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Abstract. A novel adaptive and patch-based approach is proposed for
image regularization and representation. The method is unsupervised
and based on a pointwise selection of small image patches of fixed size
in the variable neighborhood of each pixel. The main idea is to asso-
ciate with each pixel the weighted sum of data points within an adaptive
neighborhood and to use image patches to take into account complex
spatial interactions in images. In this paper, we consider the problem
of the adaptive neighborhood selection in a manner that it balances
the accuracy of the estimator and the stochastic error, at each spa-
tial position. Moreover, we propose a practical algorithm with no hid-
den parameter for image regularization that uses no library of image
patches and no training algorithm. The method is applied to both ar-
tificially corrupted and real images and the performance is very close,
and in some cases even surpasses, to that of the best published denoising
methods.

1 Introduction

Most of the more efficient regularization methods are based on energy functionals
minimization since they are designed to explicitly account for the image geome-
try, involving the adjustment of global weights that balance the contribution of
prior smoothness terms and a fidelity term [23, 28]. Thus, related partial differ-
ential equations (PDE) and variational methods have shown impressive results
to tackle the problem of edge-preserving smoothing [24, 28, 32] and more recently
the problem of image decomposition [1]. Moreover, other smoothing algorithms
aggregate information over a neighborhood of fixed size, based on two basic cri-
teria: a spatial criterion to select points in the vicinity of the current point and
a brightness criterion in order to choose only points which are similar in some
sense. In view of this generic approach, a typical filter is the sigma filter [19]
and a continuous version of this filter gives the well-known nonlinear Gaussian
filter [14]. Finally, if we substitute a Gaussian window to the hard disk-shaped
window around the current position, we get variants of the bilateral filtering [31],
controlled by setting the standard deviations in both spatial and brightness do-
mains. Nevertheless, as effective as bilateral filtering and variants, they lacked a
theoretical basis and some connections to better understood methods have been
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investigated. In particular, the relationships between bilateral filtering and iter-
ative mean-shift algorithm, local mode filtering, clustering, local M-estimators,
non-linear diffusion, regularization approaches combining nonlocal data and non-
local smoothness terms, and Beltrami flow, can be found in [33, 11, 3, 22, 29].

Nevertheless, we note that all cited methods have a relatively small number
of regularity parameters that control the global amount of smoothing being per-
formed. They are usually chosen to give a good and global visual impression and
are sometimes heuristically chosen [31]. Furthermore, when local characteristics
of the data differ significantly across the image domain, selecting local smooth-
ing parameters seems more satisfying and, for instance, has been addressed in
[4, 13, 5, 8]. But, what makes image regularization very hard, is that natural
images often contain many irrelevant objects. To develop better image enhance-
ment algorithms that can deal with such a structured noise, we need explicit
models for the many regularities and geometries seen in local patterns. This
corresponds to another line of work which consists in modeling non-local pair-
wise interactions from training data [35] or a library of natural image patches
[12, 27]. The idea is to improve the traditional Markov random field (MRF)
models by learning potential functions from examples and extended neighbor-
hoods for computer vision applications [35, 12, 27]. In our framework, we will
also assume that small image patches in the semi-local neighborhood of a point
contains the essential process required for local smoothing. Thus, the proposed
patch-based regularization approach is conceptually very simple being based on
the key idea of iteratively increasing a window at each pixel and adaptively
weighting input data. The data points with a similar patch to the central patch
will have larger weights in the average. We use 7 × 7 or 9 × 9 image patches to
compute these weights since they are able to capture most of local geometric
patterns and texels seen in images. Note also that, it has been experimentally
confirmed that intuitive exemplar-based approaches are fearsome for 2D texture
synthesis [10] and image inpainting [34, 9]. Nevertheless, we propose here a theo-
retical framework for choosing a semi-local neighborhood adapted to each pixel.
This neighborhood which could be large, is chosen to balance the accuracy of
the pointwise estimator and the stochastic error, at each spatial position [20].
This adaptation method is a kind of change-point detection procedure, initiated
by Lepskii [20]. By introducing spatial adaptivity, we extend the work earlier
described in [7] which can be considered as an extension of bilateral filtering [31]
to image patches. The related works to our approach are the unsupervised recent
non-local means algorithm [7], nonlinear Gaussian filters [31, 33, 22] and statis-
tical smoothing schemes [25, 16, 17], but are enhanced via incorporating either a
variable window scheme or patch-based weights. Finally, to our knowledge, the
more related competitive methods for image denoising, are recent wavelet-based
methods [30, 26]. In our experiments, we have then reported the results when
these methods are applied to a commonly-used image dataset [26]. We show that
the performance of our method surpasses most of the already published and very
competitive denoising methods [30, 26, 27, 7].
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2 Patch-Based Approach

