of each Java bytecode. Such an
analysis could be hard for those bytecodes that need
to manipulate Java heap or access the structure of in-
volved objects, class/interface hierarchy, etc. In such a
context, this paper describes the optimizations intro-
duced in Juice [3], a J2ME virtual machine designed by
the authors to be run upon NUXI [5], a light executive
for Intel-based embedded systems®. Juice uses a heap
management technique and an object layout that facil-
itate object allocation, object’s attributes access and
garbage collection. The employed technique allows to
perform these operations in a predictable time. The
paper focuses on object allocation/deallocation and at-
tribute reading/writing, showing how these operation

INUXI can be downloaded at http://nuxi.iit.unict.it

2University of Catania
Dept. of Computer Science and
Telecommunication Engineering
Viale A. Doria, 6 - 95125 - Catania, Italy
EMail: csanto@diit.unict.it

can advantage of the proposed heap management tech-
nique.

2 Heap Management

Operations related to heap management are those
executed when an object has to be allocated or col-
lected. In general, the time required to perform the
creation of a new object depends on the size of the ob-
ject that, in turn, depends on the amount of attributes
declared in the object’s class and in its ancestors. The
operations required for object allocation can be sum-
marized as: (i) determine the number and the type
of the attributes, in order to compute the size of the
memory area to allocate in the heap, and () find a
contiguous area of free memory, in the heap, where to
allocate the created object.

The former operation could imply to navigate class
hierarchy in order to find all the attributes the object
possesses; indeed, number of attributes can be com-
puted at class loading time, thus storing object size in
a field of the structure representing the class in mem-
ory. The latter operation instead implies to scan the
heap until a piece of free memory, whose size is greater
than or equal to the requested amount, is found. This
operation requires, in general, a time dependent on the
size of the heap and of the object [4, 6]. This means
that the WCET of such an operation cannot be exactly
computed, but only upper bounded with a limit that
depends on heap size.

To overcome the problems above, we propose a tech-
nique that, by borrowing some principles from Unix-
style file system handling, provides an efficient algo-
rithm to allocate any object in a time that depends
only on the size of the allocated object, a parameter
that can be exactly estimated with a static bytecode
analysis. Our solution subdivides the entire heap in

c=] EEEEE Sereeee-— IEEEERE Seer > data[H+(B+1)B-3]

object pointer N > datalH-3] ;-->| data[H+B-3]
header data[H+B-4] data[H+2B-4]
I
a.e.l.[] - > data[H+BB-3]
data[H-4] | ¢ - L "7°°

data[H+(B+1)B-4]

data[H+(B+2)B-4]

> --=| data[H+BBB+BB-3]

data[H+BBB+BB+B-4]

Figure 1. Object Data Allocation Policy

a sequence of chunks of a fixed size C'S. All chunks
are organized in a linked list, started by a pointer F'C
representing the free list of chunks (the first four bytes
of each chunk represent the pointer to the next free
chunk). Allocating a chunk means to pick it from F'C,
moving the latter to the next free chunk; while releas-
ing a chunk implies to place it at the head of the free
list, thus updating F'C' accordingly.

Using such a memory layout, allocating an object,
given its size S, implies to pick a number of free chunks
equal to NC = (%], operation that does not re-
quire to walk the heap and whose duration can be
predictable. Similarly, releasing an object implies to
return allocated chunks to the free list.

With such an allocation policy, the main issue is
that the allocated chunks could not be contiguous and
object’s data could be spread over different chunks; a
technique to suitably link those chunks together is thus
needed, and it also must take into account that object’s
data access has to be fast and predictable.

2.1 Object Allocation Policy in Juice

In Juice, a Java object is composed of a header,
which contains information such as the pointer to the
corresponding class, the object’s monitor, etc., and a
data, which contains the array of object’s fields. If the
object is an array, data contains the array elements.
We make the following assumptions: (¢) chunks are
double-word (32-bit) aligned, thus CS is a multiple
of 4. We call B = % the number of d-words of a
chunk?; (ii) the chunk size is greater than the size of
header, i.e. size(header) < CS; and (ii7) header is
structured in such a way as to be double-word aligned,
we call H = w the number of d-words left
in a chunk after the object header. When an object is
small, i.e. size(header) + size(data) < CS, a single
memory chunk is enough; otherwise, the first part of
the chunk is filled with header while data is placed in

2This choice is due to the fact that most of the JVM types
are 4-bytes long (integer, floats, object and array pointers, etc.).

the remaining chunk part and in other chunks linked
using a hierarchical structure of forwarding pointers as
depicted in Figure 1. In particular, d-words from 0 to
H — 4 after object header store the corresponding el-
ements of object’s data, while d-words from H — 3 to
H —1 are used as single-, double- and triple-indirection
links to other chunks, each one containing B data ele-
ments. Therefore, as detailed in Figure 1, d-word H —3
is a pointer to a chunk containing elements from H — 3
to H+ B—4, d-word H —2 points to a chunk containing
pointers to chunks containing elements, etc.