Consider the following basic image model: Yi = u(xi) + εi, i = 1, . . . , |G| where
xi ∈ G ⊂ R

d, d ≥ 2, represents the spatial coordinates of the discrete image
domain of |G| pixels, and Yi ∈ R+ is the observed intensity at location xi.
We suppose the errors εi to be independent, distributed Gaussian zero-mean
random variables with unknown variances σ2. In order to recover u : R

d → R

from noisy observations, we suppose there exists repetitive patterns in the semi-
local neighborhood of a point xi. In particular, we assume that the unknown
image u(xi) can be calculated as the weighted average of input data over a
variable neighborhood ∆i around that pixel xi. Henceforth, the points xj ∈ ∆i

with a similar regularized patch uj to the reference regularized image patch ui

will have larger weights in the average. Now, we just point out that our ambition
is not to learn generic image priors from a database of image patches as already
described in [35, 12, 27], but we just consider image patches as non-local image
features, and adapt kernel regression techniques for image regularization.

For simplicity, an image patch ui is modeled as a fixed size square window
of p × p pixels centered at xi. In what follows, ui will denote indifferently a
patch or a vector of p2 elements where the pixels are concatenated along a fixed
lexicographic ordering. As with all exemplar-based techniques, the size of image
patches must be specified in advance [10, 34, 9, 7]. We shall see that a 7×7 or 9×9
patch is able to take care of the local geometries and texture in the image while
removing undesirable distortions. In addition, the proposed approach requires
no training step and may be then considered as unsupervised. This makes the
method somewhat more attractive for many applications.

Another important question under such an estimation approach is how to
determine the size and shape of the variable neighborhood (or window) ∆i at
each pixel, from image data. The selected window must be different at each
pixel to take into account the inhomogeneous smoothness of the image. For the
sake of parsimony, the set N∆ of admissible neighborhoods will be arbitrarily
chosen as a geometric grid of nested square windows N∆ = {∆i,n : |∆i,n| =
(2n+1)×(2n+1), n=1, . . . , N∆}, where |∆i,n| = #{xj ∈ ∆i,n} is the cardinality
of ∆i,n and N∆ is the number of elements of N∆. For technical reasons, we
will require the following conditions: ∆i,n is centered at xi and ∆i,n ⊂ ∆i,n+1.
Finally, we focus on the local L2 risk as an objective criterion to guide the
optimal selection of the smoothing window for constructing the “best” possible
estimator. This optimization will be mainly accomplished by starting, at each
pixel, with a small window ∆i,0 as a pilot estimate, and increasing ∆i,n with n.
The use of variable and overlapping windows combined with adaptive weights
contributes to the regularization performance with no block effect.

Adaptive estimation procedure. The proposed procedure is iterative [25, 17]
and works as follows. At the initialization, we choose a local window ∆i,0 con-
taining only the point of estimation xi (|∆i,0| = 1). A first estimate ûi,0 (and
its variance υ̂2

i,0 = Var(ûi,0)) is then given by: ûi,0 = Yi and υ̂2
i,0 = σ̂2 where

an estimated variance σ̂2 has been plugged in place of σ2 since the variance
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of errors are supposed to be unknown. At the next iteration, a larger window
∆i,1 with ∆i,0 ⊂ ∆i,1 centered at xi is considered. Every point xj from ∆i,1
gets a weight πi∼j,1 defined by comparing pairs of p × p regularized patches