3 WCET for Object Operations
3.1 Object Allocation

In traditional heap management techniques, the
time required to allocated a new object depends on
the sizes of both the heap and the object to allocate.
In the proposed approach we need to pick a number of
chunks, from the free list, equal to:

- H
1+V7+3

B -‘+L1093(n_H+3)J+{”_7H+3J

BB
(1)

where n is the number of object fields or array elements.
This number depends only on object size and, if B is
a power of 2, it can be easily calculated using bit-shift
and if instructions.

Using the relation above, the WCET of the new byte-
code can be exactly computed. The only exception is
the use of the Class.forName () construct to load and
instantiate a new object; in this case, the type of the
object—and thus its size—is unknown until runtime
and the WCET cannot be exactly computed: only an
upper bound can be determined by assuming a rea-
sonable maximum number of attributes that an object
could have (in Juice, we assumed that an object cannot
have more than 255 attributes).

3.2 Array Allocation

Java treats arrays as objects: an array of elements of
type “T” is treated as an object of class “[T” (“array of
T”). For this reason, the structure of an array, in Juice,
is the same of an object, given that it has no attributes
and the data part is used to represent array elements.
Allocating an array, given that its size is known, im-
plies to perform the same operations done for object
allocation, and thus the calculation of the WCET is
subject to the same formula 1. However, if the array
size is known only at runtime (and this could happen
very often), a different approach is needed. Indeed,
this is a common problem of WCET computation in
presence of dynamic arrays, and should be solved with
other well-known techniques, such as by determining
an upper bound, using annotation, etc. [1].

3.3 Reading/Writing Attributes

Reading and Writing object attributes is per-
formed, in Java, by means of the bytecodes
getfield/getstatic and putfield/putstatic.

Since Juice is a virtual machine for embedded sys-
tem, Java classes are intended to be “ROM’ized”. To
this aim, Juice adopts an ahead-of-time pre-link and
resolution process that, together with transforming
classes into a ROMable representation, replaces each
get-/putfield attribute with the “quick” version. At-
tribute index is thus referred to the array stored in the
object. Given that attributes can be spread over dif-
ferent chunks, the access could require to navigate the
chain of pointers. The code of such an operation is
reported in Figure 2 for the getfield bytecode: as it
can be seen, it is fast and its WCET can be exactly
determined.

3.4 JuiceHeap Layout and Garbage Collection

One of the main known issues that impede the use
of Java in (hard) real-time environments is the pres-
ence of the garbage collector. The instants in which
the GC is activated and the duration of its execution
cannot be predicted, and thus any WCET /schedulabil-
ity analysis is, in general, impossible. Such problems
are overcome by the Real-Time Specification for Java
(RTSJ) [2] with the introduction of scoped memory.

In our approach, the use of memory chunks greatly
simplifies garbage collection, independently of the par-
ticular algorithm that is then used (reference-counting,
three-color-marking, etc.). In fact, chunks are fixed-
sized and free chunks are organized in a linked list,
therefore no compacting process is needed. Collecting

dword getfield_quick (HOBJECT p, int index)
{
dword * pl, * p2, * p3;
if (index < (H - 3)) return p->datal[index];
index -= (H - 3);
if (index < B) {
// follow index at H - 3
pl = (dword *)p->datal[H - 3];
return pl[index];
}
index -= B;
if (index < BxB) {
// follow index at H - 2
p2 = (dword *)p->datalH - 2];
pl = (dword *)p2[index / B];
return pl[index % BI;

}

// follow index at H - 1

index -= B*B;

int 10 = index / (B*B);

int i1 = (index % (B*B)) / B;

int i2 = index % B;
= (dword *)p->datalH - 1];
p2 = (dword *)p3[i0];
pl = (dword *)p2[ill;
return pl1[i2];

Figure 2. Juice’s getfield code fragment

an object no longer used implies to return the asso-
ciated chunks to the free list, one-by-one, operation
that can be performed also incrementally, n chunks per
time. Using such a characteristic, the garbage collector
of Juice? is designed to perform a known number of op-
erations each time it is invoked. More specifically, the
cost to pay when an object occupying n chunks has to
be allocated is to ask the garbage collection to free, at
most, n unreferenced chunks. With such an approach,
execution of the GC is always tied to object allocation
(i.e. when new free memory could be needed) and its
duration can be predicted.