ûi,0 =
(

û
(1)
i,0 , · · · , û(p2)

i,0

)T

and ûj,0 =
(

û
(1)
j,0 , · · · , û(p2)

j,0

)T

obtained at the first iter-
ation. Note that p is fixed for all the pixels in the image. As usual, the points xj

with a similar patch to ûi,0 will have weights close to 1 and 0 otherwise. Then we
recalculate an new estimate ûi,1 defined as the weighted average of data points
lying in the neighborhood ∆i,1. We continue this way, increasing with n the
considered window ∆i,n while n ≤ N∆ where N∆ denotes the maximal number
of iterations of the algorithm. For each n ≥ 1, the studied maximum likelihood
(ML) estimator ûi,n and its variance υ̂2

i,n can be then represented as

ûi,n =
∑

xj∈∆i,n

πi∼j,n Yj , υ̂2
i,n = σ̂2

∑

xj∈∆i,n

[πi∼j,n]2 (1)

where the weights πi∼j,n are continuous variables and satisfy the usual conditions
0 ≤ πi∼j,n ≤ 1 and

∑

xj∈∆i,n
πi∼j,n = 1. In our modeling, these weights are

computed from pairs of regularized p × p patches ûi,n−1 and ûj,n−1 obtained at
iteration n − 1 and p is fixed for all the pixels in the image. In what follows, n
will coincide with the iteration and we will use n̂(xi) to designate the index of

the “best” window ̂∆(xi)
def
= ̂∆i,n̂(xi) and the “best” estimate û(xi)

def
= ûi,n̂(xi).

Among all non-rejected window ∆i,n from N∆, the optimal window is chosen as

̂∆(xi) = arg max
∆i,n∈N∆

{|∆i,n| : |ûi,n − ûi,n′ | ≤ � υ̂i,n′ , for all 1 ≤ n′ < n}

where � is a positive constant. Throughout this paper, we shall see the rational
behind this pointwise statistical rule and the proposed strategy that updates the
pointwise estimator when the neighborhood increases at each iteration [25].

Adaptive weights. In order to compute the similarity of between patches ûi,n

and ûj,n, a distance must be first considered. In [10, 34, 9, 7], several authors
showed that the L2 distance ‖ûi,n − ûj,n‖2 is a reliable measure to compare
image patches. To make a decision, we have rather used a normalized distance

dist(ûi,n−1, ûj,n−1) =
1
2

[

(ûi,n−1 − ûj,n−1)
T

̂V−1
i,n−1 (ûi,n−1 − ûj,n−1) (2)

+ (ûj,n−1 − ûi,n−1)
T

̂V−1
j,n−1 (ûj,n−1 − ûi,n−1)

]

where ̂V·,n−1 is p2 × p2 diagonal matrix of the form (the symbol “·” is used to
denote a spatial position)

̂V·,n−1 =

⎛

⎜

⎜

⎜

⎝

(

υ̂
(1)
·,n−1

)2
0 · · · 0

...
...

...
...

0 · · · 0
(

υ̂
(p2)
·,n−1

)2

⎞

⎟

⎟

⎟

⎠
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and υ̂
(�)
·,n−1, � = 1, · · · , p2, is the local standard deviation of the estimator û

(�)
·,n−1,

and the index � is used to denote a spatial position in an image patch û·,n−1 =
(

û
(1)
·,n−1, · · · , û

(�)
·,n−1, · · · , û

(p2)
·,n−1

)T

. Moreover, we used a symmetrized distance to
test both the hypotheses that xj belongs to the region ∆i,n and xi belongs to the
region ∆j,n, at the same time. Accordingly, the hypothesis ûi,n−1 and ûj,n−1 are
similar, is accepted if the distance is small, i.e. dist(ûi,n−1, ûj,n−1) ≤ λα. In our
modeling, the parameter λα ∈ R+ is chosen as a quantile of a χ2

p2,1−α distribution
with p2 degrees of freedom, and controls the probability of type I error for the
hypothesis of two points to belong to the same region: P {dist(ûi,n−1, ûj,n−1) ≤
λα} = 1 − α. All these tests (|∆i,n| tests) have to be performed at a very high
significance level, our experience suggesting to use a 1 − α = 0.99-quantile.
Henceforth, we introduce the following commonly-used weight function

πi∼j,n =
K

(

λ−1
α dist(ûi,n−1, ûj,n−1)

)

∑

xj∈∆i,n

K
(

λ−1
α dist(ûi,n−1, ûj,n−1)

)
(3)

with K(·) denoting a monotone decreasing function, e.g. a kernel K(x) =
exp(−x/2). Due to the fast decay of the exponential kernel, large distances be-
tween estimated patches lead to nearly zero weights. Note that the use of weights
enables to relax the structural assumption the neighborhood is a variable square
window.