4 Known Issues

The heap management policy presented in this pa-
per, even if it guarantees good allocation performances
and predictability in WCET determination, suffers of
two main problems: limited number of fields/array el-
ements and memory fragmentation.

4.1 Limited data e ements

As shown in Figure 1, the maximum number of ele-
ments the data part can refer is H+BBB+ BB+ B—4.
In Juice, where we chose B = 32 (and thus H = 24),
this limit is equal to 33844. It is enough for object’s

31In the current implementation, the GC is based on a simple
reference-counting

attribute, but it could be a problem for array alloca-
tion. A possible solution could be to increase B, but,
as we will see in the following, this choice provokes an
increment of memory internal fragmentation. The so-
lution adopted in Juice is to flag large arrays with a bit
in the header, and add another level of indirection in
the data array. This implies an upper bound equal to
H+BBBB+BBB+ BB+ B—5,i.e. 1082419 elements
when B = 32. This new upper bound can now be con-
sidered enough for embedded applications. However,
the introduction of such a variation implies an addi-
tional cost in accessing array elements, which is useless
when the limit of 33844 elements is not overcome by
the application: thus, in Juice, a command-line flag is
used to activate the “large array” option.

4.2 Memory Fragmentation

The proposed approach provokes both external and
internal fragmentation. The former is due to the fact
that an object could be spread over non-contiguous
chunks: this does not fit the working scheme of a
CPU cache and thus can lead to performance reduc-
tion. However, we remind that, in general, the use of
caching could be a problem for (hard) real-time sys-
tems, since caches may introduce large jitters in CPU
opcode executions thus affecting WCET calculation.

Internal fragmentation, derived from the unused
space left in chunks, is instead more important, since
it implies a reduction of the amount of available mem-
ory. For this reason, the value of B should be chosen in
such a way as to find a good compromise between the
allowed mazimum number of object’s attributes and ar-
ray elements, which is M = H+ BBB+ BB+ B—4, and
the degree of internal fragmentation. Figure 3 reports
the trend of M and the amount of wasted memory, due
to internal fragmentation, with respect to a value of B
ranging from 16 to 128 d-words. The amount of wasted
memory is measured considering 10, 50, 100 and 500
allocated objects with no attributes, thus producing
the maximum fragmentation. As Figure 3 reports, the
wasted memory with 500 objects, choosing B = 32
as in Juice, is approximatively 42 KBytes, a not-so-
high cost to be payed for the use of fixed-sized memory
chunks.

5 Conclusions

This paper described the heap management and ob-
ject allocation techniques employed in the Juice virtual
machine. As it has been shown, the proposed approach
was studied in order to have operations for object al-
location and access not only optimized but, above all,

1le+07

Attribute/Array Bound M —+—
Wasted Memory (10 objects) ---x---
Wasted Memory (50 objects) ------

Wasted Memory (100 objects) &
Wasted Memory (500 objects) —-®—

1e+06 -

100000

DBDBD

10000 ™~

X

1000 ¥ %

Attribute/Array Bound M and Wasted Memory (in bytes)

100

.<<.,—I'"/l>

mxem X

16 3‘2 6;4

B
Figure 3. Wasted Memory due to Internal
Fragmentation

with a predictable execution time, making possible the
determination of WCET.

References

[1] I. Bate, G. Bernat, and P. Puschner. Java
Virtual-Machine Support for Portable Worst-Case
Execution-Time Analysis. In Proc. 5th IEEE
ISORC 2002, pages 83-90, Apr. 2002.

[2] Bollella, Gosling, Brosgol, Dibble, Furr, Hardin,
and Turnbull. The Real-Time Specification for
Java. Addison-Wesley, 2000.

[3] A. Corsaro and C. Santoro. A C++ Native In-
terface for Interpreted JVMs. In 15¢ Intl. JTRES
Workshop (JTRES’03). LNCS 2889, Springer,
2003.

[4] S. M. Donahue, M. P. Hampton, M. Deters, J. Nye,
R. Cytron, and K. Kavi. Storage allocation for real-
time, embedded systems. In Thomas A. Henzinger
and Christoph M. Kirsch, editors, Embedded Soft-
ware: Proceedings of the First International Work-
shop, pages 131-147. Springer Verlag, 2001.

[5] C. Santoro. An Operating System in a Nutshell. In-
ternal Report, Dept. of Computer Engineering and
Telecommunication, UniCT, Italy, 2002.

[6] Paul R. Wilson, Mark S. Johnstone, Michael Neely,
and David Boles. Dynamic storage allocation: A
survey and critical review. In Proc. Int. Workshop
on Memory Management, Kinross Scotland (UK),
1995.

128