An “ideal” smoothing window. In this section, we address the problem of
the automatic selection of the window ∆i,· adapted for each pixel xi. It is well
understood that the local smoothness varies significantly for point to point in
the image and global risk measures cannot wholly reflect the performance of
estimators at a point. Then, a classical way to measure the performance of the
estimator ûi,n to its target value u(xi) is to choose the local L2 risk, which is
explicitly decomposed into the sum of the squared bias ̂b2

i,n and variance υ̂2
i,n:

[

E|ûi,n − u(xi)|2
]1/2

= |̂b2
i,n + υ̂2

i,n|1/2. (4)

Our goal is then to minimize this local L2 risk with respect to the size of the
window ∆i,n, at each pixel in the image. Actually, the optimal solution explicitly
depends on the smoothness of the “true” function u(xi) which is unknown, and
so, of less practical interest [16]. A natural way to bring some further under-
standing of the situation is then to individually analyze the behavior of the bias
and variance terms when ∆i,n increases or decreases with n as follows:

– The bias term ̂bi,n = E [ûi,n − u(xi)] is nonrandom and characterizes the
accuracy of approximation of the function u at the point xi. As it ex-
plicitly depends on the unknown function u(xi), its behavior is doubtful.
Nevertheless, if we use the geometric inequality |xj − xi| ≤

√
2

2 |∆i,n|1/2

and assume that there exists a real constant 0 < C1 < ∞ such that
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|u(xj) − u(xi)| ≤ C1|xj −xi|, then |̂bi,n| ≤ C1√
2
|∆i,n|1/2. Accordingly, |̂bi,n|2

is of the order O(|∆i,n|) and typically increases when ∆i,n increases (see also
[16]).

– The behavior of the variance term is just opposite. The errors are indepen-
dent and the stochastic term υ̂2

i,n can be exactly computed on the basis of
observations. Since 0 ≤ πi∼j,n ≤ 1 and

∑

xj∈∆i,n
πi∼j,n = 1, it follows that

σ̂2|∆i,n|−1 ≤ υ̂2
i,n ≤ σ̂2. In addition, we can reasonably assume that there

exits a constant 0 ≤ γ2 ≤ 1 such that υ̂2
i,n ≈ σ̂2|∆i,n|−γ2

. Accordingly, as
∆i,n increases, more data is used to construct the estimate ûi,n, and so υ̂2

i,n

decreases.

Therefore, the bias and standard deviation terms are monotonous functions with
opposite behaviors. In order to approximately minimize the local L2 risk with
respect to |∆i,n|, a natural idea would be to minimize an upper bound of the form

E|ûi,n − u(xi)|2 ≤ C2
1

2
|∆i,n| + σ̂2|∆i,n|−γ2

.

Unfortunately, the size of the optimal window defined as |∆�(xi)| =
[

2γ2σ̂2

C2
1

] 1
γ2+1

cannot be used in practice since C1 and γ are unknown. However, for this optimal
solution |∆�(xi)|, it can be easily shown that the ratio between the optimal bias
b�(xi) and the optimal standard deviation υ�(xi) is not image dependent, i.e.
|b�(xi)| ≤ γυ�(xi). Accordingly, the ideal window will be chosen as the largest
window ∆i,n such that ̂bi,n is still not larger than γυ̂i,n, for some real value
0 ≤ γ2 ≤ 1: ∆�(xi) = sup∆i,n∈N∆

{|∆i,n| : ̂bi,n ≤ γυ̂i,n}.
Now, we just point out that the estimator ûi,n is usually decomposed as

ûi,n = u(xi) + ̂bi,n + νi where νi ∼ N (0, E[ν2
i ]). Hence, E[ûi,n] = u(xi) + ̂bi,n,

E[ν2
i ] = E[|ûi,n − u(xi) − ̂bi,n|2] def

= υ̂2
i,n and the following inequality |ûi,n −

u(xi)| ≤ ̂bi,n + κ υ̂i,n holds with a high probability for 0 < κ < ∞. Accordingly,
we can modify the previous definition of the ideal window as follows

∆�(xi) = sup
∆i,n∈N∆

{|∆i,n| : |ûi,n − u(xi)| ≤ (γ + κ) υ̂i,n}, (5)

which depends no longer on ̂bi,n. In the next section, we shall see that a practi-
cal data-driven window selector based on this definition of ∆�(xi) which is yet
related to the ideal and unobserved function u(xi), can actually be derived.

A data-driven local window selector. In our approach, the collection of esti-
mators {ûi,1, . . . , û(xi)} is naturally ordered in the direction of increasing |∆i,n|
where û(xi) can be thought as the best possible estimator with the smallest
variance. A selection procedure can be then described based on pairwise com-
parisons of an essentially one-dimensional family of competing estimators ûi,n.
In this modeling, the differences ûi,n − ûi,n′ are Gaussian random variables with
known variances Var(ûi,n − ûi,n′) ≤ υ̂2

i,n′ with 1 ≤ n′ < n , and expectations
equal to the bias differences ̂bi,n −̂bi,n′ . From the definition of ∆�(xi) (see (5)),
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we derive |ûi,n′ − ûi,n| ≤ (2γ + κ)υ̂i,n′ , 1 ≤ n′ < n, and, among all good
candidates {ûi,n} satisfying this inequality, one choose the one with the smallest
variance υ̂2

i,n. Following the above discussion, a window selector will be then
based on the following pointwise rule [20, 21]:

̂∆(xi) = arg max
∆i,n∈N∆

{|∆i,n| : |ûi,n − ûi,n′ | ≤ � υ̂i,n′ , for all 1 ≤ n′ < n} (6)

where � = (2γ+κ). This rule actually ensures the balance between the stochastic
term and the bias term, and means that we take the largest window such that the
estimators ûi,n and ûi,n′ are not too different, in some sense, for all 1 ≤ n′ < n
(see [18]). Hence, if an estimated point ûi,n′ appears far from the previous ones,
this means that the bias is already too large and the window ∆i,n is not a good
one. This idea underlying our construction definitely belongs to Lepskii [20, 21].

Implementation. At the initialization, we naturally choose |∆i,0| = 1, the fixed
size of p × p patches and choose the number of iterations N∆. In addition, the
noise variance σ̂2 is robustly estimated from input data (see [17]). To complete

Algorithm. Let {p, α, �, N∆} be the parameters

Initialization: compute σ̂2 and set ûi,0 = Yi and υ̂2
i,0 = σ̂2 for each xi ∈ G.

Repeat

– for each xi ∈ G
• compute

πi∼j,n =
K

(

λ−1
α dist(ûi,n−1, ûj,n−1)

)

∑

xj∈∆i,n

K
(

λ−1
α dist(ûi,n−1, ûj,n−1)

)

ûi,n =
∑

xj∈∆i,n

πi∼j,n Yj , υ̂2
i,n = σ̂2

∑

xj∈∆i,n

[πi∼j,n]2

• choose the window as

̂∆(xi) = arg max
∆i,n∈N∆

{

|∆i,n| : |ûi,n − ûi,n′ | ≤ � υ̂i,n′ , for all 1 ≤ n′ < n
}

.

If this rule is violated at iteration n, we do not accept ûi,n and keep the estimate
ûi,n−1 as the final estimate at xi, i.e. û(xi) = ûi,n−1 and n̂(xi) = n − 1. This
estimate is unchanged at the next iterations and xi is “frozen”.

– increment n

while n ≤ N∆.

Fig. 1. Patch-based image regularization algorithm
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the procedure, we choose � ∈ [2, 4] in order to get a good accuracy for the
pointwise estimator (see [18] for the proof) and λα as a 1 − α = 0.99-quantile of
a χ2

p2,1−α distribution. Finally, the complexity of the algorithm given in Fig. 1,
is of the order p × p × |G| × (|∆·,1| + . . . + |∆·,N∆ |).

3 Experimental Results

Our results were measured by the peak signal-to-noise ratio (psnr) in decibels
(db) as psnr = 10 log10(2552/MSE) with MSE = |G|−1∑

xi∈G(uo(xi) − û(xi))2

where u0 is the noise-free original image. We have done simulations on a commonly-
used set of images available athttp://decsai.ugr.es/∼javier/denoise/test
images/ and described in [26]. In all our experiments, we have chosen image
patches of 9 × 9 pixels and set the algorithm parameters as follows: λ0.01 =
χ2

81,0.01 = 113.5, � = 3 and N∆ = 4 (see [18]). The processing of a 256 × 256
image required typically about 1 minute (p = 9) on a PC (2.0 Ghz, Pentium IV)
using a C++ implementation. The potential of the estimation method is mainly
illustrated with the 512 × 512 lena image (Fig. 2a) corrupted by an additive
white-Gaussian noise (WGN) (Fig. 2b, psnr = 22.13 db, σ = 20). In Fig. 2c,
the noise is reduced in a natural manner and significant geometric features, fine
textures, and original contrasts are visually well recovered with no undesirable

Fig. 2. Denoising of the artificially corrupted lena image (WGN, σ = 20)
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Fig. 3. Denoising results on the noisy lena image (WGN, σ = 20). a) Our method (psnr

= 32.64), b) NL-means filter [7] (psnr=31.09), c) Fields-of-Experts [27] (psnr=31.92),
d) wavelet-based denoising method (BLS-GSM) [26] (psnr=32.66).

Fig. 4. Detail of the barbara image. From left to right: original image, artificially cor-
rupted image (WGN, σ = 30), result of our patch-based method, difference between
the noisy image and the regularized image (noise component).

artifacts (psnr = 32.64 db). The noise component is shown in Fig. 2e (magnifi-
cation factor of 2) and has been estimated by calculating the difference between
the noisy image (Fig. 2b) and the recovered image (Fig. 2c). The estimated
noise component contains few geometric structures and is similar to a simulated
white Gaussian noise. To better appreciate the accuracy of the denoising pro-
cess, the variance υ̂2(xi) of the pointwise estimator û(xi) is shown in Fig. 2d
where dark values correspond to high-confidence estimates. As expected, pixels
with a low level of confidence are located in the neighborhood of image discon-
tinuities. Figure 2f shows the probability of a patch û(xi) occurring in ̂∆(xi):

P{û(xi) occurring in ̂∆(xi)}
def
= #Ω(xi)/| ̂∆(xi)| where Ω(xi) is used to denote

the set {xj ∈ ̂∆(xi) : dist(û(xi), û(xj)) ≤ λα}. In Fig. 2f, dark values correspond
low probabilities of occurrence and, it is confirmed that repetitive patterns in
the neighborhood of image discontinuities are mainly located along image edges.
Our approach is also compared to the non-local means algorithm [7] using 7 × 7
image patches and a fixed search window of 21 × 21 pixels as recommended by
the authors: the visual impression and the numerical results are improved using
our algorithm (see Fig. 3b). Finally, we have compared the performance of our
method to the Wiener filtering (WF) (Matlab function wiener2) and other com-
petitive methods [28, 31, 24], including recent patch-based approaches [7, 27] and
pointwise adaptive estimation approaches [25, 17]. We point out that, visually
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Fig. 5. Real noisy photographs (top) and restoration results (bottom)

noisy (left) and denoised (middle) y − t noisy (top) and denoised (middle) x − t
images, and variance image (right) images, and variance image (bottom)

Fig. 6. Results on a 2D image depicting trajectories of vesicles of transport in the
spatio-temporal planes y − t (left) and x − t (right) (analysis of Rab proteins involved
in the regulation of transport from the Golgi apparatus to the endoplasmic reticulum).

and quantitatively, our very simple and unsupervised algorithm favorably com-
pares to any of these denoising algorithms, including the more sophisticated and
best known wavelet-based denoising methods [30, 26] (see Fig. 3d) and learned
filters-based denoising methods [27] (see Fig. 3c). In Table 1 (a), we reported
the best available published psnr results for the same image dataset [26] ; we
note that our method nearly outperforms any of the tested methods in terms of
psnr. Also, if the psnr gains are marginal for some images, the visual difference
can be significant as shown in Fig. 3 where less artifacts are visible using our
method (see also Fig. 4). Nevertheless, other competitive unsupervised patch-
based methods exist (e.g. see [15, 2]), but we did not report the results on this
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Table 1. Performances of our method when applied to test noisy (WGN) images

Image Lena Barbara Boats House Peppers
σ/psnr 20/22.13 20/22.18 20/22.17 20/22.11 20/22.19
Our method 32.64 30.37 30.12 32.90 30.59
Buades et al. [7] 31.09 29.38 28.60 31.54 29.05
Kervrann [17] 30.54 26.50 28.01 30.70 28.23
Polzehl et al. [25] 29.74 26.05 27.74 30.31 28.40
Portilla et al. [26] 32.66 30.32 30.38 32.39 30.31
Roth et al. [27] 31.92 28.32 29.85 32.17 30.58
Rudin et al. [28] 30.48 27.07 29.02 31.03 28.51
Starck et al. [30] 31.95 - - - -
Tomasi et al. [31] 30.26 27.02 28.41 30.01 28.88
Wiener filering 28.51 26.99 27.97 28.74 28.10

(a) Performances of denoising algorithms when applied to test noisy (WGN) images.

σ/psnr Lena Barbara Boats House Peppers
5122 5122 5122 2562 2562

5 / 34.15 37.91 37.12 36.14 37.62 37.34
10 / 28.13 35.18 33.79 33.09 35.26 34.07
15 / 24.61 33.70 31.80 31.44 34.08 32.13
20 / 22.11 32.64 30.37 30.12 32.90 30.59
25 / 2017 31.73 29.24 29.20 32.22 29.73
50 / 14.15 28.38 24.09 25.93 28.67 25.29
75 / 10.63 25.51 22.10 23.69 25.49 22.31
100 / 8.13 23.32 20.64 21.78 23.08 20.51

patch Lena Barbara Boats House Peppers
size 5122 5122 5122 2562 2562

3 × 3 32.13 28.97 29.86 32.69 30.86
5 × 5 32.52 29.97 30.15 33.05 30.98

7 × 7 32.63 30.27 30.17 33.03 30.80

9 × 9 32.64 30.37 30.12 32.90 30.59

(b) Performances of our method (c) Performances of our method
(p=9, N∆=4, α=0.01) for different (N∆ = 4, α = 0.01) for different
signal-to-noise ratios (WGN). sizes (WGN, σ = 20)patch

image dataset since they are not available. These methods must be considered
for future comparisons. To complete the experiments, Table 1 (b) shows the
psnr values using our patch-based regularization method when applied to this
set of test images for a wide range of noise variance. Moreover, we have also
examined some complementary aspects of our approach. Table 1 (c) shows the
psnr values obtained by varying the patch size. Note the psnr values are close
for every patch size and the optimal patch size depends on the image contents.
Nevertheless, a patch 9× 9 seems appropriate in most cases and a smaller patch
can be considered for processing piecewise smooth images.

In the second part of experiments, the effects of the patch-based regularization
is approach are illustrated on real old photographs. The set of parameters is
unchanged for processing all these test images: p = 9, N∆ = 4, α = 0.01. In most
cases, a good compromise between the amount of smoothing and preservation
of edges and textures is automatically reached. In that case, the noise variance
σ̂2 is automatically estimated from image data. The reconstruction of images is
respectively shown in Fig. 5. Note that geometric structures are well preserved
and the noise component corresponding to homogeneous artifacts is removed.

Finally, we have applied the patch-based restoration method to noisy 2D im-
ages extracted from a temporal 2D+time (xy − t) sequence of 120 microscopy
images in intracellular biology, showing a large number of small fluorescently
labeled moving vesicles in regions close to the Golgi apparatus (courtesy of
Curie Institute). The reading of observed trajectories is easier if the patch-based
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estimation method is applied to both noisy x−t or y−t projection images shown
in Fig. 6 (see also [6]).

4 Conclusion

We have described a novel adaptive regularization algorithm where patch-based
weights and variable window sizes are jointly used. The use of variable and over-
lapping windows contributes to the regularization performance with no block
effect, enhances the flexibility of the resulting local regularizers and make them
possible to cope well with spatial inhomogeneities in natural images. An advan-
tage of the method is that internal parameters can be easily chosen and are
relatively stable. The algorithm is able to regularize both piecewise-smooth and
textured natural images since they contain enough redundancy. Actually, the
performance of our simple algorithm is very close to that of the best already
published denoising methods. In the future, we plan to study the automatic
patch size selection to better adapt to image contents.
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